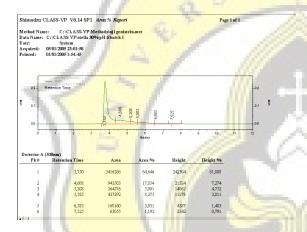
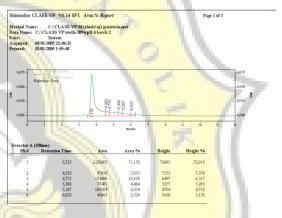
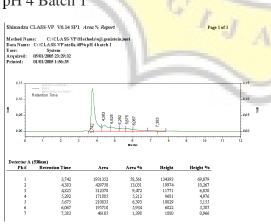

pH 5 Batch 1


pH 5 Batch 2

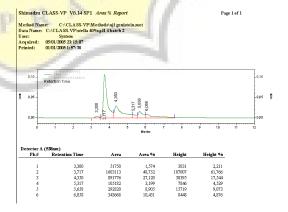

pH 6 Bacth 1

pH 6 Bacth 2

pH 6 Bacth 2



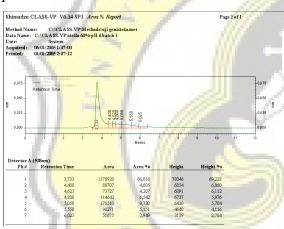
10

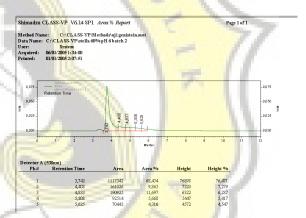


Appendix 5. Chromatograms of betanin using 40% maltodextrin concentration

pH 4 Batch 1


pH 4 Batch 2


pH 5 Batch 1


pH 5 Batch 2

pH 6 Batch 1

pH 6 Batch 2

Appendix 7. Output of Test of Normality on Betanin with Maltodextrin
Treatments

Tests of Normality

		Kolm	Kolmogorov-Smirnovª			Shapiro-Wilk		
	konsentrasimalto	Statistic	df	Siq.	Statistic	df	Siq.	
betanincontent	0%	.239	18	.008	.830	18	.004	
	20%	.249	18	.004	.877	18	.024	
	30%	.224	18	.017	.854	18	.010	
	40%	.240	18	.008	.866	18	.015	
	60%	.294	18	.000	.738	18	.000	

a. Lilliefors Significance Correction

Appendix 8. Output of Post Hoc One Way Anova on Betanin with Maltodextrin Treatments

betanincontent

Duncar	1						
kons		Subset for alpha = 0.05					
entra si	N	1	2	3			
60%	18	4.2107E3					
40%	18	5.0935E3					
30%	18		1.0737E4				
20%	18	100	1.1218E4				
0%	18		1	2.2787E4			
Sig.		.465	.690	1.000			

Means for groups in homogeneous subsets are displayed.

Appendix 9. Output of Test of Normality on Betanin with pH Variation

Tests of Normality

11 -		Kolm	ogorov-Smiri	novª		<mark>Shapiro-</mark> Wilk	
(mar)	Hq	Statistic	df	Siq.	Statistic	df	Siq.
betanin <mark>content</mark>	pH 4	.407	6	.002	.640	6	.001
- //	pH 5	.407	6	.002	.640	6	.001
	pH 6	.407	6	.002	.640	6	.001

a. Lilliefors Significance Correction

Appendix 10. Output of Post Hoc One Way Anova on Betanin with pH Variation

betanincontent

Duncan		1	
		Subset for a	alpha = 0.05
Нα	N	1	2
pH6	6	8.1179E3	
pH 5	6	9.2934E3	
pH 4	6	110000000000000000000000000000000000000	1.6243E4
Sig.		.286	1.000

Appendix 11. Output of Test of Normality on Betaxanthin with Maltodextrin Treatments

Tests of Normality

		Kolm	Kolmogorov-Smirnovª			Shapiro-Wilk		
	konsentrasimalto	Statistic	df	Siq.	Statistic	df	Siq.	
betaxanthin	0%	.258	18	.003	.714	18	.000	
	20%	.160	18	.200'	.911	18	.090	
	30%	.253	18	.004	.804	18	.002	
	40%	.122	18	.200	.947	18	.376	
	60%	.216	18	.026	.867	18	.016	

a. Lilliefors Significance Correction

Appendix 12. Output of Post Hoc One Way Anova on Betaxanthin with Maltodextrin Treatments

betaxanthin

_ Duncar			10000						
kons			Subset for alpha = 0.05						
entra si	N	1 /	2	3	4				
60%	18	4.7165E2	/	-	and I				
40%	18	4.9719E2							
30%	18	N. 10	6.9614E2						
20%	18	n VE		9.9827E2					
0%	18				1.9071E3				
Sig.		.603	1.000	1.000	1.000				

Appendix 13. Output of Test of Normality on Betaxanthin with pH Variation

Tests of Normality

	·	Kolm	ogorov-Smii	rnovª		Shapiro-Wilk	
	Hq	Statistic	df	Siq.	Statistic	df	Siq.
betaxanthin	pH 4	.191	6	.200	.963	6	.841
	pH 5	.302	6	.093	.730	6	.013
	pH 6	.263	6	.200'	.858	6	.183

a. Lilliefors Significance Correction

^{*.} This is a lower bound of the true significance.

^{*.} This is a lower bound of the true significance.

