7. **LAMPIRAN**

Lampiran 1. Hasil Uji Normalitas Aktivitas Antioksidan

<table>
<thead>
<tr>
<th>Perkara</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Kolmogorov-Smirnov</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioksidan Biji_Untreated</td>
<td>.217</td>
<td>5</td>
<td>.200*</td>
<td>.927</td>
<td>.576</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rendam_24</td>
<td>.199</td>
<td>5</td>
<td>.200*</td>
<td>.956</td>
<td>.778</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rebus_24</td>
<td>.303</td>
<td>5</td>
<td>.149</td>
<td>.836</td>
<td>.154</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tempe_24</td>
<td>.288</td>
<td>5</td>
<td>.200*</td>
<td>.862</td>
<td>.235</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rendam_36</td>
<td>.220</td>
<td>5</td>
<td>.200*</td>
<td>.900</td>
<td>.412</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rebus_36</td>
<td>.295</td>
<td>5</td>
<td>.179</td>
<td>.852</td>
<td>.201</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tempe_36</td>
<td>.130</td>
<td>5</td>
<td>.200*</td>
<td>.998</td>
<td>.999</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rendam_48</td>
<td>.228</td>
<td>5</td>
<td>.200*</td>
<td>.901</td>
<td>.414</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rebus_48</td>
<td>.172</td>
<td>5</td>
<td>.200*</td>
<td>.957</td>
<td>.789</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tempe_48</td>
<td>.233</td>
<td>5</td>
<td>.200*</td>
<td>.911</td>
<td>.476</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction

<table>
<thead>
<tr>
<th>Antioksidan</th>
<th>Test of Homogeneity of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Mean</td>
<td>Levene Statistic 1,911 df1 9 df2 40 Sig .078</td>
</tr>
<tr>
<td>Based on Median</td>
<td>.770 df1 9 df2 40 Sig .644</td>
</tr>
<tr>
<td>Based on Median and with adjusted df</td>
<td>.770 df1 9 df2 27,110 Sig .644</td>
</tr>
<tr>
<td>Based on trimmed mean</td>
<td>1,835 df1 9 df2 40 Sig .092</td>
</tr>
</tbody>
</table>

Based on Mean

Based on Median

Based on Median and with adjusted df

Based on trimmed mean
<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Statistic</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioksidan</td>
<td>7.30380000</td>
<td>.202320165</td>
</tr>
<tr>
<td>Biji_Untreatment</td>
<td>6.74206917</td>
<td>.205</td>
</tr>
<tr>
<td>95% Confidence Interval for Mean</td>
<td>7.8653083</td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>7.30998889</td>
<td></td>
</tr>
<tr>
<td>Upper Bound</td>
<td>7.31000000</td>
<td></td>
</tr>
<tr>
<td>5% Trimmed Mean</td>
<td>7.30998889</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>7.31000000</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>.205</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>452401641</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>6.722000</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>7.774200</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>1.052200</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>.882000</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>-.237</td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-2.036</td>
<td></td>
</tr>
<tr>
<td>Rendam_24</td>
<td>6.07824000</td>
<td>.802716075</td>
</tr>
<tr>
<td>95% Confidence Interval for Mean</td>
<td>6.03694444</td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>3.40645288</td>
<td></td>
</tr>
<tr>
<td>Upper Bound</td>
<td>8.30693712</td>
<td></td>
</tr>
<tr>
<td>5% Trimmed Mean</td>
<td>6.03694444</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>5.73160000</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>3.222</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.794927710</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>4.060400</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>8.857400</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>4.797000</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>3.063900</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>.911</td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.258</td>
<td></td>
</tr>
<tr>
<td>Rebus_24</td>
<td>7.19856000</td>
<td>.634661767</td>
</tr>
<tr>
<td>95% Confidence Interval for Mean</td>
<td>7.13116111</td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>5.43645644</td>
<td></td>
</tr>
<tr>
<td>Upper Bound</td>
<td>8.96066356</td>
<td></td>
</tr>
<tr>
<td>5% Trimmed Mean</td>
<td>7.13116111</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>6.87670000</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>2.014</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.419146854</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>6.010200</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>9.800100</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>3.589900</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>2.228250</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>1.671</td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td>3.053</td>
<td></td>
</tr>
<tr>
<td>Tempe_24</td>
<td>8.48602000</td>
<td>.791640667</td>
</tr>
<tr>
<td>95% Confidence Interval for Mean</td>
<td>8.41380556</td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>6.28807315</td>
<td></td>
</tr>
<tr>
<td>Upper Bound</td>
<td>10.68396685</td>
<td></td>
</tr>
<tr>
<td>5% Trimmed Mean</td>
<td>8.41380556</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>7.61950000</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>3.133</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.770162345</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>7.000500</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>11.27140</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>4.270900</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>3.063900</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>1.242</td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td>.606</td>
<td></td>
</tr>
<tr>
<td>Perlakuan</td>
<td>Statistic</td>
<td>Std. Error</td>
</tr>
</tbody>
</table>
### Descriptives

