Lampiran 7

Lampiran 1. Hasil Pengolahan SPSS

7.1. Pengujian Fisik

<table>
<thead>
<tr>
<th>Warna L*</th>
<th>Tests of Normality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kolmogorov-Smirnov*</td>
</tr>
<tr>
<td></td>
<td>Statistic df Sig.</td>
</tr>
<tr>
<td>L_0</td>
<td>menit 0 .306 6 .082</td>
</tr>
<tr>
<td></td>
<td>menit 15 .289 6 .129</td>
</tr>
<tr>
<td></td>
<td>menit 22,5 .211 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 30 .228 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 37,5 .191 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 45 .298 6 .103</td>
</tr>
<tr>
<td></td>
<td>menit 52,5 .230 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 60 .307 6 .081</td>
</tr>
<tr>
<td>L_5</td>
<td>menit 0 .199 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 15 .194 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 22,5 .249 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 30 .235 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 37,5 .169 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 45 .274 6 .178</td>
</tr>
<tr>
<td></td>
<td>menit 52,5 .263 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 60 .164 6 .200*</td>
</tr>
<tr>
<td>L_10</td>
<td>menit 0 .246 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 15 .232 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 22,5 .197 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 30 .317 6 .059</td>
</tr>
<tr>
<td></td>
<td>menit 37,5 .216 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 45 .227 6 .200*</td>
</tr>
<tr>
<td></td>
<td>menit 52,5 .300 6 .098</td>
</tr>
<tr>
<td></td>
<td>menit 60 .319 6 .057</td>
</tr>
</tbody>
</table>
Post Hoc One Way Anova Warna L^*

L_0

Duncan

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td>74.8617</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td>75.3633</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td>75.5150</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>75.5317</td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>75.6400</td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>75.6900</td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td>75.7167</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>75.8500</td>
</tr>
</tbody>
</table>

Sig. .232

L_5

Duncan

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 45</td>
<td>6</td>
<td>57.6117</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td>57.7650</td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td>58.5267 58.5267</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>58.8150 58.8150</td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>59.0933 59.0933</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>59.6850 59.6850</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td>59.7800 59.7800</td>
</tr>
<tr>
<td>menit 0</td>
<td>6</td>
<td>60.6900</td>
</tr>
</tbody>
</table>

Sig. .133 .129

L_{10}

Duncan

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td>50.9367</td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>51.2717</td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>51.3417</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>51.4717</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td>51.5900</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td>51.9400</td>
</tr>
<tr>
<td>menit 0</td>
<td>6</td>
<td>52.1933</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>52.3217</td>
</tr>
</tbody>
</table>

Sig. .245
Tests of Normality

<table>
<thead>
<tr>
<th>Waktu</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>a_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.257</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.213</td>
<td>6</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>.302</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.207</td>
<td>6</td>
</tr>
<tr>
<td>menit 37,5</td>
<td>.176</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.266</td>
<td>6</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>.264</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.205</td>
<td>6</td>
</tr>
<tr>
<td>a_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.246</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.195</td>
<td>6</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>.264</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.252</td>
<td>6</td>
</tr>
<tr>
<td>menit 37,5</td>
<td>.192</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.152</td>
<td>6</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>.195</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.174</td>
<td>6</td>
</tr>
<tr>
<td>a_10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.263</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.296</td>
<td>6</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>.201</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.315</td>
<td>6</td>
</tr>
<tr>
<td>menit 37,5</td>
<td>.217</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.302</td>
<td>6</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>.190</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.182</td>
<td>6</td>
</tr>
</tbody>
</table>
Post Hoc One Way Anova Warna a*

a_0

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 37,5</td>
<td>6</td>
<td>1.0183</td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>1.0317</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>6</td>
<td>1.0400</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>1.1333</td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>1.1350</td>
</tr>
<tr>
<td>menit 0</td>
<td>6</td>
<td>1.1567</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>1.1633</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>6</td>
<td>1.2267</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>0.195</td>
</tr>
</tbody>
</table>

a_5

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 37,5</td>
<td>6</td>
<td>23.1650</td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>23.2350</td>
</tr>
<tr>
<td>menit 0</td>
<td>6</td>
<td>23.2467</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>23.3567</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>6</td>
<td>23.3800</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>6</td>
<td>23.3933</td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>23.4783</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>23.6750</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>0.134</td>
</tr>
</tbody>
</table>

a_10

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td>26.6483</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>27.8400</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>28.0950</td>
</tr>
<tr>
<td>menit 37,5</td>
<td>6</td>
<td>28.1583</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>6</td>
<td>28.2167</td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>28.9100</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>6</td>
<td>29.6417</td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>29.7317</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>0.143</td>
</tr>
</tbody>
</table>
Warna b*

