TUGAS AKHIR

EVALUASI HASIL UJI EKSPERIMENTAL KAPASITAS GESER DAN PUNTIR PADA BALOK BETON BERTULANG

Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata Satu (S–1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik Soegijapranata Semarang

Disusun oleh:
ANGGORO NUGROHO GEDE NIM : 03.12.0042
MUHAMAT MUSTOFAH NIM : 03.12.0051

PROGRAM STUDI TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS KATOLIK SOEGIJAPRANATA
SEMARANG
2008
DAFTAR ISI

HALAMAN JUDUL .. i
LEMBAR PENGESAHAN ... ii
KATA PENGANTAR ... iv
KARTU ASISTENSI ... v
DAFTAR ISI .. viii
DAFTAR TABEL .. x
DAFTAR GAMBAR .. xi
DAFTAR NOTASI ... xii
DAFTAR LAMPIRAN ... xv

BAB I PENDAHULUAN

1.1 Latar Belakang ... 1
1.2 Tujuan Penelitian .. 2
1.3 Batasan Penelitian ... 2

BAB II TINJAUAN PUSTAKA

2.1 Studi Pustaka ... 4
 2.1.1 Bahan penyusun beton ... 4
 2.1.2 Sengkang .. 8
 2.1.3 Penelitian pembanding ... 9
2.2 Landasan Teori ... 11
 2.2.1 Tegangan geser .. 11
 2.2.2 Bagan alir analisis kapasitas geser 14
 2.2.3 Tegangan puntir ... 16
 2.2.4 Bagan alir analisis kapasitas puntir 19
BAB III METODE PENELITIAN