<table>
<thead>
<tr>
<th>Perkayaan</th>
<th>Statistic</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Antioksidan Rendam_36</strong></td>
<td>Mean</td>
<td>5,09408000</td>
</tr>
<tr>
<td></td>
<td>95% Confidence</td>
<td>3,76580955</td>
</tr>
<tr>
<td></td>
<td>Interval for Mean</td>
<td>6,42235045</td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean</td>
<td>5,08857778</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>4,80320000</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>1,144</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>3,936600</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>6,350600</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>2,414000</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>2,089000</td>
</tr>
<tr>
<td></td>
<td>Interquartile Range</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>-2.663</td>
</tr>
<tr>
<td></td>
<td><strong>Rebus_36</strong></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>95% Confidence</td>
<td>5,78112487</td>
</tr>
<tr>
<td></td>
<td>Interval for Mean</td>
<td>10,27479513</td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean</td>
<td>8,04756111</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>8,95020000</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>3,274</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>8,95020000</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>3,992300</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>9,847700</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>3,419800</td>
</tr>
<tr>
<td></td>
<td>Interquartile Range</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>-0.489</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>-2.851</td>
</tr>
<tr>
<td></td>
<td><strong>Tempe_36</strong></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>95% Confidence</td>
<td>9,09311424</td>
</tr>
<tr>
<td></td>
<td>Interval for Mean</td>
<td>10,268052576</td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean</td>
<td>9,68785000</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>9,66200000</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>9,66200000</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>10,312000</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>1,268900</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>0.866550</td>
</tr>
<tr>
<td></td>
<td>Interquartile Range</td>
<td>0.913</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>-0.095</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>-0.995</td>
</tr>
<tr>
<td></td>
<td><strong>Rendam_48</strong></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>95% Confidence</td>
<td>3,20226240</td>
</tr>
<tr>
<td></td>
<td>Interval for Mean</td>
<td>7,02301760</td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean</td>
<td>5,17109444</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5,36020000</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>2,367</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>5,36020000</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>2,636800</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>6,536300</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>3,899500</td>
</tr>
<tr>
<td></td>
<td>Interquartile Range</td>
<td>2,630600</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>-1.261</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>1.607</td>
</tr>
<tr>
<td>Perfakan</td>
<td>Descriptives</td>
<td>Statistic</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Antioksidan</td>
<td>Rebus_48 Mean 8,42412000 95% Confidence Interval for Mean Lower Bound 6,89133631 Upper Bound 9,95690369</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean 8,39317222 Median 8,20750000 Variance 1,524 Std. Deviation 1,234459314 Minimum 7,093300 Maximum 10,31200 Range 3,218700 Interquartile Range 2,181850 Skewness .890 Kurtosis .705</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95% Confidence Interval for Mean Lower Bound 6,89133631 Upper Bound 9,95690369</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean 8,39317222 Median 8,20750000 Variance 1,524 Std. Deviation 1,234459314 Minimum 7,093300 Maximum 10,31200 Range 3,218700 Interquartile Range 2,181850 Skewness .890 Kurtosis .705</td>
<td></td>
</tr>
<tr>
<td>Tempe_48</td>
<td>Rebus_48 Mean 11,55608000 95% Confidence Interval for Mean Lower Bound 9,07726908 Upper Bound 14,03489092</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean 11,53788556 Median 11,98320000 Variance 3,985 Std. Deviation 1,996362077 Minimum 9,414500 Maximum 14,02570 Range 4,611200 Interquartile Range 3,853000 Skewness -.011 Kurtosis -2,187</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95% Confidence Interval for Mean Lower Bound 9,07726908 Upper Bound 14,03489092</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean 11,53788556 Median 11,98320000 Variance 3,985 Std. Deviation 1,996362077 Minimum 9,414500 Maximum 14,02570 Range 4,611200 Interquartile Range 3,853000 Skewness -.011 Kurtosis -2,187</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 2. Hasil Uji Beda (One-Way ANOVA) Aktivitas Antioksidan selama Proses Pembuatan Tempe Koro Pedang

### Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>biji</td>
<td>5</td>
<td>7,303800</td>
<td>.452401641</td>
<td>.202320165</td>
<td>6.74206917 7.86553083 6.722000 7.774200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>6,078240</td>
<td>1.794927710</td>
<td>.802716075</td>
<td>3,84954288 8,30693712 4,060400 8,857400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>7,198560</td>
<td>1.419146854</td>
<td>.634661767</td>
<td>5,43645644 8,96066356 6,010200 9,600100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>8,486020</td>
<td>1.770162345</td>
<td>.791640667</td>
<td>6,28807315 10,68396685 7,000500 11,27140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>7,266655</td>
<td>1.602982918</td>
<td>.358437877</td>
<td>6,51643590 8,01687410 4,060400 11,27140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Duncan

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>6,078240</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>7,198560 7,198560</td>
</tr>
<tr>
<td>biji</td>
<td>5</td>
<td>7,303800 7,303800</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>8,486020</td>
</tr>
<tr>
<td>Sig.</td>
<td>227</td>
<td>206</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 5,000.

### Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>biji</td>
<td>5</td>
<td>7,303800</td>
<td>.452401641</td>
<td>.202320165</td>
<td>6.74206917 7.86553083 6.722000 7.774200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>5,094080</td>
<td>1.069573013</td>
<td>.475806884</td>
<td>3,76580955 6,42235045 3,936600 6,350600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>8,027960</td>
<td>1.809535538</td>
<td>.809248894</td>
<td>5,31124870 10,27497513 5,855400 9,847700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>9,686820</td>
<td>1.770162345</td>
<td>.791640667</td>
<td>6,28807315 10,68396685 7,000500 11,27140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>7,528165</td>
<td>1.971264745</td>
<td>.440788197</td>
<td>6,05558470 8,49074530 3,936600 10,31200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Duncan

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>5,094080</td>
</tr>
<tr>
<td>biji</td>
<td>5</td>
<td>7,303800 7,303800</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>8,027960</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>9,686820</td>
</tr>
<tr>
<td>Sig.</td>
<td>100</td>
<td>.314 1,000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 5,000.
### Descriptives

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>biji</td>
<td>5</td>
<td>7.303800</td>
<td>.452401641</td>
<td>.202320165</td>
<td>6.74206917 - 7.8653083</td>
<td>7.772000</td>
<td>7.774200</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>5.112640</td>
<td>1.538562444</td>
<td>.688066042</td>
<td>3.20226240 - 7.02301760</td>
<td>2.636800</td>
<td>6.536300</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>8.424120</td>
<td>1.234459314</td>
<td>.552066988</td>
<td>6.89133631 - 9.95690369</td>
<td>7.093300</td>
<td>10.31200</td>
</tr>
</tbody>
</table>

#### Duncan’s a

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>5,112640</td>
</tr>
<tr>
<td>biji</td>
<td>5</td>
<td>5,094080</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>5,112640</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>5,094080</td>
</tr>
<tr>
<td>Sig.</td>
<td>1</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 5,000.

### Descriptives

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>24_jam</td>
<td>5</td>
<td>6,078240</td>
<td>1.794927710</td>
<td>.02776075</td>
<td>3.84954288 - 8.3093712</td>
<td>4.064000</td>
<td>8.857400</td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>5,094080</td>
<td>1.069750313</td>
<td>.478406884</td>
<td>3.76580955 - 6.42235045</td>
<td>3.396600</td>
<td>6.356000</td>
</tr>
<tr>
<td>48_jam</td>
<td>5</td>
<td>5,112640</td>
<td>1.538562444</td>
<td>.68006042</td>
<td>3.20226240 - 7.02301760</td>
<td>2.636800</td>
<td>6.536300</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>5,428320</td>
<td>1.468337850</td>
<td>.378606805</td>
<td>4.61628916 - 6.24035084</td>
<td>2.636800</td>
<td>8.857400</td>
</tr>
</tbody>
</table>

