Lampiran 1. *Worksheet* Uji Sensori

WORKSHEET UJI RANKING HEDONIK

Tanggal uji : 3 Desember 2009
Jenis sampel : *Infusion*

<table>
<thead>
<tr>
<th>Identifikasi Sampel</th>
<th>Kode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infusion dengan konsentrasi I</td>
<td>A</td>
</tr>
<tr>
<td>Infusion dengan konsentrasi II</td>
<td>B</td>
</tr>
<tr>
<td>Infusion dengan konsentrasi III</td>
<td>C</td>
</tr>
</tbody>
</table>

Kode Kombinasi Urutan Penyajian

```
<table>
<thead>
<tr>
<th>Kombinasi</th>
<th>Urutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC = 1</td>
<td>1</td>
</tr>
<tr>
<td>ABC = 11</td>
<td>11</td>
</tr>
<tr>
<td>ABC = 21</td>
<td>21</td>
</tr>
<tr>
<td>ACB = 2</td>
<td>2</td>
</tr>
<tr>
<td>ACB = 12</td>
<td>12</td>
</tr>
<tr>
<td>ACB = 22</td>
<td>22</td>
</tr>
<tr>
<td>BCA = 3</td>
<td>3</td>
</tr>
<tr>
<td>BCA = 13</td>
<td>13</td>
</tr>
<tr>
<td>BCA = 23</td>
<td>23</td>
</tr>
<tr>
<td>CAB = 4</td>
<td>4</td>
</tr>
<tr>
<td>CAB = 14</td>
<td>14</td>
</tr>
<tr>
<td>CAB = 24</td>
<td>24</td>
</tr>
<tr>
<td>CBA = 5</td>
<td>5</td>
</tr>
<tr>
<td>CBA = 15</td>
<td>15</td>
</tr>
<tr>
<td>CBA = 25</td>
<td>25</td>
</tr>
<tr>
<td>ABC = 6</td>
<td>6</td>
</tr>
<tr>
<td>ABC = 16</td>
<td>16</td>
</tr>
<tr>
<td>ABC = 26</td>
<td>26</td>
</tr>
<tr>
<td>ACB = 7</td>
<td>7</td>
</tr>
<tr>
<td>ACB = 17</td>
<td>17</td>
</tr>
<tr>
<td>ACB = 27</td>
<td>27</td>
</tr>
<tr>
<td>BCA = 8</td>
<td>8</td>
</tr>
<tr>
<td>BCA = 18</td>
<td>18</td>
</tr>
<tr>
<td>BCA = 28</td>
<td>28</td>
</tr>
<tr>
<td>CAB = 9</td>
<td>9</td>
</tr>
<tr>
<td>CAB = 19</td>
<td>19</td>
</tr>
<tr>
<td>CAB = 29</td>
<td>29</td>
</tr>
<tr>
<td>CBA = 10</td>
<td>10</td>
</tr>
<tr>
<td>CBA = 20</td>
<td>20</td>
</tr>
<tr>
<td>CBA = 30</td>
<td>30</td>
</tr>
</tbody>
</table>
```

PENYAJIAN

<table>
<thead>
<tr>
<th>BOOTH</th>
<th>PANELIS</th>
<th>PENYAJIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1 111 109 919 1</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>1 901 888 121 4</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>1 691 131 902 3</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>1 917 903 141 4</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>1 777 791 151 5</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>1 904 161 918 6</td>
</tr>
<tr>
<td>III</td>
<td>7</td>
<td>1 905 171 891 7</td>
</tr>
<tr>
<td>IV</td>
<td>8</td>
<td>1 181 555 906 8</td>
</tr>
<tr>
<td>I</td>
<td>9</td>
<td>1 875 191 591 9</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>1 225 200 907 10</td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>1 908 321 201 11</td>
</tr>
<tr>
<td>IV</td>
<td>12</td>
<td>1 909 920 211 12</td>
</tr>
<tr>
<td>I</td>
<td>13</td>
<td>1 465 493 221 13</td>
</tr>
<tr>
<td>II</td>
<td>14</td>
<td>1 394 910 231 14</td>
</tr>
<tr>
<td>III</td>
<td>15</td>
<td>1 241 530 911 15</td>
</tr>
<tr>
<td>IV</td>
<td>16</td>
<td>1 912 251 916 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>I</td>
<td>17</td>
<td>261 444 730</td>
</tr>
<tr>
<td>II</td>
<td>18</td>
<td>271 678 913</td>
</tr>
<tr>
<td>III</td>
<td>19</td>
<td>281 914 430</td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
<td>915 291 666</td>
</tr>
<tr>
<td>I</td>
<td>21</td>
<td>300 234 217</td>
</tr>
<tr>
<td>II</td>
<td>22</td>
<td>333 343 301</td>
</tr>
<tr>
<td>III</td>
<td>23</td>
<td>405 311 222</td>
</tr>
<tr>
<td>IV</td>
<td>24</td>
<td>999 100 321</td>
</tr>
<tr>
<td>I</td>
<td>25</td>
<td>718 476 723</td>
</tr>
<tr>
<td>II</td>
<td>26</td>
<td>493 839 478</td>
</tr>
<tr>
<td>III</td>
<td>27</td>
<td>267 840 557</td>
</tr>
<tr>
<td>IV</td>
<td>28</td>
<td>348 756 559</td>
</tr>
<tr>
<td>I</td>
<td>29</td>
<td>689 462 841</td>
</tr>
<tr>
<td>II</td>
<td>30</td>
<td>539 614 367</td>
</tr>
</tbody>
</table>