3.1 Alat dan Bahan Penelitian

3.2 Pelaksanaan Penelitian

3.2.1 Tahapan persiapan

3.2.2 Tahapan pembuatan benda uji

3.2.3 Perawatan benda uji

3.2.4 Pengujian kuat tekan

3.2.5 Tahapan pengujian balok beton bertulang dengan berbagai sengkang

3.2.5.1 Prosedur pengujian kuat geser

3.2.5.2 Set Up prosedur pengujian kuat geser

3.2.5.3 Prosedur pengujian kuat puntir

3.2.5.4 Set Up prosedur pengujian kuat puntir

BAB IV. HASIL PENELITIAN DAN PEMBAHASAN

4.1 Pengujian

4.1.1 Pengujian kuat tekan beton

4.1.2 Hasil uji kapasitas geser balok beton bertulang

4.1.3 Analisa hasil uji kapasitas geser balok beton bertulang

4.1.4 Hasil uji kapasitas puntir balok beton bertulang

4.1.5 Analisa hasil uji kapasitas puntir balok beton bertulang

BAB V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

5.2 Saran

DAFTAR PUSTAKA

LAMPIRAN
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar 2.1</th>
<th>Gambar Vu</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambar 2.2</td>
<td>Bagan alir analisis kapasitas geser</td>
<td>13</td>
</tr>
<tr>
<td>Gambar 2.3</td>
<td>a) Balok dibebani beban merata</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>b) Distribusi tegangan pada penampang balok persegi</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>c) Lingkaran Mohr</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>d) Tegangan pada elemen</td>
<td>15</td>
</tr>
<tr>
<td>Gambar 2.4</td>
<td>Distribusi tegangan puntir pada penampang balok</td>
<td>16</td>
</tr>
<tr>
<td>Gambar 2.5</td>
<td>Gambar BALOK</td>
<td>18</td>
</tr>
<tr>
<td>Gambar 2.6</td>
<td>Bagan alir analisis kapasitas puntir</td>
<td>19</td>
</tr>
<tr>
<td>Gambar 3.1</td>
<td>Bagan alir penelitian</td>
<td>20</td>
</tr>
<tr>
<td>Gambar 3.2</td>
<td>Semen Gresik</td>
<td>21</td>
</tr>
<tr>
<td>Gambar 3.3</td>
<td>Bekisting benda uji</td>
<td>22</td>
</tr>
<tr>
<td>Gambar 3.4</td>
<td>Dial gauge</td>
<td>23</td>
</tr>
<tr>
<td>Gambar 3.5</td>
<td>Dongkrak (jack)</td>
<td>24</td>
</tr>
<tr>
<td>Gambar 3.6</td>
<td>Concrete mixer</td>
<td>24</td>
</tr>
<tr>
<td>Gambar 3.7</td>
<td>Mesin uji kuat tekan</td>
<td>25</td>
</tr>
<tr>
<td>Gambar 3.8</td>
<td>Alat uji puntir</td>
<td>25</td>
</tr>
<tr>
<td>Gambar 3.9</td>
<td>Pengujian benda uji</td>
<td>26</td>
</tr>
<tr>
<td>Gambar 3.10</td>
<td>Kerucut Abram</td>
<td>26</td>
</tr>
<tr>
<td>Gambar 3.11</td>
<td>Timbangan</td>
<td>26</td>
</tr>
<tr>
<td>Gambar 3.12</td>
<td>Silinder benda uji</td>
<td>27</td>
</tr>
<tr>
<td>Gambar 3.13</td>
<td>Jarak antar sengkang</td>
<td>28</td>
</tr>
<tr>
<td>Gambar 3.14</td>
<td>Tulangan tampak atas</td>
<td>29</td>
</tr>
<tr>
<td>Gambar 3.15</td>
<td>Perspektif tulangan</td>
<td>29</td>
</tr>
<tr>
<td>Gambar 3.16</td>
<td>Pengujian kuat tekan beton</td>
<td>31</td>
</tr>
<tr>
<td>Gambar 3.17</td>
<td>Pengujian kuat geser</td>
<td>32</td>
</tr>
<tr>
<td>Gambar 3.18</td>
<td>Set up pengujian kuat geser</td>
<td>33</td>
</tr>
<tr>
<td>Gambar 3.19</td>
<td>Pengujian kuat puntir</td>
<td>34</td>
</tr>
<tr>
<td>Gambar 3.20</td>
<td>Set up pengujian kuat puntir</td>
<td>35</td>
</tr>
<tr>
<td>Gambar 4.1</td>
<td>Hasil uji kuat tekan sample 1, 2 dan 3</td>
<td>37</td>
</tr>
</tbody>
</table>
DAFTAR NOTASI

\(A_{cp} = \) luas yang dibatasi oleh keliling luar penampang balok (mm\(^2\))
\(A_o = \) luas bruto yang dibatasi oleh lintasan aliran geser (mm\(^2\))
\(A_{oh} = \) luas daerah yang dibatasi oleh garis pusat tulangan sengkang (mm\(^2\))
\(b_w = \) lebar badan balok (mm)
\(d = \) jarak serat tekan terluar (mm)
\(f_{c'} = \) kuat tekan beton yang sisyaratkan (MPa)
\(f_y = \) kuat leleh tulangan (MPa)
\(P_h = \) keliling dari garis pusat tulangan sengkang torsi terluar (Nmm)
\(T_u = \) momen puntir terfaktor pada penampang (Nmm)
\(V_c = \) kuat geser nominal yang disumbangkan beton (N)
\(V_u = \) gaya geser terfaktor pada penampang (N)
\(\varnothing = \) faktor reduksi kekuatan
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 4.1 Hasil pengujuan kuat tekan ... 37</td>
</tr>
<tr>
<td>Tabel 4.2 Hasil pengujuan kapasitas geser untuk lendutan 3,875 mm 38</td>
</tr>
<tr>
<td>Tabel 4.3 Hasil pengujuan kapasitas geser untuk lendutan 7,75 mm 38</td>
</tr>
<tr>
<td>Tabel 4.4 Perbandingan kuat geser perlu dan kuat geser nominal 40</td>
</tr>
<tr>
<td>Tabel 4.5 Hasil pengujuan kapasitas puntir untuk lendutan 3,875 mm 41</td>
</tr>
<tr>
<td>Tabel 4.6 Hasil pengujuan kapasitas puntir untuk lendutan 7,75 mm 41</td>
</tr>
<tr>
<td>Tabel 4.7 Perbandingan kuat kuat momen puntir dengan kuat momen puntir nominal ... 47</td>
</tr>
</tbody>
</table>