#### Duncan’s a

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>5,094080</td>
</tr>
<tr>
<td>48_jam</td>
<td>5</td>
<td>5,112640</td>
</tr>
<tr>
<td>24_jam</td>
<td>5</td>
<td>6,078240</td>
</tr>
<tr>
<td>Sig.</td>
<td>.343</td>
<td></td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 5,000.
### Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>24_jam</td>
<td>5</td>
<td>7.198560</td>
<td>1.419146854</td>
<td>.634661767</td>
<td>5.43645644</td>
<td>8.96066356</td>
<td></td>
<td>6.010200</td>
<td>9.600100</td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>8.027960</td>
<td>1.8095353538</td>
<td>.809248894</td>
<td>5.78112487</td>
<td>10.27479513</td>
<td></td>
<td>5.855400</td>
<td>9.847700</td>
</tr>
<tr>
<td>48_jam</td>
<td>5</td>
<td>8.424120</td>
<td>1.234459314</td>
<td>.552066988</td>
<td>6.89133631</td>
<td>9.95690369</td>
<td></td>
<td>7.093300</td>
<td>10.31200</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>7.883547</td>
<td>1.491896041</td>
<td>.385205902</td>
<td>7.05736218</td>
<td>8.70973116</td>
<td></td>
<td>5.855400</td>
<td>10.31200</td>
</tr>
</tbody>
</table>

#### Duncan

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>24_jam</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>48_jam</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Sig.</td>
<td>.244</td>
<td></td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5,000.

### Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>24_jam</td>
<td>5</td>
<td>8.486020</td>
<td>1.770163245</td>
<td>.791640667</td>
<td>6.28807315</td>
<td>10.8396685</td>
<td></td>
<td>7.000500</td>
<td>11.27140</td>
</tr>
</tbody>
</table>

#### Duncan

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>24_jam</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>48_jam</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Sig.</td>
<td>.248</td>
<td></td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5,000.
Lampiran 3. Hasil Penentuan Kurva Standar Potensi Sianogenik

<table>
<thead>
<tr>
<th>Iteration Number</th>
<th>Residual Sum of Squares</th>
<th>Parameter a</th>
<th>Parameter b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>,388</td>
<td>,000</td>
<td>,000</td>
</tr>
<tr>
<td>1.1</td>
<td>,076</td>
<td>,061</td>
<td>,009</td>
</tr>
<tr>
<td>2.0</td>
<td>,076</td>
<td>,061</td>
<td>,009</td>
</tr>
<tr>
<td>2.1</td>
<td>,000</td>
<td>,000</td>
<td>,000</td>
</tr>
<tr>
<td>3.0</td>
<td>,000</td>
<td>,000</td>
<td>,000</td>
</tr>
<tr>
<td>3.1</td>
<td>,000</td>
<td>,000</td>
<td>,000</td>
</tr>
</tbody>
</table>

Iteration History

Derivatives are calculated numerically.

- Major iteration number is displayed to the left of the decimal, and minor iteration number is to the right of the decimal.

- Run stopped after 6 model evaluations and 3 derivative evaluations because the relative reduction between successive residual sums of squares is at most SSCON = 1,00E-008.

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>,001</td>
<td>,005</td>
<td>,016</td>
</tr>
<tr>
<td>b</td>
<td>,022</td>
<td>,000</td>
<td>,021</td>
</tr>
</tbody>
</table>

Correlations of Parameter Estimates

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>,751</td>
</tr>
<tr>
<td>,751</td>
<td>1,000</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>,392</td>
<td>2</td>
<td>,196</td>
</tr>
<tr>
<td>Residual</td>
<td>,000</td>
<td>3</td>
<td>,000</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>,392</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>,172</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable: absorbansi

- R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = ,999.