Rekap Kode Sampel

| Sampel A | 111 901 902 903 151 904 905 906 191 907 908 909 221 910 911 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | 912 261 913 914 666 300 333 222 100 723 493 267 559 462 367 |
| Sampel B | 109 121 691 141 791 161 891 181 591 200 321 211 465 231 530 |
| | 251 730 271 430 291 234 301 405 321 476 839 557 348 841 614 |
| Sampel C | 919 888 131 917 777 918 171 555 875 225 201 920 493 394 241 |
| | 916 444 678 281 915 217 343 311 999 718 478 840 756 689 539 |
Lampiran 2. Kuesioner Uji Sensori

Nama :
Tanggal:
Produk : Guava Infusion
Penilaian untuk : Aroma
Instruksi :

Di hadapan Anda terdapat 3 sampel infusion. Hirup aroma yang keluar dari sampel secara berturutan dari kiri ke kanan. Setelah menghirup semua aroma dari masing-masing sampel, Anda boleh mengulang sesering yang Anda perlukan. Urutkan sampel dari yang paling Anda sukai (=1) hingga sampel yang paling kurang Anda sukai (=3)

Sampel Ranking (jangan ada yang dobel)

____ ___________
____ ___________
____ ___________

Terima kasih

Nama :
Tanggal:
Produk : Guava Infusion
Penilaian untuk : Aroma
Instruksi :

Di hadapan Anda terdapat 3 sampel infusion. Hirup aroma yang keluar dari sampel secara berturutan dari kiri ke kanan. Setelah menghirup semua aroma dari masing-masing sampel, Anda boleh mengulang sesering yang Anda perlukan. Urutkan sampel dari yang paling Anda sukai (=1) hingga sampel yang paling kurang Anda sukai (=3)

Sampel Ranking (jangan ada yang dobel)

____ ___________
____ ___________
____ ___________

Terima kasih
Lampiran 3. Analisa One-Way Anova Kadar Air

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet_basis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>.217</td>
<td>2</td>
<td>.108</td>
<td>.112</td>
<td>.896</td>
</tr>
<tr>
<td>Within Groups</td>
<td>5.809</td>
<td>6</td>
<td>.968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.026</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry_basis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>.218</td>
<td>2</td>
<td>.109</td>
<td>.112</td>
<td>.896</td>
</tr>
<tr>
<td>Within Groups</td>
<td>5.814</td>
<td>6</td>
<td>.969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.032</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ttl_pdtn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>.217</td>
<td>2</td>
<td>.108</td>
<td>.112</td>
<td>.896</td>
</tr>
<tr>
<td>Within Groups</td>
<td>5.809</td>
<td>6</td>
<td>.968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.026</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

wet_basis

<table>
<thead>
<tr>
<th>sampel</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>11.0667</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11.2223</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>11.4447</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 3.000.

dry_basis

<table>
<thead>
<tr>
<th>sampel</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>11.0657</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11.2227</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>11.4447</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

- Uses Harmonic Mean Sample Size = 3.000.
Duncan

<table>
<thead>
<tr>
<th>sampel</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>88.5553</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>88.7777</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>88.9333</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.664</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

