PROJECT REPORT

Using Depth First Search Algorithm For Travelling Salesman Problem

Ivan Tirta Wijaya
05.02.0028
2009

COMPUTER SCIENCE FACULTY
SOEGIJAPRANATA CATHOLIC UNIVERSITY
Pawiyatan Luhur IV/1 Street, Bendan Duwur, SEMARANG 5023
Telp. 024-8441555 (hunting) Web: http://www.unika.ac.id
Email: ikom@unika.ac.id
 APPROVAL AND RATIFICATION PAGE

PROJECT REPORT

Depth First Search Algorithm
For Travelling Salesman Problem

This Project report already approved and ratified by Dean of Faculty Computer Science and Supervisor on 12 December 2009

With the approval,

Examiners,

Suyanto EA.,Ir.,M.Sc

Rosita Herawati.,ST.,MIT
NPP : 058.1.2004.263

Supervisor,

Gregorius Hendita Artha K.,S.Si.,MCS
NPP : 058.1.2008.277

Hironimus Marlon Leong.,SKom.,MKom
NPP : 058.1.2007.273

Dean Faculty of Computer Science,

Depth First Search Algorithm For Travelling Salesman Problem

STATEMENT OF ORIGINALITY

I, the undersigned:

Name : Ivan Tirta Wijaya
NIM : 05.02.0028

Here by certify that this project was made by myself and not copy or plagiarizes from other people, except that in writing expressed to the other article. If it is proven that this project was plagiarizes or copy the other, I'm ready to accept a sanction.

Semarang, 12 December 2009

Ivan Tirta Wijaya
05.02.0028
FOREWORD

Finally, I can finish my final project that have title: **Depth First Search Algorithm For Travelling Salesman Problem**. So in this opportunity, I would like to thanks:

• My Lord and my saviour, Jesus Christ that give me blessing.
• My parents, Herianto Sadarmo and Lie Moei San.
• Gregorius Hendita Artha Kusuma, S.Si., MCS AS my supervisor for helping, guiding and giving me ideas and advice in finishing this project.
• Suyanto EA, Ir, M.Sc, Rosita Herawati, ST., MIT, Hironimus Marlon Leong, S.Kom., M.Kom as the lecturer of Faculty of Computer Science for teaching me and give me knowledge while I'm studied in Faculty of Computer Science
• All of my friends, Bayu, Roy, Stephen, Frengky, Indra, Fredy, and many more.

Last, I would like to apologize if I made mistakes in finishing the project and writing this report. Therefore, critics and suggestions are expected.

Semarang, 12 December 2009

Ivan Tirta Wijaya
ABSTRACTION

Traveling Salesman Problem is one of the most intensively studied problems in computational mathematics. Travelling Salesman problem is a problem in combinatorial optimization studied in operations research and theoretical computer science. Given a list of cities and their pairwise distances, the task is to find a shortest possible tour that visits each city exactly once. Travelling Salesman Problem was invented by Hassler Whitney at Princeton. In the 1950s and 1960s, the problem became increasingly popular in scientific circles in Europe and the USA. These problems will be solved with depth first search algorithm and using tree data structures. Depth First Search is a general algorithm for finding optimal solutions of various optimization problems, especially in discrete and combinatorial optimization.

Keywords: Travelling Salesman Problem, Depth First Search Algorithm
Table of Contents

APPROVAL AND RATIFICATION PAGE...i
STATEMENT OF ORIGINALITY..ii
FOREWORD... iii
ABSTRACTION.. iv
TABLE OF CONTENTS..v-vi
LIST OF TABLES...vii
LIST OF FIGURES..viii

CHAPTER I INTRODUCTION
1.1 Background...1
1.2 Scope..1
1.3 Objectives...1

CHAPTER II LITERATURE STUDY
2.1 Data Structures...2
2.2 Algorithm..3

CHAPTER III PLANNING
3.1 Research Methodology.. 6
3.2 Project Management.. 6
CHAPTER IV ANALYSIS AND DESIGN

4.1 Analysis.. 7
4.2 Design... 8

CHAPTER V IMPLEMENTATION AND TESTING

5.1. Implementation... 11
5.2. Testing... 12

CHAPTER VI CONCLUSION

6.1 Conclusion.. 14
6.2 Further Research... 14

REFERENCES... 15
Depth First Search Algorithm For Travelling Salesman Problem

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Project Management</td>
<td>6</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Use Case Diagram</td>
<td>7</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Class Diagram</td>
<td>8</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Class Board</td>
<td>9</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Class Input</td>
<td>9</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Class Node</td>
<td>9</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Class Tree</td>
<td>10</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Class Search</td>
<td>10</td>
</tr>
<tr>
<td>5.1.1</td>
<td>File Description</td>
<td>11</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1.1 Tree.. 2
Figure 2.2.1 Step 1... 3
Figure 2.2.2 Step 2... 4
Figure 2.2.3 Overall Search... 5
Figure 5.2.1 Board... 12
Figure 5.2.2 Menu..12
Figure 5.2.3 Searching Result.. 13