Tests of Normality

<table>
<thead>
<tr>
<th>waktu</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>b_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.219</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.198</td>
<td>6</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>.313</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.214</td>
<td>6</td>
</tr>
<tr>
<td>menit 37,5</td>
<td>.184</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.266</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.253</td>
<td>6</td>
</tr>
<tr>
<td>b_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.190</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.322</td>
<td>6</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>.252</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.281</td>
<td>6</td>
</tr>
<tr>
<td>menit 37,5</td>
<td>.322</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.285</td>
<td>6</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>.311</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.295</td>
<td>6</td>
</tr>
<tr>
<td>b_10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.239</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.204</td>
<td>6</td>
</tr>
<tr>
<td>menit 22,5</td>
<td>.282</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.227</td>
<td>6</td>
</tr>
<tr>
<td>menit 37,5</td>
<td>.186</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.131</td>
<td>6</td>
</tr>
<tr>
<td>menit 52,5</td>
<td>.144</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.213</td>
<td>6</td>
</tr>
</tbody>
</table>
Post Hoc One Way Anova Warna b*

b_0

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>25.3100</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td>25.4100</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>25.4733</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td>25.4833</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>25.9067</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td>26.1083</td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>26.2283</td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>26.3867</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.128</td>
</tr>
</tbody>
</table>

b_5

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>8.3583</th>
<th>8.4583</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>8.5733</td>
<td>8.5733</td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>8.6667</td>
<td>8.6667</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td>9.1633</td>
<td>9.1633</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td>9.2717</td>
<td>9.2717</td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td>9.2983</td>
<td>9.2983</td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>9.5917</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.077</td>
<td>.052</td>
</tr>
</tbody>
</table>

b_10

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>5.0900</th>
<th>5.7517</th>
<th>5.8083</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td>5.9033</td>
<td>5.9033</td>
<td></td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td>6.0017</td>
<td>6.0017</td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td>6.0333</td>
<td>6.0333</td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td>6.1267</td>
<td>6.1267</td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td>6.2483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td>1.000</td>
<td>.051</td>
<td>.068</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tekstur (Hardness)

Tests of Normality

<table>
<thead>
<tr>
<th>konsentrasi</th>
<th>Kolmogorov-Smirnov²</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>h_0</td>
<td>konsentrasi 0%</td>
<td>.263</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.237</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.175</td>
</tr>
<tr>
<td>h_15</td>
<td>konsentrasi 0%</td>
<td>.176</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.305</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.334</td>
</tr>
<tr>
<td>h_22.5</td>
<td>konsentrasi 0%</td>
<td>.204</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.245</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.233</td>
</tr>
<tr>
<td>h_30</td>
<td>konsentrasi 0%</td>
<td>.216</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.194</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.286</td>
</tr>
<tr>
<td>h_37.5</td>
<td>konsentrasi 0%</td>
<td>.334</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.235</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.289</td>
</tr>
<tr>
<td>h_45</td>
<td>konsentrasi 0%</td>
<td>.210</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.285</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.199</td>
</tr>
<tr>
<td>h_52.5</td>
<td>konsentrasi 0%</td>
<td>.324</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.198</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.354</td>
</tr>
<tr>
<td>h_60</td>
<td>konsentrasi 0%</td>
<td>.189</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 5%</td>
<td>.270</td>
</tr>
<tr>
<td></td>
<td>konsentrasi 10%</td>
<td>.176</td>
</tr>
</tbody>
</table>
Post Hoc One Way Anova *Hardness* (Waktu/Baris)

hardness_0

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 60</td>
<td>3</td>
<td>1.1492E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>3</td>
<td></td>
<td>1.1885E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>3</td>
<td></td>
<td></td>
<td>1.1985E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1.2451E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2930E2</td>
<td></td>
</tr>
<tr>
<td>menit 22.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3398E2</td>
</tr>
<tr>
<td>menit 15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3521E2</td>
</tr>
<tr>
<td>menit 0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4063E2</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>.529</td>
<td>1.000</td>
<td>1.000</td>
<td>.443</td>
<td>1.000</td>
</tr>
</tbody>
</table>

hardness_5

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 60</td>
<td>3</td>
<td>1.0981E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>3</td>
<td></td>
<td>1.1396E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>3</td>
<td></td>
<td></td>
<td>1.1834E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1.2296E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1.2616E2</td>
<td>1.2616E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 22.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1.2720E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3262E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3914E2</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>.088</td>
<td>.564</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

hardness_10

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 60</td>
<td>3</td>
<td>99.83</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>3</td>
<td>1.0072E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>3</td>
<td>1.0141E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>3</td>
<td>1.0896E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>3</td>
<td>1.1053E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 22.5</td>
<td>3</td>
<td>1.1623E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 15</td>
<td>3</td>
<td></td>
<td>1.2216E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>3</td>
<td></td>
<td></td>
<td>1.3321E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.494</td>
<td>.471</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Tekstur (Springiness)