Lampiran 4. Analisa Multivariate Sampel A

<table>
<thead>
<tr>
<th>Effect</th>
<th>Pillai's Trace</th>
<th>Wilks' Lambda</th>
<th>Hotelling's Trace</th>
<th>Roy's Largest Root</th>
<th>Pillai's Trace</th>
<th>Wilks' Lambda</th>
<th>Hotelling's Trace</th>
<th>Roy's Largest Root</th>
<th>Pillai's Trace</th>
<th>Wilks' Lambda</th>
<th>Hotelling's Trace</th>
<th>Roy's Largest Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.000</td>
<td>.000</td>
<td>505870.4</td>
<td>505870.4</td>
<td>1.402</td>
<td>.018</td>
<td>3.0758</td>
<td>29.989</td>
<td>2.362</td>
<td>.010</td>
<td>13.731</td>
<td>9.781</td>
</tr>
<tr>
<td>suhu</td>
<td>2.710</td>
<td>.000</td>
<td>79.640</td>
<td>51.919</td>
<td>30.758</td>
<td>.018</td>
<td>76.895</td>
<td>164.945</td>
<td>2.362</td>
<td>.010</td>
<td>11.156</td>
<td>39.123</td>
</tr>
<tr>
<td>waktu</td>
<td>1.402</td>
<td>.000</td>
<td>30.758</td>
<td>29.989</td>
<td>1.000</td>
<td>2655820a</td>
<td>2655820a</td>
<td>2655820a</td>
<td>2.362</td>
<td>.010</td>
<td>8.631</td>
<td>39.123</td>
</tr>
</tbody>
</table>

The statistic is an upper bound on F that yields a lower bound on the significance level.

a. Exact statistic
b. Design: Intercept+suhu+waktu+suhu * waktu
Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>antioksidan</td>
<td>1.182a</td>
<td>11</td>
<td>.107</td>
<td>29.728</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>87.550b</td>
<td>11</td>
<td>7.959</td>
<td>115.265</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.102c</td>
<td>11</td>
<td>.009</td>
<td>62.839</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1035.232d</td>
<td>11</td>
<td>94.112</td>
<td>35.060</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>antioksidan</td>
<td>8.825</td>
<td>1</td>
<td>8.825</td>
<td>2441.028</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>870.801</td>
<td>1</td>
<td>870.801</td>
<td>12611.040</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>1736.250</td>
<td>1</td>
<td>1736.250</td>
<td>1E+007</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>19879.120</td>
<td>1</td>
<td>19879.120</td>
<td>7405.593</td>
<td>.000</td>
</tr>
<tr>
<td>suhu</td>
<td>antioksidan</td>
<td>1.032</td>
<td>3</td>
<td>.344</td>
<td>95.112</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>37.228</td>
<td>3</td>
<td>12.409</td>
<td>179.713</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.079</td>
<td>3</td>
<td>.026</td>
<td>179.692</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>943.584</td>
<td>3</td>
<td>314.528</td>
<td>117.171</td>
<td>.000</td>
</tr>
<tr>
<td>waktu</td>
<td>antioksidan</td>
<td>.024</td>
<td>2</td>
<td>.012</td>
<td>3.351</td>
<td>.052</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>42.982</td>
<td>2</td>
<td>21.491</td>
<td>311.237</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.003</td>
<td>2</td>
<td>.002</td>
<td>11.396</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>21.151</td>
<td>2</td>
<td>10.575</td>
<td>3.940</td>
<td>.033</td>
</tr>
<tr>
<td>suhu * waktu</td>
<td>antioksidan</td>
<td>.126</td>
<td>6</td>
<td>.021</td>
<td>5.827</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>7.340</td>
<td>6</td>
<td>1.223</td>
<td>17.717</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.019</td>
<td>6</td>
<td>.003</td>
<td>21.560</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>70.498</td>
<td>6</td>
<td>11.750</td>
<td>4.377</td>
<td>.004</td>
</tr>
<tr>
<td>Error</td>
<td>antioksidan</td>
<td>.087</td>
<td>24</td>
<td>.004</td>
<td>3.351</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>1.657</td>
<td>24</td>
<td>.069</td>
<td>17.717</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.004</td>
<td>24</td>
<td>.000</td>
<td>3.351</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>64.424</td>
<td>24</td>
<td>2.684</td>
<td>2.684</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>antioksidan</td>
<td>10.094</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>960.008</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>1736.355</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>20978.776</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>antioksidan</td>
<td>1.269</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>89.207</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.105</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1099.656</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. R Squared = .932 (Adjusted R Squared = .900)
- b. R Squared = .981 (Adjusted R Squared = .973)
- c. R Squared = .966 (Adjusted R Squared = .951)
- d. R Squared = .941 (Adjusted R Squared = .915)
Lampiran 5. Analisa Aktivitas Antioksidan Sampel A Secara *Two-Way Anova* pada suhu 25°C-70°C

antioksidan

suhu	N	Subset				
4	9	1	.29078	2	3	4
3	9		41167		52833	74967
2	9					74967
1	9	1	1.000	2	3	4

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares. The error term is Mean Square(Error) = .004.

- a. Uses Harmonic Mean Sample Size = 9.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

Lampiran 6. Analisa Kadar Vitamin C Sampel A Secara *Two-Way Anova* pada suhu 25°C-70°C

vit_c

suhu	N	Subset				
1	9	1	3.72533	2	3	4
3	9		4.10667			6.07200
2	9				5.76889	6.07200
4	9	1	1.000	2	3	4

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares. The error term is Mean Square(Error) = .069.

