Implementation Binary Search Tree Data Structure in Simulation Prefix, Infix, Postfix

Iwan Setiawan
06.02.0014
2010
PROJECT REPORT
Implementation Binary Search Tree Data Structure
in Simulation Prefix, Infix, Postfix

This Project Report has been approved and ratified by Dean of Computer Science Faculty on

With the approval,

Examiner, Examiner,
Gregorius Hendita Artha Kusuma, S.Si.M.Cs Rosita Herawati, ST, MIT

Examiner, Examiner,
Robertus Setiawan Aji, ST, MCompIT Hironimus Marlon Leong, S.Kom, M.Kom

Supervisor, Dean of
Suyanto EA, Ir, M.Sc Faculty of Computer Science,

Hironimus Marlon Leong, S.Kom, M.Kom
NIP: 058.1.2007.273

I
Here with, I
Name : Iwan Setiawan
Nim : 06.02.0014

Confirm that the projects that I make is the result of the work itself and is not a plagiarism other people's work, except that in written is refer to other writings.

If later on proved that this project is the result of plagiarism, then I am willing to accept the sanctions.

Semarang, January 19th 2011
Iwan Setiawan
06.02.0014
FOREWORD

At last I can finish my final project with the title: Implementation Binary Search Tree Data Structure in Simulation Postfix, Infix, Prefix. So in this opportunity, I would like to thanks:

1. God who always accompany and guide each step I take.
2. For my parents and my brother and my sister, that always pray for me and encourage me to finish my project
3. Suyanto EA., Ir, M.Sc, as my supervisor for helping, and guiding, and giving me the brilliant ideas to finish this project
4. All Lecturers of the Faculty of Computer Science, laboratory staff, and the TU that has helped up to the author can complete her education at Soegijapranata Catholic University, Semarang.
5. Helena, Eddy, Devy, Rinda, Reny, Fani, Rinda, arin and other KTM friends that always accompany, entertain and support.

This Project report is far away from "perfect", therefore the writer need the criticism and suggestions. Finally, the writer hope that this Project Report can give benefit for fellow students and everyone.

Semarang, January 19th 2011

Iwan Setiawan
06.02.0014
ABSTRACT

We usually more easier learn some thing if has a simulation. The simulation will make we easy imagination some think so we can fast learn about it. Postfix, infix, prefix is the algorithms to read the binary search tree.

Binary search tree is a tree data structure in which each node has at most two chiled nodes, usually distinguished as "left" and "right". Nodes with children are parent nodes, and child nodes may contain references to their parents. Outside the tree, there is often a reference to the "root" node (the ancestor of all nodes), if it exists. Any node in the data structure can be reached by starting at root node and repeatedly following references to either the left or right child.

This program is make the simulation to make a binary search tree and animaton to postfix, infix, prefix algorithms for read the binary search tree.
Table of Contents

APPROVAL AND RATIFICATION PAGE...I
STATEMENT OF ORIGINALITY...II
FOREWORD...III
ABSTRACT..IV
Table of Contents..V
Table of Figure..VI
Table of Tables..VII
CHAPTER I INTRODUCTION
 1.1 Background...1
 1.2 Scope...1
 1.3 Objective...2
CHAPTER II LITERATUR STUDY
 2.1 Data Structure..3
 2.2 Algorithms..3
CHAPTER III PLANNING
 3.1 Research Methodologies...5
 3.2 Project Management..5
CHAPTER IV ANALYSIS AND DESIGN
 4.1 Analysis...6
 4.2 Design..7
CHAPTER V IMPLEMENTATION AND TESTING
 5.1 Implementation..10
 5.2 Testing..13
CHAPTER VI CONCLUSION AND FURTHER RESEARCH
 6.1 Conclusion...16
 6.2 Further Research...16
REFERENCES..17
Table of Figures

<table>
<thead>
<tr>
<th>Figure Reference</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1.1.1</td>
<td>Binary Search Tree</td>
<td>2</td>
</tr>
<tr>
<td>Figure 4.1.1.1</td>
<td>Use Case Diagram</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4.2.1.1</td>
<td>Class Utama</td>
<td>6</td>
</tr>
<tr>
<td>Figure 4.2.1.2</td>
<td>Class Node</td>
<td>7</td>
</tr>
<tr>
<td>Figure 5.2.1.1</td>
<td>initila view</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5.2.1.2</td>
<td>show tree</td>
<td>13</td>
</tr>
<tr>
<td>Figure 5.2.1.3</td>
<td>show PIP</td>
<td>14</td>
</tr>
</tbody>
</table>
Table of Tables

Table 3.1 Table of Time

...9