CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

In the csv dataset, there are several columns to be labeled separately. However, there exist 2 column which contains the same data that is cell number and account number. Account number is the cell number used to register an account. These 2 columns cannot be encoded separately, as same cell number and account number is an important factor to determine if a certain transaction is fraudulent.

```
1. # to count unique values in account & cell numb
                                                                 5
2. cell labels = []
3.
        for obj in df['cell_number']:
4.
          if obj not in cell labels:
5.
6.
          cell labels.append(obj)
7.
       for obj in df['account number']:
8.
          if obj not in cell_labels:
9.
                                               R
10.
            cell labels.append(obj)
11.
12. index = 0
13.
14. # assign number to unique cell number in the form of index
15. for obj in df['cell_number']:
16.
       result = cell labels.index(obj)
17.
       df.at[index,'cell number'] = result
18.
       index = index + 1
19.
20. index = 0
21.
22. # assign number to unique account number which is often a cell number in the form of
   index
23. for obj in df['account number']:
24.
       result = cell labels.index(obj)
25.
       df.at[index,'account number'] = result
26.
       index = index + 1
```

It's tricky to label encode 2 columns since the only available library for encoding only take 1 column to encode, while in this scenario 2 different column needs to be encoded at the same time so identical number can be spotted easily. The researcher wrote the above line specifically to do the task.

The employer suggest that the program should be able to tell the user which transaction is predicted correctly. Below is piece of code designed to locate which data is identified as false positives and false negatives which is originally there for testing but is also important to the clients to know just which transaction is prone to misclassified

-

- 1. # print(train features.loc[1])
- 2. # print('Accuracy : ',rfacc,'%')
- 3. # print('TP : ',TP)
- 4. # print('TN ; ',TN) 5. # print('FP : ',FP)
- 6. # print(test_features.loc[(test_labels == 0) & (predictions == 1)]) 7. # print('FN : ',FN)
- 8. # print(test features.loc[(test labels == 1) & (predictions == 0)])
- 9. # print("F1 score: {:.2f}".format(score))

5.2 Testing

To test the algorithm, the researcher runs the each algorithm 30x and records each True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN), count the precision and recall to determine which algorithm is more suitable to be used.

JAPR

SC1	ТР	TN	FP	FN	PREC	RECA
	40.06666	32565.13	1	0.066666	0.909228	0.998338
RF	667	333	4	667	442	87
	19.06666	32543.06	26.06666	21.06666	0.422451	0.475083
SVM	667	667	667	667	994	056
SVM GAUSSI AN	1.066666 667	32569.06 667	0.066666 667	39.06666 667	0.941176 471	0.026578 073
RF +		32569.06	0.066666	17.83333	0.997019	0.555647
PCA	22.3	667	667	333	374	841

Table 5.1: Scenario 1 result

Table 5.2: Scenario 2 result

SC2	ТР	TN	FP	FN	PREC	RECA
		32569.06	0.066666	2.133333	0.998248	0.946843
RF	38	667	667	333	687	854
	13.06666	32558.06	11.06666	27.06666	0.541436	0.325581
SVM	667	667	667	667	464	395
SVM		-/	1	1		0.001661
GAUSSI	0.066666	32569.06	0.066666	40.06666		0.001661
AN	667	 667	667	667	0.5	15
RF +	26.63333	32557.96	11.16666	125	0.704585	0.663621
PCA	333	667	667	13.5	538	262

Table 5.3: Scenario 3 result

		Second Second	and the second			
SC3	TP //	TN	FP	FN	PREC	RECA
11	40.06666	32560.06	9.066666	0.0666666	0.815468	0.998338
RF	667	667	667	667	114	87
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.066666	32569.06	0.066666	40.06666	0.5	0.001661
SVM 77	667	667	667	667	0.5	13
SVM			1	/-	0.001902	0.200006
GAUSSI	8.066666	32569.06	0.066666	32.06666	0.991803 279	0.200996
AN	667	667	667	667	219	678
RF +	31.73333	32567.93	PH2		0.963562	0.790697
PCA	333	333	4.2	8.4	753	674
		~~				