- a. Uses Harmonic Mean Sample Size = 9.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.
Lampiran 7. Analisa nilai pH Sampel A Secara Two-Way Anova pada suhu 25°C-70°C

<table>
<thead>
<tr>
<th>suhu</th>
<th>N</th>
<th>Subset</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>6.91000</td>
<td>6.91889</td>
<td>6.91889</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>6.91889</td>
<td>6.92444</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td></td>
<td>6.92444</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td>7.02556</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.133</td>
<td>.341</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .000.

- a. Uses Harmonic Mean Sample Size = 9.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

Lampiran 8. Analisa Aktivitas Antioksidan Sampel A Secara Two-Way Anova pada waktu 3-5 menit

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>.46700</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>.48875</td>
<td>.48875</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>.52958</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.384</td>
<td>.109</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .004.

- a. Uses Harmonic Mean Sample Size = 12.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.
Lampiran 9. Analisa Kadar Vitamin C Sampel A Secara *Two-Way Anova* pada waktu 3-5 menit

vit_c

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3.86467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>4.46600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>6.42400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .069.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

Lampiran 10. Analisa Nilai pH Sampel A Secara *Two-Way Anova* pada waktu 3-5 menit

ph

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>6.93417</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>6.94250</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.105</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .000.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.
Lampiran 11. Analisa Multivariate pada Sampel B

Multivariate Tests

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.000</td>
<td>1320253<sup>a</sup></td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.000</td>
<td>1320253<sup>a</sup></td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>251476.8</td>
<td>1320253<sup>a</sup></td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>251476.8</td>
<td>1320253<sup>a</sup></td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
<tr>
<td>suhu</td>
<td>2.588</td>
<td>36.164</td>
<td>12.000</td>
<td>69.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.068</td>
<td>14.942<sup>a</sup></td>
<td>8.000</td>
<td>42.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>8.204</td>
<td>20.510</td>
<td>8.000</td>
<td>40.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>7.455</td>
<td>41.000<sup>b</sup></td>
<td>4.000</td>
<td>22.000</td>
<td>.000</td>
</tr>
<tr>
<td>waktu</td>
<td>2.909</td>
<td>10.664</td>
<td>24.000</td>
<td>96.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.000</td>
<td>29.077</td>
<td>24.000</td>
<td>74.470</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>59.858</td>
<td>48.635</td>
<td>24.000</td>
<td>78.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>36.244</td>
<td>144.975<sup>b</sup></td>
<td>6.000</td>
<td>24.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

- **a.** Exact statistic
- **b.** The statistic is an upper bound on F that yields a lower bound on the significance level.
- **c.** Design: Intercept+suhu+waktu+suhu * waktu
Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>antioksidan</td>
<td>1.409<sup>a</sup></td>
<td>11</td>
<td>0.128</td>
<td>121.413</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>23.782<sup>b</sup></td>
<td>11</td>
<td>2.162</td>
<td>21.567</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>0.217<sup>c</sup></td>
<td>11</td>
<td>0.020</td>
<td>68.420</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1340.417<sup>d</sup></td>
<td>11</td>
<td>121.856</td>
<td>762.567</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>antioksidan</td>
<td>18.516</td>
<td>1</td>
<td>18.516</td>
<td>17551.454</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>396.116</td>
<td>1</td>
<td>396.116</td>
<td>3951.607</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>1670.084</td>
<td>1</td>
<td>1670.084</td>
<td>5781062</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>49964.171</td>
<td>1</td>
<td>49964.171</td>
<td>312672.3</td>
<td>.000</td>
</tr>
<tr>
<td>suhu</td>
<td>antioksidan</td>
<td>1.364</td>
<td>3</td>
<td>0.455</td>
<td>431.029</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>8.333</td>
<td>3</td>
<td>2.778</td>
<td>27.710</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>0.012</td>
<td>3</td>
<td>0.004</td>
<td>13.769</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1242.099</td>
<td>3</td>
<td>414.033</td>
<td>2590.989</td>
<td>.000</td>
</tr>
<tr>
<td>waktu</td>
<td>antioksidan</td>
<td>0.006</td>
<td>2</td>
<td>0.003</td>
<td>3.039</td>
<td>.067</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>12.165</td>
<td>2</td>
<td>6.082</td>
<td>60.678</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>0.017</td>
<td>2</td>
<td>0.008</td>
<td>28.740</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>2.348</td>
<td>2</td>
<td>1.174</td>
<td>7.348</td>
<td>.003</td>
</tr>
<tr>
<td>suhu * waktu</td>
<td>antioksidan</td>
<td>0.038</td>
<td>6</td>
<td>0.006</td>
<td>6.064</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>3.283</td>
<td>6</td>
<td>0.547</td>
<td>5.459</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>0.189</td>
<td>6</td>
<td>0.031</td>
<td>108.971</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>95.970</td>
<td>6</td>
<td>15.995</td>
<td>100.095</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>antioksidan</td>
<td>0.025</td>
<td>24</td>
<td>0.001</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>2.406</td>
<td>24</td>
<td>.100</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>0.007</td>
<td>24</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>3.835</td>
<td>24</td>
<td>.160</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Total</td>
<td>antioksidan</td>
<td>19.950</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>422.304</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>1670.309</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>51308.423</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>antioksidan</td>
<td>1.434</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>26.187</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>224.22</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>1344.252</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* a. R Squared = .982 (Adjusted R Squared = .974)
* b. R Squared = .908 (Adjusted R Squared = .866)
* c. R Squared = .969 (Adjusted R Squared = .955)
* d. R Squared = .997 (Adjusted R Squared = .996)

