GLUCOSINOLATES CONTENT, TEXTURE, AND COLOUR OF WHITE CABBAGE (*Brassica oleracea* L. Var. *Capitata*) DURING STEAMING

KADAR GLUKOSINOLAT, TEKSTUR, DAN WARNA KUBIS PUTIH (*Brassica oleracea* L. Var. *Capitata*) SELAMA PENGUKUSAN

BACHELOR THESIS

Submitted to the Faculty of Agricultural Technology
in partial fulfillment of requirements for obtaining the bachelor degree

By:
Jurita Permata Sari
08.70.0087

DEPARTMENT OF FOOD TECHNOLOGY
FACULTY OF AGRICULTURAL TECHNOLOGY
SOEGIJAPRANATA CATHOLIC UNIVERSITY
SEMARANG

2012
GLUCOSINOLATES CONTENT, TEXTURE, AND COLOUR OF WHITE CABBAGE (*Brassica oleracea* L. Var. *Capitata*) DURING STEAMING

KADAR GLUKOSINOLAT, TEKSTUR, DAN WARNA KUBIS PUTIH (*Brassica oleracea* L. Var. *Capitata*) SELAMA PENGUKUSAN

By:

JURITA PERMATA SARI

NIM: 08.70.0087

Department: Food Technology

This bachelor thesis has been approved and defended in front of examiners in September 11, 2012

Semarang, October 16, 2012

Agricultural Technology Faculty
Soegijapranata Catholic University

Supervisor 1

Dean

Prof. Dr. Ir. Y. Budi Widianarko, M.Sc.

Ita Sulistyawati, STP. M.Sc.

Supervisor 2

R. Probo Nugrahedi, S.TP. M.Sc.
SUMMARY

In Indonesia, white cabbage (*Brassica oleracea* L. Var. *Capitata*) is one of *Brassica* vegetables that is commonly consumed, daily available, and affordable. White cabbage can be eaten as raw food or cooked by boiling and steaming. Steamed white cabbage roll is usually found as a complement of *siomay* dishes. During long term steaming, the content of health promoting compound which has an anticarcinogenic property, called glucosinolates, are expected to change. Other physical properties such as texture and colour are also affected.

In this study, white cabbage was cooked by mimicking a local processing method commonly employed. Sample was boiled for 3 minutes, rolled, and followed by 180 minutes of steaming. The glucosinolates content, texture, and colour were measured at fresh, 0’, 5’, 10’, 15’, 30’, 45’, 60’, 90’, 120’, 150’, and 180’ of steaming to determine the optimal processing condition. The measurement of glucosinolates content, texture, and colour were done by using HPLC, texture analyzer, and chromameter, respectively. In this study, identified glucosinolates of white cabbage are glucoiberin, progoitrin, sinigrin, glucoraphanin (classified as aliphatic glucosinolates), glucobrassicin, and 4-methoxyglucobrassicin (classified as indole glucosinolates). The result shows that indole glucosinolates (92 -97%) have higher decline rate than aliphatic glucosinolates (30 -60%). During first 15 minutes of steaming, aliphatic glucosinolates content and greenness of sample shows an increasing pattern and decrease afterwards. Indole glucosinolates content, brightness, yellowness, and texture decrease as steaming proceeded. Rolled cabbage in *siomay* dishes is best served by 15 minutes of steaming to maintain the highest glucosinolates content related to its anticarcinogenic properties and yet the acceptable texture and colour.
RINGKASAN

