STATISTIK DESKRIPTIF

Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKI</td>
<td>180</td>
<td>,200</td>
<td>1,000</td>
<td>,37894</td>
<td>,114999</td>
</tr>
<tr>
<td>LEV</td>
<td>180</td>
<td>,029</td>
<td>40,372</td>
<td>1,82089</td>
<td>3,860650</td>
</tr>
<tr>
<td>SIZE</td>
<td>180</td>
<td>10,071</td>
<td>14,261</td>
<td>11,95309</td>
<td>,692594</td>
</tr>
<tr>
<td>Abs_DISC</td>
<td>180</td>
<td>,019</td>
<td>,048</td>
<td>,03866</td>
<td>,005861</td>
</tr>
</tbody>
</table>

KAP

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>126</td>
<td>70,0</td>
<td>70,0</td>
<td>70,0</td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>30,0</td>
<td>30,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

BUSY

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>155</td>
<td>86,1</td>
<td>86,1</td>
<td>86,1</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>13,9</td>
<td>13,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>
UJI ASUMSI KLASIK

UJI NORMALITAS (SEBELUM DATA NORMAL)

<table>
<thead>
<tr>
<th>Case Processing Summary</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valid</td>
<td>Missing</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Percent</td>
<td>N</td>
<td>Percent</td>
<td>N</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>Unstandardized Residual</td>
<td>400</td>
<td>100,0%</td>
<td>0</td>
<td>0,0%</td>
<td>400</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

Descriptives

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Statistic</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstandardized Residual</td>
<td>Mean</td>
<td>0E-7</td>
</tr>
<tr>
<td></td>
<td>95% Confidence Interval</td>
<td>.0052488</td>
</tr>
<tr>
<td></td>
<td>for Mean</td>
<td>.0052488</td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean</td>
<td>.0072058</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>.0131414</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>.003</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>.05339756</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>.06580</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>.28662</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>.35242</td>
</tr>
<tr>
<td></td>
<td>Interquartile Range</td>
<td>.02264</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>2.867</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>2.122</td>
</tr>
</tbody>
</table>

M-Estimators

<table>
<thead>
<tr>
<th>M-Estimator</th>
<th>Huber’s M-Estimator</th>
<th>Tukey’s Biweight</th>
<th>Hampel’s M-Estimator</th>
<th>Andrews’ Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.0133159</td>
<td>-.0166025</td>
<td>-.0166484</td>
<td>-.0166224</td>
</tr>
</tbody>
</table>

a. The weighting constant is 1.339.
b. The weighting constant is 4.685.
c. The weighting constants are 1,700, 3,400, and 8,500
d. The weighting constant is 1,340*π.

Percentiles

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstandardized Residual</td>
<td>.04528</td>
<td>.03853</td>
<td>.02592</td>
<td>.01314</td>
<td>.00328</td>
<td>.08012</td>
<td>.12550</td>
</tr>
<tr>
<td>Weighted Average (Definition 1)</td>
<td>48</td>
<td>21</td>
<td>62</td>
<td>14</td>
<td>33</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Unstandardized Residual</td>
<td>.02590</td>
<td>.01314</td>
<td>.00329</td>
<td>.08012</td>
<td>.12550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tukey’s Hinges</td>
<td>90</td>
<td>14</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extreme Values

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unstandardized Residual</td>
</tr>
<tr>
<td>1</td>
<td>396</td>
</tr>
<tr>
<td>2</td>
<td>156</td>
</tr>
<tr>
<td>Highest</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Lowest</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Tests of Normality

<table>
<thead>
<tr>
<th></th>
<th>Kolmogorov-Smirnov(^a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstandardized Residual</td>
<td>.312</td>
<td>.653</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

\(^a\) Lilliefors Significance Correction
UJI NORMALITAS (SETELAH DATA NORMAL)

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>Valid</th>
<th></th>
<th>Missing</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>180</td>
<td>0</td>
<td>0</td>
<td>180</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descriptives

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Statistic</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0E-7</td>
<td>0.00022385</td>
</tr>
<tr>
<td>95% Confidence Interval for Mean</td>
<td>-0.0004417</td>
<td>0.0004417</td>
</tr>
<tr>
<td>5% Trimmed Mean</td>
<td>0.000556</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0.001142</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.0000330</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.00661</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>0.00547</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.01209</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>0.00470</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.217</td>
<td>0.181</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.809</td>
<td>0.360</td>
</tr>
</tbody>
</table>

M-Estimators

<table>
<thead>
<tr>
<th></th>
<th>Huber's M-Estimator^a</th>
<th>Tukey's Biweight^b</th>
<th>Hampel's M-Estimator^c</th>
<th>Andrews' Wave^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstandardized Residual</td>
<td>0.0001154</td>
<td>0.0001551</td>
<td>0.0001067</td>
<td>0.0001532</td>
</tr>
</tbody>
</table>

a. The weighting constant is 1.339.
b. The weighting constant is 4.685.
c. The weighting constants are 1,700, 3,400, and 8,500
d. The weighting constant is 1,340*pi.