antioksidan

<table>
<thead>
<tr>
<th>suhu</th>
<th>N</th>
<th>Subset</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00</td>
<td>9</td>
<td></td>
<td></td>
<td>.38078</td>
</tr>
<tr>
<td>1.00</td>
<td>9</td>
<td></td>
<td>.81767</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>9</td>
<td></td>
<td>.81944</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>9</td>
<td></td>
<td>.85078</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td></td>
<td></td>
<td>.051</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .001.

* a. Uses Harmonic Mean Sample Size = 9.000.
* b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
* c. Alpha = .05.

vit_c

<table>
<thead>
<tr>
<th>suhu</th>
<th>N</th>
<th>Subset</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>9</td>
<td>2.66933</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>9</td>
<td>3.08000</td>
<td>3.08000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>9</td>
<td>3.58844</td>
<td>3.58844</td>
<td>3.93067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>9</td>
<td>3.93067</td>
<td>3.93067</td>
<td>3.93067</td>
<td>3.93067</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .100.

* a. Uses Harmonic Mean Sample Size = 9.000.
* b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
* c. Alpha = .05.

<table>
<thead>
<tr>
<th>suhu</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>9</td>
<td>6.78000</td>
</tr>
<tr>
<td>1.00</td>
<td>9</td>
<td>6.81667</td>
</tr>
<tr>
<td>4.00</td>
<td>9</td>
<td>6.82333</td>
</tr>
<tr>
<td>2.00</td>
<td>9</td>
<td>6.82444</td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>.369</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares.
The error term is Mean Square(Error) = .000.
 a. Uses Harmonic Mean Sample Size = 9.000.
 b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
 c. Alpha = .05.

Lampiran 15. Analisa Aktivitas Antioksidan Sampel B Secara Two-Way Anova pada waktu 3-5 menit

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>12</td>
<td>.69850</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
<td>.72408</td>
</tr>
<tr>
<td>5.00</td>
<td>12</td>
<td>.72892</td>
</tr>
<tr>
<td>Sig.</td>
<td>.066</td>
<td>.719</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares.
The error term is Mean Square(Error) = .001.
 a. Uses Harmonic Mean Sample Size = 12.000.
 b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
 c. Alpha = .05.
Lampiran 16. Analisa Kadar Vitamin C Sampel B Secara *Two-Way Anova* pada waktu 3-5 menit

vit_c

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>12</td>
<td>2.58867</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
<td>3.35133</td>
</tr>
<tr>
<td>3.00</td>
<td>12</td>
<td>4.01133</td>
</tr>
<tr>
<td>Sig.</td>
<td>1</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = .100.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

Lampiran 17. Analisa Nilai pH Sampel B Secara *Two-Way Anova* pada waktu 3-5 menit

ph

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>12</td>
<td>6.79083</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
<td>6.80167</td>
</tr>
<tr>
<td>3.00</td>
<td>12</td>
<td>6.84083</td>
</tr>
<tr>
<td>Sig.</td>
<td>1</td>
<td>.132</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = .000.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.
Lampiran 18. Analisa *Multivariate* pada Sampel C