Tests of Normality

<table>
<thead>
<tr>
<th>konsentrasi</th>
<th>Kolmogorov-Smirnova Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Shapiro-Wilk Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0 konsentrasi 0%</td>
<td>.238 3</td>
<td>.</td>
<td>.976 3</td>
<td>.702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.232 3</td>
<td>.</td>
<td>.980 3</td>
<td>.728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.227 3</td>
<td>.</td>
<td>.983 3</td>
<td>.747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_15 konsentrasi 0%</td>
<td>.370 3</td>
<td>.</td>
<td>.786 3</td>
<td>.081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.320 3</td>
<td>.</td>
<td>.884 3</td>
<td>.337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.232 3</td>
<td>.</td>
<td>.980 3</td>
<td>.726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_22.5 konsentrasi 0%</td>
<td>.341 3</td>
<td>.</td>
<td>.847 3</td>
<td>.233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.339 3</td>
<td>.</td>
<td>.851 3</td>
<td>.242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.219 3</td>
<td>.</td>
<td>.987 3</td>
<td>.780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_30 konsentrasi 0%</td>
<td>.198 3</td>
<td>.</td>
<td>.995 3</td>
<td>.870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.348 3</td>
<td>.</td>
<td>.834 3</td>
<td>.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.358 3</td>
<td>.</td>
<td>.812 3</td>
<td>.144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_37.5 konsentrasi 0%</td>
<td>.356 3</td>
<td>.</td>
<td>.818 3</td>
<td>.157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.349 3</td>
<td>.</td>
<td>.832 3</td>
<td>.194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.247 3</td>
<td>.</td>
<td>.969 3</td>
<td>.663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_45 konsentrasi 0%</td>
<td>.201 3</td>
<td>.</td>
<td>.994 3</td>
<td>.856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.222 3</td>
<td>.</td>
<td>.986 3</td>
<td>.770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.282 3</td>
<td>.</td>
<td>.936 3</td>
<td>.511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_52.5 konsentrasi 0%</td>
<td>.253 3</td>
<td>.</td>
<td>.964 3</td>
<td>.637</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.288 3</td>
<td>.</td>
<td>.929 3</td>
<td>.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.269 3</td>
<td>.</td>
<td>.949 3</td>
<td>.567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_60 konsentrasi 0%</td>
<td>.199 3</td>
<td>.</td>
<td>.995 3</td>
<td>.865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 5%</td>
<td>.182 3</td>
<td>.</td>
<td>.999 3</td>
<td>.935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>konsentrasi 10%</td>
<td>.333 3</td>
<td>.</td>
<td>.862 3</td>
<td>.273</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post Hoc One Way Anova Springiness (Waktu/Baris)

spring_0

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 60</td>
<td>3</td>
<td>.4127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>3</td>
<td></td>
<td>.4817</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>3</td>
<td></td>
<td></td>
<td>.4840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.5770</td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.6183</td>
<td>.6183</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.6670</td>
</tr>
<tr>
<td>menit 15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.6763</td>
</tr>
<tr>
<td>menit 0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.8330</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

spring_5

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 60</td>
<td>3</td>
<td>.4703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>3</td>
<td></td>
<td>.4990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>3</td>
<td></td>
<td></td>
<td>.5110</td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.5443</td>
</tr>
<tr>
<td>menit 30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.6857</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.7663</td>
</tr>
<tr>
<td>menit 15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.7797</td>
</tr>
<tr>
<td>menit 0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.9210</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.063</td>
</tr>
</tbody>
</table>

spring_10

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 60</td>
<td>3</td>
<td>.5513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>3</td>
<td></td>
<td>.5700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>3</td>
<td></td>
<td></td>
<td>.6330</td>
<td>.6330</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.7333</td>
</tr>
<tr>
<td>menit 30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.7913</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.8080</td>
</tr>
<tr>
<td>menit 15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.8230</td>
</tr>
<tr>
<td>menit 0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>.9230</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.285</td>
</tr>
</tbody>
</table>

For each time point, the subset for alpha = 0.05 indicates which groups are significantly different from each other.
Volume Pengembangan

