APPROVAL AND RATIFICATION PAGE

PROJECT REPORT
Sound Conversion with Fast Fourier Transform Algorithm
by
Tan Ferrdy Hendrawan – 12.02.0001
This project report has been approved and ratified by the Faculty of Computer Science on January, 26th 2016.

With approval,

[Signature]
Supervisor,

Shinta Estri Wahyuningrum, S.Si., M.Cs
NPP: 058.1.2007.272

1.)
Examiners,

Suyanto EA.Ir., M.Sc

2.)

Hironimus Leong, S.Kom., M.Kom
NPP: 058.1.2007.273

3.)

Rosita Herawati, ST., MIT
NPP: 058.1.2004.263

[Signature]
Dean of Faculty of Computer Science,

Erdhi Widyantoro Nugroho, ST., MT
NPP: 058.1.2002.254
STATEMENT OF ORIGINALITY

I, the undersigned:

Name: Ferrdy Hendrawan
ID: 12.02.0001

Certify that this project was made by myself and not copy or plagiarize from other people, except that in writing expressed to the other article. If it is proven that this project was plagiarizes or copy the other, I am ready to accept a sanction.

Semarang, January, 26th 2016

Ferrdy Hendrawan
12.02.0001
ABSTRACT

Voice Converter is a program where the user can change the octave of the input file to higher octave or lower octave. The file type that can be processed is wav file only. The wav file that will be used is 8bit wav file. This project is created with java language programming and use one dimension array, linked list and array list as data structure.

The one dimension array will be used to store the processed analog signal data from wav file and for processing the voice conversion of voice. The linked list and array list will be used to process the K-means Algorithm for clustering the signal data to determine what gender it is. For convert the input file from user, the project will using FFT(Fast Fourier Transform) algorithm.

Fast Fourier Transform is method to converts a signals from its original domain to a representation in the frequency domain. After doing various experiments with the program, the results show that the voice color characteristic that makes the different between female and male gender still cannot achieved. The only achieved experiments results just know the different concept of wav file data reading sample that if the sample rate (how much data sample readed each second) is 22050 with 20000 data sample is the same as 44100 sample rate with 40000 data sample, the FFT Algorithm that being used in this final project is still not the best method to change the voice because still cannot change the timbre (voice color that distinguishes between male and female) and has a lot of noise after processing, but the conversion the voice octave to higher or lower octave can be achieved. The noise of processed data of FFT Algorithm can be reduced using Low Pass Filtering Algorithm.

Keywords: Fast Fourier Transform, K-means, Low Pass Filtering.
PREFACE

In order to gain practical Knowledge in the field of Computer Science, we are required to make report on Final Project “Voice Conversion using FFT Algorithm”. The Basic Objective behind doing this final project report is to fulfill faculty requirement. In this final project report I have included various concepts, effects and implication regarding “Voice Conversion using FFT Algorithm”.

In Chapter one, it was background, scope and the objective of this project. Chapter two will explain the data structure and the algorithm of this project. Chapter three will be planning anything that needed for this project and how to do the project. The chapter four and five are for analysis project, design, implementation of the concepts and also testing of the finished programm. Chapter six will be conclusion and further research of this project.

Doing this final project report helped us to enhance our knowledge regarding understanding the voice towards “Voice Conversion using FFT Algorithm” we doing undergo many experiments related with our topic concepts. Through this report we come to know about how to read the analog signal to digital signal of voice file, change the octave of voice file and reduce the noise of processed voice file.
TABLE OF CONTENTS

APPROVAL AND RATIFICATION PAGE...ii
STATEMENT OF ORIGINALITY..iii
ABSTRACT...iv
PREFACE..v
CHAPTER I INTRODUCTION..1
 1.1 Background...1
 1.2 Scope..2
 1.3 Objective..2
CHAPTER II LITERATURE STUDY...3
 2.1 Data Structure...3
 2.2 Algorithm...4
 2.2.1 K-Means Algorithm..4
 2.2.2 FFT(Fast Fourier Transform) Algorithm...5
CHAPTER III RESEARCH METHODOLOGY...7
 3.1 Problems Identifying...7
 3.2 Solution Plan...7
CHAPTER IV ANALYSIS AND DESIGN...9
 4.1 Analysis..9
 4.2 Design...11
CHAPTER V IMPLEMENTATION AND TESTING..14
 5.1 Implementation..14
 5.1.1 Zero Crossing Rate and Spectral Centroid...15
 5.1.2 K-Means Algorithm..17
 5.1.3 FFT Algorithm..21
 5.2 Testing..29
CHAPTER VI CONCLUSION...34
 6.1 Conclusion...34
6.2 Further Research ..34

REFERENCES
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>K-means Algorithm</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>K-means Cluster</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Complex Series</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Complex Number</td>
<td>5</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Inverse</td>
<td>6</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Transform</td>
<td>6</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Magnitude Phase</td>
<td>6</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Phase</td>
<td>6</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Use Case Diagram</td>
<td>9</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Class Diagram</td>
<td>11</td>
</tr>
<tr>
<td>Figure 11</td>
<td>BufferFile</td>
<td>14</td>
</tr>
<tr>
<td>Figure 12</td>
<td>ZCR and SC</td>
<td>15</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Zero Crossing Rate (ZCR)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Spectral Centroid (SC)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 15</td>
<td>To Integer and Counter</td>
<td>16</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Calculate Variance for Standard Deviation</td>
<td>17</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Return Standard Deviation and counter</td>
<td>17</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Call K-means and passing Standard Deviation data</td>
<td>17</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Samples K-mean</td>
<td>18</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Randomized 2 data</td>
<td>18</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Point Distance</td>
<td>18</td>
</tr>
<tr>
<td>Figure 22</td>
<td>New Center</td>
<td>19</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Shifting centroid 1</td>
<td>20</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Shifting centroid 2</td>
<td>20</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Call wavIO and passing data</td>
<td>21</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Buffer file wavIO</td>
<td>21</td>
</tr>
<tr>
<td>Figure 27</td>
<td>convert to integer</td>
<td>21</td>
</tr>
</tbody>
</table>
Figure 28: call pitch shift and do low pass filtering......................22
Figure 29: Low Pass Filtering..22
Figure 30: Pitch Shift..23
Figure 31: real imaginary...23
Figure 32: Analysis...24
Figure 33: processing..25
Figure 34: synthesis...25
Figure 35: iFFT..26
Figure 36: AudioFormat and save...26
Figure 37: AppRunning...26
Figure 38: JFileChooser..27
Figure 39: set pitch shift...27
Figure 40: Success Message..27
Figure 41: New File Wav..28
Figure 42: Real Signal Wave...29
Figure 43: Sample x 2...30
Figure 44: Sample/2...31
Figure 45: Each data 2x write..32
Figure 46: Result of FFT, pitch shift and low pass filtering...........33