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.000</td>
<td>6072678(^{a})</td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.000</td>
<td>6072678(^{a})</td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>1156701</td>
<td>6072678(^{a})</td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>1156701</td>
<td>6072678(^{a})</td>
<td>4.000</td>
<td>21.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>suhu</td>
<td>2.847</td>
<td>107.286</td>
<td>12.000</td>
<td>69.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.000</td>
<td>434.433</td>
<td>12.000</td>
<td>55.852</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>674.964</td>
<td>1106.192</td>
<td>12.000</td>
<td>59.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>637.279</td>
<td>3664.357(^{b})</td>
<td>4.000</td>
<td>23.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>waktu</td>
<td>1.794</td>
<td>47.852</td>
<td>8.000</td>
<td>44.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.010</td>
<td>46.665(^{a})</td>
<td>8.000</td>
<td>42.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>18.161</td>
<td>45.402</td>
<td>8.000</td>
<td>40.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>11.038</td>
<td>60.709(^{b})</td>
<td>4.000</td>
<td>22.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>suhu * waktu</td>
<td>2.789</td>
<td>9.215</td>
<td>24.000</td>
<td>96.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.000</td>
<td>29.468</td>
<td>24.000</td>
<td>74.470</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>65.244</td>
<td>53.011</td>
<td>24.000</td>
<td>78.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>44.005</td>
<td>176.018(^{b})</td>
<td>6.000</td>
<td>24.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

*c. Design: Intercept+suhu+waktu+suhu * waktu*
Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>antioks</td>
<td>.295<sup>a</sup></td>
<td>11</td>
<td>.027</td>
<td>41.091</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>165.932<sup>b</sup></td>
<td>11</td>
<td>15.085</td>
<td>41.624</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>.160<sup>c</sup></td>
<td>11</td>
<td>.015</td>
<td>200.850</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>3683.448<sup>d</sup></td>
<td>11</td>
<td>334.859</td>
<td>1379.140</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>antioks</td>
<td>16.269</td>
<td>1</td>
<td>16.269</td>
<td>24916.549</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>422.823</td>
<td>1</td>
<td>422.823</td>
<td>1166.704</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>1741.532</td>
<td>1</td>
<td>1741.532</td>
<td>2E+007</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>37416.454</td>
<td>1</td>
<td>37416.454</td>
<td>154102.3</td>
<td>.000</td>
</tr>
<tr>
<td>suhu</td>
<td>antioks</td>
<td>.281</td>
<td>3</td>
<td>.094</td>
<td>143.249</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>115.357</td>
<td>3</td>
<td>38.452</td>
<td>106.102</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>.083</td>
<td>3</td>
<td>.028</td>
<td>385.372</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>3539.334</td>
<td>3</td>
<td>1179.778</td>
<td>4858.998</td>
<td>.000</td>
</tr>
<tr>
<td>waktu</td>
<td>antioks</td>
<td>.007</td>
<td>2</td>
<td>.003</td>
<td>5.093</td>
<td>.014</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>28.994</td>
<td>2</td>
<td>14.497</td>
<td>40.002</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>.008</td>
<td>2</td>
<td>.004</td>
<td>52.769</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>41.516</td>
<td>2</td>
<td>20.758</td>
<td>85.493</td>
<td>.000</td>
</tr>
<tr>
<td>suhu * waktu</td>
<td>antioks</td>
<td>.008</td>
<td>6</td>
<td>.001</td>
<td>2.011</td>
<td>.104</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>21.581</td>
<td>6</td>
<td>3.597</td>
<td>9.925</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>.068</td>
<td>6</td>
<td>.011</td>
<td>157.949</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>102.598</td>
<td>6</td>
<td>17.100</td>
<td>70.426</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>antioks</td>
<td>.016</td>
<td>24</td>
<td>.001</td>
<td>7.22E-005</td>
<td>.243</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>8.698</td>
<td>24</td>
<td>.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>.002</td>
<td>24</td>
<td>7.22E-005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>5.827</td>
<td>24</td>
<td>.243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>antioks</td>
<td>16.580</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>597.453</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>1741.693</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>41105.730</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>antioks</td>
<td>.311</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>174.630</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>.161</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>3689.276</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. R Squared = .950 (Adjusted R Squared = .926)
- b. R Squared = .950 (Adjusted R Squared = .927)
- c. R Squared = .989 (Adjusted R Squared = .984)
- d. R Squared = .998 (Adjusted R Squared = .998)
Lampiran 19. Analisa Aktivitas Antioksidan Sampel C Secara *Two-Way Anova* pada suhu 25°C-70°C

<table>
<thead>
<tr>
<th>suhu</th>
<th>N</th>
<th>Subset 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>9</td>
<td>.52300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>9</td>
<td>.70289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>9</td>
<td>.71000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>9</td>
<td>.75311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1</td>
<td>1.000</td>
<td>.560</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares. The error term is Mean Square(Error) = .001.

- a. Uses Harmonic Mean Sample Size = 9.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

Lampiran 20. Analisa Kadar Vitamin C Sampel C Secara *Two-Way Anova* pada suhu 25°C-70°C

<table>
<thead>
<tr>
<th>suhu</th>
<th>N</th>
<th>Subset 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>9</td>
<td>1.70133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>9</td>
<td>1.93600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>9</td>
<td>3.93067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>9</td>
<td>6.14044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1</td>
<td>.416</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares. The error term is Mean Square(Error) = .362.

