Parallel Algorithm
For Matrix Solving Problem

Henrikus Andi Irwanto
05.02.0011
2011

FACULTY OF COMPUTER SCIENCE
SOEGIJAPRANATA CATHOLIC UNIVERSITY

Jl. Pawiyatan Luhur IV/1, Bendan Duwur, SEMARANG 50234
Phone. 024-8441555 (hunting) Web: http://www.unika.ac.id
Email: ikom@unika.ac.id
This Project Report has been approved and ratified by Dean of Computer Science Faculty on January 17th, 2011

With the approval,

Examiner, Examiner,

Robertus Setiawan Aji, ST, MCompIT Rosita Herawati, ST, MIT

Examiner,

Gregorius Hendita Artha Kusuma, S.Si, M.Cs
NIP: 058.1.2008.277

Supervisor, Dean of Faculty of Computer Science,

Suyanto EA, Ir, M.Sc Hironimus Marlon Leong, S.Kom, M.Kom
STATEMENT OF ORIGINALITY

I, the undersigned:

Name : Henrikus Andi Irwanto
NIM : 05.02.0011

Here by certify that this project was made by my self and not copy or plagiarizes from other people, except that in writing expressed to the other article. If it is proven that this project was plagiarizes or copy the other, I'm ready to accept a sanction.

Semarang, January 14th, 2011

Henrikus Andi Irwanto
05.02.0046
ABSTRACT

A Matrix is a rectangular array, one item from matrix called entry or an element. Component Matrix consisting of columns and rows. Entries often denoted by a variable with two subscripts as shown on the right. Matrix with the same size can be added, or subtracted entrywise and matrices of size compatible can be multiplied. When you add up the matrices of dimension less than 5, will be felt easily done without any help. But if more than 5 dimension would be more difficult because a lot of cell matrices.

In this case, multithread programming will be applied to manage the added or subtracted matrix, because it will be more efficient than a normal procedure operational matrices, also minimize the work of computer memory.

This project is created with Java language programming. This project uses Array as a data structure. Matrix case can be solve with parallel algorithm. Parallel programming performed by running the same process multiple times, and that applied with Multi-Thread to process each cells of matrix.

Keyword: Multithread, Parallel-algorithm.
FOREWORD

Finally, I can finish my final project that have title : Matrix solving problem with parallel algorithm. I couldn’t finish this project and report without help from God and a lot of people. So in this opportunity, I would like to thanks :

1. My Lord and my saviour, Jesus Christ that give me faith and courage to finish this project. You’re love is amazing. I love You, God.

2. My special daddy, So Bun Liong and my best mommy Anastasia Herawati, and my sister, Charisa Desy, and my girl Vina Sugiarti for their support, love, and pray.

3. Suyanto EA., Ir, M.Sc as my supervisor and H. Marlon Leong, S.Kom, M.Kom the Dean of Faculty of Computer Science for helping, guiding and giving me ideas and advice in finishing this project.

4. Rosita Herawati, ST., MIT of Faculty of Computer Science for teaching me and give me a lot of inspiration from project title until finishing my project. Thank you so much.

5. My friends on Unika, Gamma, Koko, Tommy, Andre, Ridwan, Leonardo, Bastian, and all my friends those can’t called out one by one who always supporting me to finish this project and always give me spirit to never give up. I love the both of you!!!

Last, I would like to apologize if I made mistakes in finishing the project and writing this report. Therefore, critics and suggestions are expected.

Semarang, January 14th, 2011

Henrikus Andi I
TABLE OF CONTENTS

APPROVAL AND RATIFICATION PAGE ... ii
STATEMENT OF ORIGINALITY ... iii
ABSTRACT .. iv
FOREWORD ... v
TABLE OF CONTENTS .. vi
TABLES OF FIGURES ... viii
TABLES OF TABLES .. ix

CHAPTER I INTRODUCTION

1.1 Background ... 1
1.2 Scope .. 1
1.3 Objective .. 1

CHAPTER II LITERATUR STUDY

2.1 Array .. 2
2.2 Multithread ... 3

CHAPTER III PLANNING

3.1 Research Methodologies .. 5
3.2 Project Management ... 5

CHAPTER IV ANALYSIS AND DESIGN

4.1 Analysis .. 6
4.1.1 Use Case .. 6
4.2 Design ..7
 4.2.1 Class Diagram..7

CHAPTER V IMPLEMENTATION AND TESTING

 5.1 Implementation ..9
 5.2 Testing...9

CHAPTER V I CONCLUSION AND FURTHER RESEARCH

 6.1 Conclusion ...12
 6.2 Further Research ...12

REFERENCES ..13
TABLE OF FIGURES

Figure 2.1.1	Simple matrix form ...2
Figure 2.1.2	Rows and columns matrix ..2
Figure 2.2.1	Multiprocess at once ...4
Figure 4.1.1.1	Use Case Diagram ...6
Figure 4.2.1.1	Class Menu ..7
Figure 4.2.1.2	Class Matrix ...7
Figure 4.2.1.3	Class CalcThread3 ...8
Figure 5.2.1	Terminal or Console ...9
Figure 5.2.2	Main Menu ..10
Figure 5.2.3	Submenu About ..10
Figure 5.2.4	Output of Add Matrix ..11
Figure 5.2.5	Output of Subtracted Matrix ...11
TABLE OF TABLES

Table 3.2.1 Gantt Chart ...5