Tests of Normality

<table>
<thead>
<tr>
<th>waktu</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>v_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.197</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.277</td>
<td>6</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>.293</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.246</td>
<td>6</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>.270</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.223</td>
<td>6</td>
</tr>
<tr>
<td>menit 52.5</td>
<td>.201</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.201</td>
<td>6</td>
</tr>
<tr>
<td>v_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.187</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.279</td>
<td>6</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>.266</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.205</td>
<td>6</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>.262</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.209</td>
<td>6</td>
</tr>
<tr>
<td>menit 52.5</td>
<td>.208</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.172</td>
<td>6</td>
</tr>
<tr>
<td>v_10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 0</td>
<td>.302</td>
<td>6</td>
</tr>
<tr>
<td>menit 15</td>
<td>.121</td>
<td>6</td>
</tr>
<tr>
<td>menit 22.5</td>
<td>.241</td>
<td>6</td>
</tr>
<tr>
<td>menit 30</td>
<td>.243</td>
<td>6</td>
</tr>
<tr>
<td>menit 37.5</td>
<td>.207</td>
<td>6</td>
</tr>
<tr>
<td>menit 45</td>
<td>.204</td>
<td>6</td>
</tr>
<tr>
<td>menit 52.5</td>
<td>.204</td>
<td>6</td>
</tr>
<tr>
<td>menit 60</td>
<td>.252</td>
<td>6</td>
</tr>
</tbody>
</table>
Post Hoc One Way Anova Volume Pengembangan

v_0

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td>.5917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td></td>
<td>.7567</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td></td>
<td></td>
<td>.9233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>.9850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1.0283</td>
<td>1.0283</td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0517</td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1417</td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1533</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>.074</td>
<td>.330</td>
<td>.624</td>
</tr>
</tbody>
</table>

v_5

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td>.6750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td></td>
<td>.7633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td></td>
<td></td>
<td>.9667</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1.0333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1.0750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1.0833</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2083</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>.538</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

v_10

<table>
<thead>
<tr>
<th>waktu</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>menit 0</td>
<td>6</td>
<td>.7717</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 15</td>
<td>6</td>
<td></td>
<td>.8333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 22.5</td>
<td>6</td>
<td></td>
<td></td>
<td>.9867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 30</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1.0450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 37.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1.0683</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 45</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>menit 52.5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1667</td>
<td></td>
</tr>
<tr>
<td>menit 60</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2133</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>.139</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
7.1.2. Pengujuan Kimia

Aktivitas Antioksidan

Tests of Normality

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>before_proof</td>
<td>bit 0%</td>
<td>.238</td>
</tr>
<tr>
<td></td>
<td>bit 5%</td>
<td>.237</td>
</tr>
<tr>
<td></td>
<td>bit 10%</td>
<td>.210</td>
</tr>
<tr>
<td>after_proof</td>
<td>bit 0%</td>
<td>.189</td>
</tr>
<tr>
<td></td>
<td>bit 5%</td>
<td>.260</td>
</tr>
<tr>
<td></td>
<td>bit 10%</td>
<td>.194</td>
</tr>
</tbody>
</table>

Post Hoc One Way Aktivitas Antioksidan

Sebelum Proofing

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 0%</td>
<td>6</td>
<td>8.58833</td>
</tr>
<tr>
<td>bit 5%</td>
<td>6</td>
<td>1.03948E1</td>
</tr>
<tr>
<td>bit 10%</td>
<td>6</td>
<td>1.29403E1</td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

Setelah Proofing

<table>
<thead>
<tr>
<th>perlakuan</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 0%</td>
<td>6</td>
<td>6.72817</td>
</tr>
<tr>
<td>bit 5%</td>
<td>6</td>
<td>8.28133</td>
</tr>
<tr>
<td>bit 10%</td>
<td>6</td>
<td>1.02550E1</td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Korelasi Warna dengan Antioksidan

<table>
<thead>
<tr>
<th></th>
<th>warna_L</th>
<th>warna_a</th>
<th>warna_b</th>
<th>antioksidan</th>
</tr>
</thead>
<tbody>
<tr>
<td>warna_L Pearson Correlation</td>
<td>1</td>
<td>-.983**</td>
<td>.987**</td>
<td>-.922**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>warna_a Pearson Correlation</td>
<td>-.983**</td>
<td>1</td>
<td>-.996**</td>
<td>.876**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>warna_b Pearson Correlation</td>
<td>.987**</td>
<td>-.996**</td>
<td>1</td>
<td>-.884**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>antioksidan Pearson Correlation</td>
<td>-.922**</td>
<td>.876**</td>
<td>-.884**</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).