Lampiran 4. Hasil Uji Normalitas Kandungan Sianida
### Descriptives

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Statistic</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sianida</td>
<td>Mean</td>
<td>327,7890867</td>
</tr>
<tr>
<td></td>
<td>95% Confidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower Bound</td>
<td>291,5356783</td>
</tr>
<tr>
<td></td>
<td>Upper Bound</td>
<td>364,0424950</td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean</td>
<td>326,1701420</td>
</tr>
<tr>
<td>Median</td>
<td>301,8364000</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>14561,351</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>120,6704225</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>101,8727</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>582,8727</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>481,000000</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>164,509100</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>.211</td>
<td>.354</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-.329</td>
<td>.695</td>
</tr>
</tbody>
</table>

### Tests of Normality

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sianida</td>
<td>.115</td>
<td>.169</td>
</tr>
</tbody>
</table>

a. Lilliefors Significance Correction
## Descriptives

### dua_empat

<table>
<thead>
<tr>
<th>tahapan</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>biji</td>
<td>5</td>
<td>1345.807</td>
<td>34.336818081</td>
<td>15.355891872</td>
<td>1303.172489</td>
<td>1388.442071</td>
<td>1311.346</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>535.3636</td>
<td>57.832795464</td>
<td>25.863612397</td>
<td>463.5547400</td>
<td>607.1725400</td>
<td>470.1273</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>412.8800</td>
<td>36.130566787</td>
<td>16.158080680</td>
<td>368.0179760</td>
<td>457.7420240</td>
<td>376.7636</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>369.3891</td>
<td>2.848140287</td>
<td>1.273727058</td>
<td>365.8526467</td>
<td>372.9255133</td>
<td>364.7091</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>665.8600</td>
<td>409.0815237</td>
<td>91.473409540</td>
<td>474.4039535</td>
<td>857.3160465</td>
<td>364.7091</td>
</tr>
</tbody>
</table>

### Duncan

<table>
<thead>
<tr>
<th>tahapan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>369.3891</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>412.8800</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>535.3636</td>
</tr>
</tbody>
</table>
| biji    | 5  | .091                   | 1.000          | 1.000

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 5,000.

## Descriptives

### tiga_enam

<table>
<thead>
<tr>
<th>tahapan</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>biji</td>
<td>5</td>
<td>1345.807</td>
<td>34.336818081</td>
<td>15.355891872</td>
<td>1303.172489</td>
<td>1388.442071</td>
<td>1311.346</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>438.8327</td>
<td>29.182367271</td>
<td>13.050751392</td>
<td>402.5980252</td>
<td>475.8744148</td>
<td>396.8545</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>286.6145</td>
<td>16.608335698</td>
<td>7.42743523</td>
<td>265.9925675</td>
<td>307.2365125</td>
<td>262.3636</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>267.1854</td>
<td>40.932745416</td>
<td>18.305680251</td>
<td>216.3607237</td>
<td>318.0101563</td>
<td>217.2182</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>584.6100</td>
<td>456.9399140</td>
<td>102.1748709</td>
<td>370.7555324</td>
<td>798.4644576</td>
<td>217.2182</td>
</tr>
</tbody>
</table>

### Duncan

<table>
<thead>
<tr>
<th>tahapan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>267.1854</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>286.6145</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>438.8327</td>
</tr>
</tbody>
</table>
| biji    | 5  | .345                   | 1.000          | 1.000

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 5,000.
## Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>1345.81</td>
<td>34.3368</td>
<td>15.3556</td>
<td>1303.17</td>
<td>1388.44</td>
<td>1311.34</td>
<td>1380.60</td>
</tr>
<tr>
<td>biji</td>
<td>5</td>
<td>266.67</td>
<td>7.6025</td>
<td>3.4894</td>
<td>256.98</td>
<td>276.35</td>
<td>259.76</td>
<td>277.02</td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td>244.16</td>
<td>43.392</td>
<td>19.4057</td>
<td>190.28</td>
<td>298.04</td>
<td>192.40</td>
<td>288.36</td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td>129.01</td>
<td>27.7354</td>
<td>12.4037</td>
<td>94.57</td>
<td>163.45</td>
<td>101.88</td>
<td>158.64</td>
</tr>
<tr>
<td>tempe</td>
<td>5</td>
<td>256.98</td>
<td>7.8025</td>
<td>3.4894</td>
<td>256.98</td>
<td>276.35</td>
<td>259.76</td>
<td>277.02</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>496.41</td>
<td>506.79</td>
<td>113.32</td>
<td>259.22</td>
<td>733.59</td>
<td>101.87</td>
<td>1380.60</td>
</tr>
</tbody>
</table>

### Duncan

<table>
<thead>
<tr>
<th>tahapan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempe</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rebus</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>rendam</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>biji</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Sig.</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>.271</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5,000.

## Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>535.36</td>
<td>57.832</td>
<td>25.87</td>
<td>463.56</td>
<td>607.17</td>
<td>470.13</td>
<td>582.87</td>
</tr>
<tr>
<td>24_jam</td>
<td>5</td>
<td>438.83</td>
<td>29.183</td>
<td>13.05</td>
<td>402.59</td>
<td>475.07</td>
<td>396.85</td>
<td>470.12</td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>266.67</td>
<td>7.8025</td>
<td>3.49</td>
<td>256.98</td>
<td>276.35</td>
<td>259.76</td>
<td>277.02</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>413.62</td>
<td>120.205</td>
<td>31.04</td>
<td>347.05</td>
<td>480.19</td>
<td>259.76</td>
<td>582.87</td>
</tr>
</tbody>
</table>

### Duncan

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>48_jam</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>24_jam</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Sig.</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5,000.
### Descriptives

#### rebus

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>24_jam</td>
<td>5</td>
<td>412.8800</td>
<td>36.130566787</td>
<td>16.158080680</td>
<td>368.0179760</td>
<td>457.7420240</td>
<td>376.7636</td>
<td>449.8000</td>
<td></td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>286.6145</td>
<td>16.608335698</td>
<td>7.427473523</td>
<td>265.9925675</td>
<td>307.2365125</td>
<td>262.3636</td>
<td>301.8364</td>
<td></td>
</tr>
<tr>
<td>48_jam</td>
<td>5</td>
<td>244.1636</td>
<td>43.392498949</td>
<td>19.405715473</td>
<td>190.2847363</td>
<td>298.0425437</td>
<td>192.4000</td>
<td>288.3636</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>314.5527</td>
<td>80.566630335</td>
<td>20.802214503</td>
<td>269.9364139</td>
<td>359.1690394</td>
<td>192.4000</td>
<td>449.8000</td>
<td></td>
</tr>
</tbody>
</table>

#### Duncan

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>48_jam</td>
<td>5</td>
<td>244,1636</td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>286,6145</td>
</tr>
<tr>
<td>24_jam</td>
<td>5</td>
<td>412,8800</td>
</tr>
<tr>
<td>Sig.</td>
<td>.072</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 5,000.

#### Descriptives

#### tempe

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>24_jam</td>
<td>5</td>
<td>369.3891</td>
<td>2.848140287</td>
<td>1.27372706</td>
<td>365.8526467</td>
<td>372.9256133</td>
<td>364.7091</td>
<td>372.2727</td>
<td></td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>267.1854</td>
<td>40.932745416</td>
<td>18.3056803</td>
<td>216.3607237</td>
<td>318.0101563</td>
<td>217.2182</td>
<td>309.8727</td>
<td></td>
</tr>
<tr>
<td>48_jam</td>
<td>5</td>
<td>129.0073</td>
<td>27.735434378</td>
<td>12.4036633</td>
<td>94.5691866</td>
<td>163.4453703</td>
<td>101.8727</td>
<td>158.8364</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>255.1939</td>
<td>105.3990511</td>
<td>27.1984260</td>
<td>196.8591112</td>
<td>313.5287554</td>
<td>101.8727</td>
<td>372.2727</td>
<td></td>
</tr>
</tbody>
</table>

#### Duncan

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>48_jam</td>
<td>5</td>
<td>129,0073</td>
</tr>
<tr>
<td>36_jam</td>
<td>5</td>
<td>267,1854</td>
</tr>
<tr>
<td>24_jam</td>
<td>5</td>
<td>369,3891</td>
</tr>
<tr>
<td>Sig.</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 5,000.
Lampiran 6. Hasil Interaksi Antara Aktivitas Antioksidan dan Kandungan Sianida

Model Summary and Parameter Estimates

<table>
<thead>
<tr>
<th>Equation</th>
<th>R Square</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
<th>Constant</th>
<th>b1</th>
<th>b2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadratic</td>
<td>.514</td>
<td>3.707</td>
<td>2</td>
<td>7</td>
<td>.080</td>
<td>13,003</td>
<td>-.021</td>
<td>1.21E-005</td>
</tr>
</tbody>
</table>

The independent variable is Sianida.