Table 5.4: Scenario 4 result

SC4	ТР	TN	FP	FN	PREC	RECA
	37.36666	32569.06	0.066666	2.766666	0.998219	0.931063
RF	667	667	667	667	056	123
	0.066666	32545.06	24.06666	40.06666	0.002762	0.001661
SVM	667	667	667	667	431	13
SVM GAUSSI AN	1.066666 667	32569.06 667	0.066666 667	39.06666 667	0.941176 471	0.026578 073
RF +	15.96666	32569.06	0.066666	24.16666	0.995841	0.397840
PCA	667	667	667	667	996	532

Table 5.5: Scenario 5 result

SC5	ТР	TN	FP	FN	PREC	RECA		
	38.06666	32569.06	0.066666	2.066666	0.998251	0.948504		
RF	667	667	667	667	748	983		
	0.066666	32565.06	4.066666	40.06666	0.016129	0.001661		
SVM	667	667	667	667	032	13		
SVM		32569.06	0.066666					
GAUSSI	0.066666	667	667	40.06666		0.001661		
AN	667	007	<b>A O O /</b>	667	0.5	13		
RF +	27.13333	32561.06	8.066666	12	0.770833	0.676079		
PCA	333	667	667		333	734		
Table 5.6: Scenario 6 result								

11	Table 5.6: Scenario 6 result						
SC6	TP	A.	TN	FP	FN	PREC	RECA
11	29.5	3333	32569.06	0.066666		<mark>0.9</mark> 97747	0.735880
RF		333	667	<mark>6</mark> 67	10.6	748	399
	0.06	66666	32569.06	0.066666	40.06666		0.001661
SVM Y	-	667	667	667	667	0.5	13
SVM (	0.06	6666	32569.06	) //	40.06666	1)	0.001661
GAUSSI	0.00	667	667	0.0666666	40.00000	0.5	13
AN	N	007	007	667			13
RF +	20.8	3333	32569.06	0.066666	19.3	0.996810	0.519102
PCA		333	667	667	19.5	207	99

Table 5.7: Scenario 7 result

SC7	ТР	TN	FP	FN	PREC	RECA
	40.06666	32559.06	10.06666	0.066666	0.799202	0.998338
RF	667	667	667	667	128	87
	0.066666	32569.06	0.066666	40.06666	0.5	0.001661
SVM	667	667	667	667	0.5	13
SVM						0.200006
GAUSSI	8.066666	32569.06	0.066666	32.06666	0.991803	0.200996 678
AN	667	667	667	667	279	0/8
RF +	30.96666	32568.96	0.166666	9.166666	0.994646	0.771594
PCA	667	667	667	667	681	684

RF		SVM		SVM GAUSSIAN		RF PCA	
EC RECA	PREC	RECA	PREC	RECA	PREC	RECA	
99.8%	42.2%	47.5%	94.1%	2.7%	99.7%	55.6%	
% 94.7%	54.1%	32.6%	50%	0.2%	70.5%	66.4%	
99.8%	50%	0.2%	99.2%	20.1%	96.4%	79.1%	
% 93.1%	0.3%	0.2%	94.1%	2.7%	99.6%	39.8%	
94.9%	1.6%	0.2%	50%	0.2%	77.1%	67.6%	
% 73.6%	50%	0.2%	50%	0.2%	99.7%	51.9%	
<mark>% 99</mark> .8%	50%	0.2%	99.5%	2 <mark>0.1%</mark>	99.5%	77.2%	
	0%       99.8%         8%       94.7%         5%       99.8%         8%       93.1%         8%       94.9%         8%       73.6%	0%         99.8%         42.2%           8%         94.7%         54.1%           5%         99.8%         50%           8%         93.1%         0.3%           8%         94.9%         1.6%           8%         73.6%         50%	0%       99.8%       42.2%       47.5%         8%       94.7%       54.1%       32.6%         5%       99.8%       50%       0.2%         8%       93.1%       0.3%       0.2%         8%       94.9%       1.6%       0.2%         8%       73.6%       50%       0.2%	0%       99.8%       42.2%       47.5%       94.1%         0%       94.7%       54.1%       32.6%       50%         5%       99.8%       50%       0.2%       99.2%         3%       93.1%       0.3%       0.2%       94.1%         3%       94.9%       1.6%       0.2%       50%         3%       73.6%       50%       0.2%       50%	0%       99.8%       42.2%       47.5%       94.1%       2.7%         8%       94.7%       54.1%       32.6%       50%       0.2%         5%       99.8%       50%       0.2%       99.2%       20.1%         8%       93.1%       0.3%       0.2%       94.1%       2.7%         8%       93.1%       0.3%       0.2%       94.1%       2.7%         8%       73.6%       50%       0.2%       50%       0.2%	0%         99.8%         42.2%         47.5%         94.1%         2.7%         99.7%           8%         94.7%         54.1%         32.6%         50%         0.2%         70.5%           5%         99.8%         50%         0.2%         99.2%         20,1%         96.4%           8%         93.1%         0.3%         0.2%         94.1%         2.7%         99.6%           8%         93.1%         0.3%         0.2%         50%         0.2%         99.6%           8%         73.6%         50%         0.2%         50%         0.2%         99.7%	