Appendix 14. Output of Post Hoc One Way Anova on Betaxanthin with pH Variation

betaxanthin

Duncar	1		
		Subset for a	lpha = 0.05
На	N	1	2
рН 6	6	1.7668E3	>
pH 4	6	1.8858E3	1.8858E3
pH 5	6		2.0686E3
Sig.		.327	.140

Means for groups in homogeneous subsets are displayed.

Appendix 15. Output of Test of Normality on Betacyanin with Maltodextrin

Treatments

Tests of Normality

17	to Visi	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	konsentrasimalto	Statistic	df	Siq.	Statistic	df	Sig.
betasianin	0%	.251	18	.004	.829	18	.004
_ _	20%	.248	18	.005	.873	18	.020
	30%	.247	18	.005	.852	18	.009
	40%	.231	18	.012	.828	18	.004
	60%	.198	18	.059	.917	18	.117

a. Lilliefors Significance Correction

Appendix 16. Output of Post Hoc One Way Anova on Betacyanin with Maltodextrin Treatments

inhibition

Duncar	1					
kons entra		Subset for alpha = 0.05				
Si	Ν	1	2			
40%	17	23.3059				
60%	19	30.2279				
30%	18	31.9250				
20%	18		58.6356			
0%	18		65.3067			
Sig.		.243	.335			

Means for groups in homogeneous subsets are displayed.

Appendix 17. Output of Test of Normality on on Betacyanin Analysis with pH

Variation

Tests of Normality

	- 1	Kolmo	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Ha	Statistic	df	Siq.	Statistic	df	Siq.	
betasi <mark>anin</mark>	pH 4	.289	6	.128	.847	6	.149	
	pH 5	.316	6	.063	.718	6	.010	
11	pH 6	.302	6	.094	.769	6	.030	

a. Lilliefors Significance Correction

Appendix 18. Output of Post Hoc One Way Anova on Betacyanin with pH Variation

betasianin

Duncar	1	
		Subset for alpha = 0.05
Ha	N	1
pH6	6	2823.7933
pH 4	6	2846.3733
pH 5	6	2886.9783
Sig.		.715

Appendix 19. Output of Test of Normality on Antioxidant Activity with Maltodextrin Treatments

Tests of Normality

		Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	konsentrasimalto	Statistic	df	Siq.	Statistic	df	Siq.	
inhibition	0%	.206	18	.043	.834	18	.005	
	20%	.308	18	.000	.771	18	.001	
	30%	.291	18	.000	.855	18	.010	
	40%	.275	17	.001	.825	17	.005	
	60%	.222	19	.015	.824	19	.003	

a. Lilliefors Significance Correction

Appendix 20. Output of Post Hoc One Way Anova on Antioxidant Activity with Maltodextrin Treatments

inhibition

Duncan								
kons entra		Subset for alpha = 0.05						
Si	N	// 1	2					
40%	17	23,3059						
60%	19	30.2279						
30%	18	31.9250						
20%	18	1	58.6356					
0%	18	11	65.3067					
Sig.	M. The	.243	.335					

Means for group<mark>s in homogeneous subsets are displayed.</mark>

Appendix 21. Output of Test of Normality on Antioxidant Activity Analysis with pH Variation

Tests of Normality

		Kolmogorov-Smirnov			Shapiro-Wilk			
	На	Statistic df		Siq.	Statistic	df	Siq.	
inhibition	pH 4	.250	6	.200	.887	6	.303	
	pH 5	.306	6	.083	.790	6	.048	
	рН 6	.301	6	.095	.770	6	.031	

a. Lilliefors Significance Correction

Appendix 22. Output of Post Hoc One Way Anova on Antioxidant Activity s with pH Variation

inhibition

Duncan								
1	1	Subset for alpha = 0.05						
На	N	1	2					
pH 6	6	35.7533	v m 12					
pH 5	6		73.7633					
pH 4	6	-	86.4033					
Sig.	-	1.000	.178					

^{*.} This is a lower bound of the true significance.

Appendix 23. Output of Pearson Correlation between Antioxidan Activity with Betalain Content in Red Beet Powder

Correlations

		konsentrasim alto	рН	betaxanthin	betasianin	antioksidan	Betanin
konsentrasimalto	Pearson Correlation	1	.010	864"	898"	568"	818"
	Sig. (2-tailed)		.929	.000	.000	.000	.000
	N	90	90	90	90	90	90
рН	Pearson Correlation	.010	1	005	.059	131	132
	Sig. (2-tailed)	.929	1.7%	.965	.583	.219	.217
	N	90	90	90	90	90	90
betaxanthin	Pearson Cor <mark>relation</mark>	864"	005	1	.935"	.565"	.850"
	Sig. (2-tailed)	.000	.965		.000	.000	.000
	N	90	90	90	90	90	90
betasianin	Pearson Correlation	898"	.059	.935"	1	.575"	.805"
	Sig. (2-tailed)	.000	.583	.000	A 1	.000	.000
	N	90	90	90	90	90	90
antioksidan 🌁 🧂	Pearson Correlation	568"	131	.565"	.575"	1	.651"
11	Sig. (2 <mark>-tail</mark> ed)	.000	.219	.000	.000	1.7	.000
	N	90	90	90	90	90	90
Betanin	Pearson Correlation	818"	132	.850"	.805"	.651"	1
11 1	Sig. (2-tailed)	.000	.217	.000	.000	.000	
	N	90	90	90	90	90	90

^{**.} Correlation is significant at the 0.01 level (2-tailed).