- a. Uses Harmonic Mean Sample Size = 9.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

<table>
<thead>
<tr>
<th>suhu</th>
<th>N</th>
<th>Subset</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>9</td>
<td>6.89667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>9</td>
<td>6.91889</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>9</td>
<td>7.00111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>9</td>
<td>7.00444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td>.414</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.22E-005.

a. Uses Harmonic Mean Sample Size = 9.000.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
c. Alpha = .05.

Lampiran 22. Analisa Aktivitas Antioksidan Sampel C Secara Two-Way Anova pada waktu 3-5 menit

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>12</td>
<td>.65342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
<td>.67833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>12</td>
<td>.68500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>.529</td>
<td></td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .001.

a. Uses Harmonic Mean Sample Size = 12.000.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
c. Alpha = .05.
Lampiran 23. Analisa Kadar Vitamin C Sampel C Secara Two-Way Anova pada waktu 3-5 menit

vit_c

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>12</td>
<td>2.37600</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
<td>3.33667</td>
</tr>
<tr>
<td>3.00</td>
<td>12</td>
<td>4.56867</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .362.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

pH

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>12</td>
<td>6.94417</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
<td>6.94583</td>
</tr>
<tr>
<td>5.00</td>
<td>12</td>
<td>6.97583</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.22E-005.

a. Uses Harmonic Mean Sample Size = 12.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.
Lampiran 25. Analisa *Multivariate* pada Sampel A, B, dan C

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept Pillai's Trace</td>
<td>1.000</td>
<td>324874.5<sup>a</sup></td>
<td>4.000</td>
<td>102.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.000</td>
<td>324874.5<sup>a</sup></td>
<td>4.000</td>
<td>102.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>12740.176</td>
<td>324874.5<sup>a</sup></td>
<td>4.000</td>
<td>102.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>12740.176</td>
<td>324874.5<sup>a</sup></td>
<td>4.000</td>
<td>102.000</td>
<td>.000</td>
</tr>
<tr>
<td>sampel Pillai's Trace</td>
<td>.838</td>
<td>18.563</td>
<td>8.000</td>
<td>206.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.328</td>
<td>19.019<sup>a</sup></td>
<td>8.000</td>
<td>204.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>1.542</td>
<td>19.472</td>
<td>8.000</td>
<td>202.000</td>
<td>.000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>1.070</td>
<td>27.542<sup>b</sup></td>
<td>4.000</td>
<td>103.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept+sampel
<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>antioksidan</td>
<td>.992a</td>
<td>2</td>
<td>.496</td>
<td>17.287</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>57.589b</td>
<td>2</td>
<td>28.794</td>
<td>10.425</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.465c</td>
<td>2</td>
<td>.232</td>
<td>49.722</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>3489.104d</td>
<td>2</td>
<td>1744.552</td>
<td>29.867</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>antioksidan</td>
<td>42.617</td>
<td>1</td>
<td>42.617</td>
<td>1484.677</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>1632.151</td>
<td>1</td>
<td>1632.151</td>
<td>590.900</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>5147.401</td>
<td>1</td>
<td>5147.401</td>
<td>1100880</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>103770.641</td>
<td>1</td>
<td>103770.641</td>
<td>1776.552</td>
<td>.000</td>
</tr>
<tr>
<td>sampel</td>
<td>antioksidan</td>
<td>.992</td>
<td>2</td>
<td>.496</td>
<td>17.287</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>57.589</td>
<td>2</td>
<td>28.794</td>
<td>10.425</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>.465</td>
<td>2</td>
<td>.232</td>
<td>49.722</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>3489.104</td>
<td>2</td>
<td>1744.552</td>
<td>29.867</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>antioksidan</td>
<td>3.014</td>
<td>105</td>
<td>.029</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>290.025</td>
<td>105</td>
<td>2.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>491</td>
<td>105</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>6133.184</td>
<td>105</td>
<td>58.411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>antioksidan</td>
<td>46.624</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>1979.765</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>5148.357</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>113392.929</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>antioksidan</td>
<td>4.006</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vit_c</td>
<td>347.614</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ph</td>
<td>956</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>9622.288</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .248 (Adjusted R Squared = .233)

b. R Squared = .166 (Adjusted R Squared = .150)

c. R Squared = .486 (Adjusted R Squared = .477)

d. R Squared = .363 (Adjusted R Squared = .350)

antioksidan

Duncana,b,c

<table>
<thead>
<tr>
<th>sampel</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>.49511</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

Based on Type III Sum of Squares

The error term is Mean Square(Error) = .029.

a Uses Harmonic Mean Sample Size = 36.000.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c Alpha = .05.

