APPENDIX - 1

Respiration rate

The rates of O₂ uptake, and CO₂ release are calculated as follows:

• Rate of O₂ uptake (cm³ kg⁻¹h⁻¹):

$$\frac{\text{([O_2] initial - [O_2] final)}}{100} \times \text{(V}_{container} - \text{V}_{shoot}) \times \frac{1000}{\text{P}_{shoot}} \times \frac{60}{\text{T}}$$

• Rate of CO₂ release (cm³ kg⁻¹h⁻¹):

$$\frac{\text{([CO_2] final - [CO_2] initial)}}{100} \times \frac{\text{(V container - V shoot)}}{\text{P shoot}} \times \frac{1000}{\text{T}} \times \frac{60}{\text{T}}$$

Where: [O₂] initial = Initial oxygen concentration (%)

[O₂] final = Final oxygen concentration (%)

[CO₂] initial = Initial carbon dioxide concentration (%)

[O₂] final = Final carbon dioxide concentration (%)

V container = Container volume (cm³)

 V_{shoot} = Bamboo shoot volume (cm³)

P shoot = Bamboo shoot weight (gram)

T = Time (minute)

Gas Concentration (O₂ and CO₂)

The O2 and CO2concentration in the package can be calculated as follows:

- O_2 package (%) = 20.9% ($[O_2]$ initial $[O_2$ final])
- CO₂ package (%) = CO₂ increase measured (%) x Volume container (ml)

Volume of gas injected (ml)

Transpiration rate

Transpiration rate in the container can be calculated as follows:

Partial pressure in the container (kPa) =

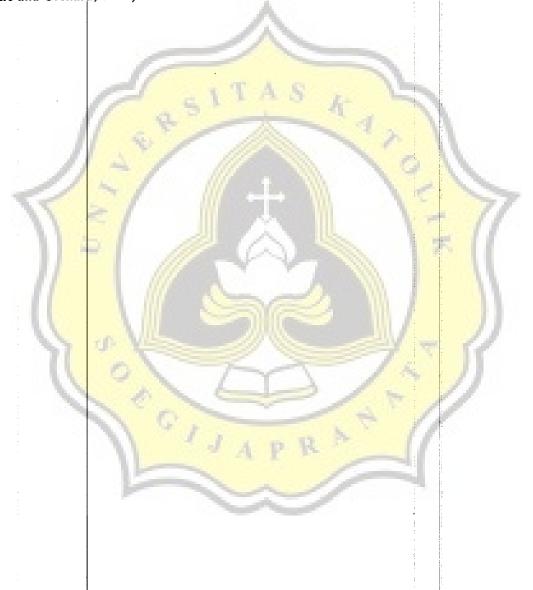
RH increase measured (%) x Saturation pressure (kPa)

• The amount of water which is produced in the container (1) =

[Volume of the container (I) - Volume sample (I)] x Partial pressure of H₂O

The pressure in the atmosphere (kPa) in the container (kPa)

• The amount of water loss by the sample (g)


Number of liter gas in 1 mol x The amount of water which is produced in the container (l)

• Transpiration rate (g H₂O vapor kg⁻¹h⁻¹) =

The amount of water lost by the sample (g)

Weight of bamboo shoots (kg) x Time (hour)

(Dadzie and Orchard, 1997).