Kubis putih (Brassica oleracea L. Var. Capitata) adalah salah satu contoh sayuran Brassica yang sering dikonsumsi, tingkat produksinya tinggi, dan harganya murah. Kubis putih biasa dikonsumsi dalam bentuk mentah atau diproses terlebih dahulu (direbus atau dikukus). Salah satu contoh olahan kubis dengan cara pengukusan dalam jangka waktu tertentu adalah kubis gulung yang disajikan sebagai pelengkap siomay. Selama pengukusan, diduga akan terjadi perubahan kadar glukosinolat. Glukosinolat adalah senyawa yang memiliki aktivitas antikanker yang membedakan sayuran Brassica dari sayuran lain. Karakter fisik seperti tekstur dan warna juga akan berubah selama pengukusan. Pada penelitian ini, kubis putih direbus selama 3 menit, digulung, dan dikukus selama 3 jam. Untuk mengetahui kondisi pemrosesan yang optimal agar sifat fungsional dari kubis putih tetap terjaga, maka dilakukan pengukuran kadar glukosinolat, tekstur, dan warna pada kubis saat segar, direbus 3 menit, dikukus menit ke-5, 10, 15, 30, 45, 60, 90, 120, 150, dan 180. Pengukuran kadar glukosinolat, tekstur, dan warna secara berturut-turut dilakukan dengan HPLC, texture analyzer, dan kromameter. Glukosinolat yang teridentifikasi di kubis putih pada studi ini tergolong menjadi 2 kelompok, yakni glukosinolat alifatik (glucoiberin, progoitrin, sinigrin, glucoraphanin) dan glukosinolat indol (gluco brassicin dan 4-methoxygluco brassicin). Hasil penelitian menunjukkan bahwa glukosinolat indol (92-97%) memiliki laju penurunan yang lebih besar dibandingkan glukosinolat alifatik (30-60%). Selama 15 menit pertama pengukusan, kadar glukosinolat alifatik dan warna hijau pada kubis meningkat dan menurun setelahnya. Semakin lama waktu pengukusan, kadar glukosinolat alifatik dan indol, kecerahan, dan tekstur kubis putih semakin berkurang. Untuk mendapatkan efek antikanker maksimal dari glukosinolat dan karakteristik fisik (tekstur dan warna) yang masih dapat diterima, waktu pengukusan optimal terhadap kubis putih dalam pembuatan siomay adalah 15 menit.
ACKNOWLEDGEMENT

This thesis is submitted to the Faculty of Agricultural Technology in partial fulfillment of the requirements for obtaining the Bachelor Degree. The writer is very thankful for the completion of her thesis entitled GLUCOSINOLATES CONTENT, TEXTURE, AND COLOUR OF WHITE CABBAGE (Brassica Oleracea L. Var. Capitata) DURING STEAMING. There are so many new experiences and knowledge during finishing this thesis and also during writer’s study at Soegijapranata Catholic University. Hopefully these experiences and knowledges will be useful for writer and all parties.

This thesis can be done by assistance from some individuals who always support the writer. The writer would like to express her sincerest gratitude to everyone who has helped her in finishing this thesis:

1. Ita Sulistyawati, STP., MSc. as the dean of Faculty of Agricultural Technology, Department of Food Technology Soegijapranata Catholic University.
2. Prof. Dr. Ir. Budi Widianarko, MSc. as the first supervisor who have encouraged the writer during finishing this thesis. The writer really appreciates the guidance, precious time, great ideas, and patience given to complete this thesis.
3. R. Probo Y., STP., MSc. as the second supervisor who have guided the writer in completing this thesis from the beginning until the very end. The writer wants to thanks for his precious time, patience, and advices. The writer also wishes the best luck for his sandwich program!
4. Mom, Dad, and brother Fenky senpai who are writer’s biggest support in finishing this thesis. The writer feels sorry for being late to make her parents proud. But it is better late than never, right? :) The writer also thanks to her brother, Fenky for the advices which help a lot. High five! :D
5. Writer’s lab partner, Novita and Ci Yaya. The writer is very thankful for the new adventure during lab that make lab become never flat. There is nothing better than doing 2 bachelor theses and 1 master thesis.
6. Darius “Mosby Stinson” who always cheers the writer up even (may be) he didn’t try to. All the advices are always awesome. Thanks, Dar! :)

iii
7. Victory-friends, i.e. Tan Chung Phei, Edo, Cucox, Danty, Fera, Mbep, Siauw, Ivonne, and Fendy who have given the supports and an unlimited laugh during writer’s hard time. This will be the best memory for the writer during her time at SCU.

8. The writer’s beloved friends Deasy, Dewi ‘Hello Kitty’, Diana, Imelda, Nani, Fun”, and Devina who have supported and shared so many experiences with the writer.

9. December period friends, Pepei, Intan, Onon, and Nita who have accompanied the writer through this long journey of thesis.

10. Mas Soleh, Mbak Endah, and Mas Pri as the laboratory assistant who are always kindly help the writer during lab days. And also all the administration staff and employees for providing endless help for the writer.