Lampiran 27. Analisa Kadar Vitamin C Sampel A, B, dan C Secara Two-Way Anova

vit_c

Duncana,b,c

<table>
<thead>
<tr>
<th>sampel</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>3.31711</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>3.42711</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.779</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

Based on Type III Sum of Squares

The error term is Mean Square(Error) = 2.762.

a Uses Harmonic Mean Sample Size = 36.000.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c Alpha = .05.
Lampiran 28. Analisa Nilai pH Sampel A, B, dan C Secara Two-Way Anova

\[\text{ph} \]

<table>
<thead>
<tr>
<th>sampel</th>
<th>N</th>
<th>Subset</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>36</td>
<td></td>
<td>6.81111</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td></td>
<td>6.94472</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td></td>
<td>6.95528</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td>1.000</td>
<td>.514</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares.

The error term is Mean Square(Error) = .005.

a. Uses Harmonic Mean Sample Size = 36.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

c. Alpha = .05.

Lampiran 29. Analisa Sensori Warna Non-Parametrik

<table>
<thead>
<tr>
<th>Test Statistics(^a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
</tr>
<tr>
<td>19.679</td>
</tr>
</tbody>
</table>

a. Kruskal Wallis Test

b. Grouping Variable: sampel

c. sampel A vs sampel B

<table>
<thead>
<tr>
<th>Test Statistics(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
</tr>
<tr>
<td>305.000</td>
</tr>
</tbody>
</table>

a. Grouping Variable: sampel

d. sampel A vs sampel C
Test Statistics

<table>
<thead>
<tr>
<th>Test</th>
<th>tk_suka_wrn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>205.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>670.000</td>
</tr>
<tr>
<td>Z</td>
<td>-3.928</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Grouping Variable: sampel

sampel B vs sampel C

<table>
<thead>
<tr>
<th>Test</th>
<th>tk_suka_wrn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>245.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>710.000</td>
</tr>
<tr>
<td>Z</td>
<td>-3.273</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.001</td>
</tr>
</tbody>
</table>

a. Grouping Variable: sampel

Lampiran 30. Analisa Sensori Warna Non-Parametrik

<table>
<thead>
<tr>
<th>Test</th>
<th>tk_suka_aroma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>2.472</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.291</td>
</tr>
</tbody>
</table>

*a. Kruskal Wallis Test
b. Grouping Variable: sampel*

Lampiran 31. Analisa Sensori Rasa Non-Parametrik

<table>
<thead>
<tr>
<th>Test</th>
<th>tk_suka_rasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>2.769</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.250</td>
</tr>
</tbody>
</table>

*a. Kruskal Wallis Test
b. Grouping Variable: sampel*

Lampiran 32. Analisa Sensori *Overall* Non-Parametrik
Test Statisticsa,b

<table>
<thead>
<tr>
<th></th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>10.779</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.005</td>
</tr>
</tbody>
</table>

a Kruskal Wallis Test
b Grouping Variable: sampel

Sampel A vs sampel B

Test Statisticsa

<table>
<thead>
<tr>
<th></th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>426.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>891.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.382</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.703</td>
</tr>
</tbody>
</table>

a Grouping Variable: sampel

sampel A vs sampel C

Test Statisticsa

<table>
<thead>
<tr>
<th></th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>264.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>729.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.929</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
</tr>
</tbody>
</table>

a Grouping Variable: sampel

sampel B vs sampel C

Test Statisticsa

<table>
<thead>
<tr>
<th></th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>276.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>741.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.740</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.006</td>
</tr>
</tbody>
</table>

a Grouping Variable: sampel

Lampiran 33. Analisa Korelasi
Lampiran 34. Analisa Korelasi Parsial

Correlations

<table>
<thead>
<tr>
<th>Control Variables</th>
<th>suhu</th>
<th>antioksidan</th>
</tr>
</thead>
<tbody>
<tr>
<td>suhu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antioksidan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).

Correlation is significant at the 0.05 level (2-tailed).

Correlations

<table>
<thead>
<tr>
<th>Control Variables</th>
<th>suhu</th>
<th>ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>suhu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlations

<table>
<thead>
<tr>
<th>Control Variables</th>
<th>suhu</th>
<th>ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>suhu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 35. Hasil analisa kadar vitamin C pada bahan penyusun *infusion*

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Iodin (ml)</th>
<th>Vitamin C (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daun jambu biji</td>
<td>9.1</td>
<td>8.00</td>
</tr>
<tr>
<td>Buah jambu biji</td>
<td>14.5</td>
<td>12.76</td>
</tr>
<tr>
<td>Kembang sepatu</td>
<td>8.3</td>
<td>7.30</td>
</tr>
</tbody>
</table>