Percentiles

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted Average (Definition 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unstandardized Residual</td>
<td>0.00553</td>
<td>0.00425</td>
<td>0.00245</td>
<td>.00014</td>
<td>0.00224</td>
<td>0.00419</td>
<td>0.00446</td>
</tr>
<tr>
<td>Tukey's Hinges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unstandardized Residual</td>
<td>0.00244</td>
<td>0.00424</td>
<td>0.00014</td>
<td>0.00223</td>
<td>0.00419</td>
<td>0.00446</td>
<td>0.00468</td>
</tr>
</tbody>
</table>
Extreme Values

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Value</th>
<th>Unstandardized Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>179</td>
<td>0.00547</td>
</tr>
<tr>
<td>2</td>
<td>175</td>
<td>0.00518</td>
</tr>
<tr>
<td>Highest</td>
<td>3</td>
<td>171,00547</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>166,00483</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>178,00475</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>-0.00661</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>-0.00638</td>
</tr>
<tr>
<td>Lowest</td>
<td>3</td>
<td>-0.00616</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.00563</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.00560</td>
</tr>
</tbody>
</table>

Tests of Normality

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstandardized Residual</td>
<td>.049</td>
<td>180</td>
<td>.200*</td>
<td>.973</td>
<td>180</td>
</tr>
</tbody>
</table>

* This is a lower bound of the true significance.
a. Lilliefors Significance Correction

UJI MULTIKOLINEARITAS

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>.083</td>
<td>.005</td>
<td>18.318</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>DKI</td>
<td>-.009</td>
<td>.002</td>
<td>-.177</td>
<td>-4.478</td>
<td>.000</td>
</tr>
<tr>
<td>KAP</td>
<td>-.005</td>
<td>.001</td>
<td>-.425</td>
<td>-9.653</td>
<td>.000</td>
</tr>
<tr>
<td>BUSY</td>
<td>.006</td>
<td>.000</td>
<td>.333</td>
<td>8.487</td>
<td>.000</td>
</tr>
<tr>
<td>LEV</td>
<td>.000</td>
<td>.000</td>
<td>.147</td>
<td>3.720</td>
<td>.000</td>
</tr>
<tr>
<td>SIZE</td>
<td>.004</td>
<td>.000</td>
<td>.452</td>
<td>10.313</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Abs_DISC

UJI AUTOKORELASI

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.859*</td>
<td>.737</td>
<td>.730</td>
<td>.003046</td>
<td>2.104</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), SIZE, DKI, BUSY, LEV, KAP
b. Dependent Variable: Abs_DISC
UJI HETEROSKEDASTISITAS

Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SIZE, DKI, BUSY, LEV, KAP</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Abs_RES
b. All requested variables entered.

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.328*</td>
<td>.108</td>
<td>.082</td>
<td>.001617</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), SIZE, DKI, BUSY, LEV, KAP

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.000</td>
<td>5</td>
<td>.000</td>
<td>4,209</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>.000</td>
<td>174</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.001</td>
<td>179</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Abs_RES
b. Predictors: (Constant), SIZE, DKI, BUSY, LEV, KAP

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.004</td>
<td>.002</td>
<td>-1,760</td>
</tr>
<tr>
<td></td>
<td>DKI</td>
<td>-.001</td>
<td>.001</td>
<td>-.089</td>
</tr>
<tr>
<td></td>
<td>KAP</td>
<td>.000</td>
<td>.000</td>
<td>.106</td>
</tr>
<tr>
<td></td>
<td>BUSY</td>
<td>.000</td>
<td>.000</td>
<td>.050</td>
</tr>
<tr>
<td></td>
<td>LEV</td>
<td>-3.012E-005</td>
<td>.000</td>
<td>-.069</td>
</tr>
<tr>
<td></td>
<td>SIZE</td>
<td>.001</td>
<td>.000</td>
<td>.244</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Abs_RES
UJ1 HIPOTESIS

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SIZE, DKI, BUSY, LEV, KAP</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Abs_DISC
b. All requested variables entered.

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.859*</td>
<td>.737</td>
<td>.730</td>
<td>.003046</td>
<td>2.104</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), SIZE, DKI, BUSY, LEV, KAP
b. Dependent Variable: Abs_DISC

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>.005</td>
<td>5</td>
<td>97,740</td>
<td>.000*</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>.002</td>
<td>174</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.006</td>
<td>179</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Abs_DISC
b. Predictors: (Constant), SIZE, DKI, BUSY, LEV, KAP

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.083</td>
<td>.005</td>
<td>18.318</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>DKI</td>
<td>-.009</td>
<td>.002</td>
<td>-.425</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>KAP</td>
<td>-.005</td>
<td>.001</td>
<td>-.333</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>BUSY</td>
<td>.006</td>
<td>.001</td>
<td>8.487</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LEV</td>
<td>.000</td>
<td>.000</td>
<td>3.720</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>SIZE</td>
<td>.004</td>
<td>.000</td>
<td>10.313</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Abs_DISC