Table 5.8: Overall Result

The author uses precision and recall to determine the methods accuracy and if it's safe to be used in real-world scenario. Precision refers to the method's reliability when it detects fraudulent transaction, precision is the portion of correct fraud classification from all fraud classification the algorithm made; when the algorithm has high precision, we can trust it when it classifies a transaction as fraudulent. Recall is the method's accuracy when it identifies a fraudulent transaction, recall is the portion of correct fraudulent transaction prediction from all fraudulent transactions in the dataset; high recall score means it correctly identifies the majority of fraudulent transactions.

With imbalanced dataset these 2 scores is the most reliable method of determining the algorithms performance, since the portion of legitimate transaction is overwhelmingly larger than the fraudulent transaction, a model that just classify everything as legitimate transaction will net about 98% accuracy since it does not calculate the weight of misclassify the minority class which is small in proportion but is very important. If an algorithm has high precision but

low recall, we can see that every time the algorithm classifies a transaction as fraudulent, we can trust that, but there are many false negatives or many fraudulent transactions classified as legitimate transaction. Conversely with low precision but high recall, we'll see an increase in the false positives, the algorithm correctly classifies the majority of fraudulent transaction but misclassify some legitimate transaction as fraudulent.

In all of the scenarios above, SVM with RBF kernel almost always have higher precision but lower recall than SVM linear, interestingly, the scenarios where SVM RBF's precision dropped is when the phone number is being randomly generated so there's no duplicate. Thus, we can conclude that SVM RBF relies on phone number greatly to predict fraudulent transactions. Across all scenario, SVM Linear precision is capped at 50% and drops sharply on scenario 4 and 5 which have nothing in common, and maintains a low recall on every scenario bar the first two which has date and product type. Thus, we can conclude that SVM relies more on the date related feature and product type to makes prediction, but fails to predict reliably since there's so many false positives and negatives.

RF with PCA applied have higher precision and recall than SVMs, maintaining real perfect precision on almost every scenario and experiences a drop in scenarios where no phone number is duplicated which is 2 and 5 but interestingly not 6 which has date feature yet not 7 where date feature is removed. The author hypothesized that this algorithm relies in phone number mainly, but can switch to other feature when necessary, yet may still experience a drop in prediction quality. RF PCA has a large margin of recall score ranging from 39% to 70% which is too large to be used reliably. Default RF algorithm consistently nets very high precision and recall with a drop in score to 70% only in scenario 6 and 7 in which it has 70% recall and 77% precision respectively.

Aside from primary test to obtain the scores above, the author also has run several tests to shed light on why the algorithm have high score or lower score than other algorithm and behaves as such. SVM with linear kernel when applied to this particular dataset which has a lot of negative class, will undoubtedly misclassify some positives class as the negative class. This is what causes the many false negative in the SVM algorithm. Similar situation applies to SVM with RBF kernel which, while having slightly lower false positives in all but 2 scenarios, still biased toward the majority class. From this we can assume SVM with linear kernel, when given imbalanced dataset will perform poorly and is biased toward the majority class.

PCA calculates the effectiveness of a feature to another feature and ignores the ineffective feature in the favor of effective feature, this may be a problem if the feature ignored carries some weight in it however small. Since RF with PCA consistently has lower precision and recall score than unmodified RF except in scenario 1 and 3 which PCA has higher precision by 9% and 15% respectively even though the RF algorithm itself is exactly the same, the author concludes that PCA is unnecessary when using RF algorithm.