PROJECT REPORT
IMPLEMENTATION ANT COLONY BASIC ALGORITHM
INSIDE AN OPTIMAL ROUTE SEARCHING
STEFANUS RIKI SANTOSA
11.02.0004
2016

INFORMATICS ENGINEERING DEPARTMENT
FACULTY OF COMPUTER SCIENCE
SOEGIJAPRANATA CATHOLIC UNIVERSITY
APPROVAL AND RATIFICATION PAGE

PROJECT REPORT
Implementation Ant Colony Basic Algorithm
Inside an Optimal Route Searching
by
Stefanus Riki Santosa – 11.02.0004

This project report has been approved and ratified by the
Faculty of
Computer Science on January, 27 2016
With approval,

Supervisor,
Hironimus Leong, S.Kom.,M.Kom
NPP: 058.1.2007.273

Examiners,
1.) Suyanto Edward Antonius,,Ir.,M.Sc

2.) Shinta Estri Wahyuningrum, S.Si.,M.Cs
NPP: 058.1.2007.272

3.) Rosita Herawati, ST,MIT
NPP: 058.1.2004.263

Dean of Faculty of Computer Science,
Erdhi Widiyiarto Nugroho, ST.MT
NPP: 058.1.2002.254
STATEMENT OF ORIGINALITY

I, the undersigned:

Name : STEFANUS RIKI SANTOSA
ID : 11.02.0004

Certify that this project was made by myself and not copy or plagiarize from other people, except that in writing expressed to the other article. If it is proven that this project was plagiarizes or copy the other, I am ready to accept a sanction.

Semarang, February, 9 2016

Stefanus Riki Santosa
11.02.0004
ABSTRACT

Searching for the route is an existed problem since long time ago. A lot of route selection and to determine the most optimal route are some example of the existed problems. Searching for the optimal route means to search or find the most ideal route composition or the closest one that is suitable with the existing rule.

This project is about an optimal routing system which is compatible with Ant Colony Optimization Algorithm (ACO), this project uses a mobile (Android) based from Java program language. Ant Colony Algorithm is one of Optimization Algorithm. Ant Colony Optimization algorithm is an Algorithm which is adapted from ant’s habits. Every walking ant will leave pheromones. If more ants pass through that track, the more pheromones will be contained at that road. Pheromones are used to be a trail for the other ants. The ants prefer a track which contains a lot of pheromones.

Same with the habits of the ants, this program will generate the most optimum route based from the ant’s instinct.

Keywords: Ant Colony Algorithm (ACO), Route, Optimization
PREFACE

The report of this project contains 6 chapter. First chapter is an introduction about the background history of the making of this project, scope, and objective.

The second chapter contains literature study about data structure and the used algorithm. This literature contains about the function of Ant Colony Optimization (ACO) algorithm and also 2 Dimensional array (matrix) with the example from the ACO algorithm and the data structure.

The third chapter is about the project planning, from the beginning of the project making until finishing the project.

The fourth chapter contains analyzing and the project design. Start from the diagram class and then GUI design. Class diagram contains about the program running and also the classes’ function. GUI design is divided become 3 frames, they are first frame, second frame, and third frame. The first and the second frame is functioned to input the data from the user. The third frame is functioned to show the program output.

The content from the fourth chapter will be a base for application development in the fifth chapter. The fifth chapter is about algorithm implementation and data structure that is used into the program. Also the result of the test after the user uses the program.

The final chapter contains the conclusion of the whole project that already made and also the needed suggestion for the program if someone wants to use it someday.
TABLE OF CONTENTS

APPROVAL AND RATIFICATION PAGE...ii
STATEMENT OF ORIGINALITY..iii
ABSTRACT..iv
PREFACE..v
CHAPTER I INTRODUCTION...1
1.1 Background..1
1.2 Scope..2
1.3 Objective...2
CHAPTER II LITERATURE STUDY...3
2.1 Data Structure: Two-Dimensional Array / Matrix..3
2.2 Algorithms: Ant Colony Optimization (ACO) Algorithms...............................4
CHAPTER III PLANNING...9
3.1 Research Methodologies..9
3.2 Project Management..11
CHAPTER IV ANALYSIS AND DESIGN..12
4.1 Analysis...12
 4.1.1 Initialization...12
 4.1.2 Generate...12
4.2 Design..14
 4.2.1 Use Case Diagram..14
CHAPTER V IMPLEMENTATION AND TESTING..20
5.1 Implementation...20
5.2 Testing..26
CHAPTER VI CONCLUSION AND FURTHER RESEARCH.................................28
6.1 Conclusion...28
6.2 Further Research..28
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Cities and Relation between the cities in beginning</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Cities and Relation between the cities after iteration 1</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Cities and Relation between the cities after iteration 2</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Use Case Diagram</td>
<td>15</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Diagram Class</td>
<td>16</td>
</tr>
<tr>
<td>Figure 6</td>
<td>GUI design (First Frame)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7</td>
<td>GUI design (Second Frame)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 8</td>
<td>GUI design (second Frame)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 9</td>
<td>GUI design (second Frame)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 10</td>
<td>GUI design (Third Frame/Output)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Data Input</td>
<td>20</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Output Test</td>
<td>25</td>
</tr>
</tbody>
</table>
TABLE OF TABLES

Table 1: Two-Dimensional Array..3
Table 2: Example of Matrix Two-Dimensional......................................4
Table 3: Project Management...11
Table 4: Matrix of Relation Between the Cities.................................13
Table 5: Test Result..27