11. For all the lecturers at the Department of Food Technology who have guided the writer for four years. The writer really appreciates it and hopes the best for them.

12. The writer’s troublesome yet very helpful laptop which have worked very hard, especially during finishing this thesis.

13. Last but not least, the writer also would like to express her deepest gratitude for all other people who made this thesis can finally be finished with their support, which cannot be possibly mentioned one by one.

The writer realizes that this thesis report is still far from perfect. The writer apologizes for any mistake that the writer made. The writer will be glad if there are any advices or criticism for the improvement of this report. The writer hopes that this research could give a valuable contribution to science and be useful to the development of food industries.

Semarang, October 2012

The Author,

Jurita P. Sari
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>RINGKASAN</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>ix</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Background 1
1.2 Literature Review 2
 1.2.1 White Cabbage.......................... 2
 1.2.2 Glucosinolates.......................... 3
 1.2.3 Boiling................................. 6
 1.2.4 Steaming............................... 8
 1.2.5 Texture................................. 8
 1.2.6 Colour................................. 10
1.3 Objectives.................................. 10

2. MATERIALS AND METHODS

2.1 Materials.................................. 11
2.2 Methods 11
 2.2.1 Sample Preparation 11
 2.2.2 Boiling process 11
 2.2.3 Steaming Process 12
 2.2.4 Texture Analysis 14
 2.2.5 Colour Analysis 14
 2.2.6 Freeze Drying 14
 2.2.7 Glucosinolate Analysis 14

3. RESULTS

3.1 Glucosinolate Identification 17
3.2 Glucosinolates Content During Steaming 17
3.3 Colour.................................... 24
3.4 Texture.................................... 26

4. DISCUSSION

4.1 Glucosinolates Content 27
4.2 Colour.................................... 29
4.3 Texture.................................... 30

5. CONCLUSION AND SUGGESTION

32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Conclusion</td>
<td>32</td>
</tr>
<tr>
<td>5.2</td>
<td>Suggestion</td>
<td>32</td>
</tr>
<tr>
<td>6.</td>
<td>REFERENCES</td>
<td>33</td>
</tr>
<tr>
<td>7.</td>
<td>APPENDIX</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Nutrient Values of Cabbage ... 3
Table 2. Glucosinolate in Fresh White Cabbage .. 4
Table 3. Gradient System of Eluent A and B During HPLC Run 15
Table 4. Glucosinolates Content of White Cabbage during 180 Minutes of Steaming 18
Table 5. Colour of Rolled Cabbage during Steaming .. 24
Table 6. Hardness of Rolled Cabbage during Steaming 26
LIST OF FIGURES

Figure 1. White Cabbage .. 2
Figure 2. Hydrolysis of Glucosinolates by Myrosinase (Visentin et al., 1992) 4
Figure 3. Illustration of Glucosinolates Derivative Formation in White Cabbage During Cooking .. 6
Figure 4. Illustration of Mechanisms Responsible for Glucosinolates Content Change During Boiling of Brassica Vegetables .. 7
Figure 5. White Cabbage Rolling Method ... 12
Figure 6. Steamer and Flame Level Used in Steaming Process .. 12
Figure 7. Experimental Design ... 13
Figure 8. HPLC Chromatogram (229nm) of Thermal Breakdown Glucosinolates after Steaming .. 17
Figure 9. Pattern Change of Glucoiberin during Steaming .. 19
Figure 10. Pattern Change of Progoitrin during Steaming .. 19
Figure 11. Pattern Change of Sinigrin during Steaming ... 20
Figure 12. Pattern Change of Raphanin during Steaming ... 20
Figure 13. Pattern Change of Glucobrassicin during Steaming .. 21
Figure 14. Pattern Change of 4-Methoxyglucobrassicin during Steaming 21
Figure 15. Equation of Glucosinolates Content Decline during Steaming 23
Figure 16. L value of White Cabbage during Steaming ... 24
Figure 17. Colour Change of Rolled Cabbage during Steaming .. 25
Figure 18. Hardness of Rolled Cabbage during Steaming (Batch 2) .. 26
LIST OF APPENDICES

Appendix 1. Data Analysis by SPSS ... 37
Appendix 2. Figure of Colour Change of White Cabbage During Steaming............... 49