

PROCEEDING

International Conference on Green Technology and Design

“A Dissemination platform for supporting green energy, green building, green automation, green transportation and environmental sustainability”

BANDUNG 4 – 5, DECEMBER 2019

**BALE DAYANG SUMBI
INSTITUT TEKNOLOGI NASIONAL BANDUNG
WEST JAVA - INDONESIA**

BOOK OF PROCEEDING

INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND DESIGN

Bandung, 4 – 5 December 2019

Bale Dayang Sumbi
Institut Teknologi Nasional Bandung
West Java - Indonesia

 penerbit itenas

**it's a
good
start**

ORGANIZING COMMITTEE

INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGY AND DESIGN

GENERAL CHAIR

: Dr. Nurtati Soewarno, Ir., MT.

CO-CHAIR

: Maya R. Musadi, Ir., MT., Ph.D

SECRETARY

: Lisa Kristiana, ST., MT., Ph.D.

FINANCE CHAIR

- Dian Duhita, ST., MT.

EXHIBITS COMMITTEE

- Dr. Didin Agustian Permadi, ST., M.Eng
- Dr. Soni Darmawan, ST., MT.

PROGRAMME CHAIRS

- Vibianti Dwi Pratiwi, ST., MT.
- Arsyad Ramadhan Darlis, ST., MT.

LOCAL ARRANGEMENT COMMITTEE

- Lita Lidyawati, ST., MT.

PUBLICATIONS CHAIRS

- Agung Prabowo Sulistiawan, ST., MT.
- Ardhihana Muhsin Machdi, ST., MT.

WEB MASTER

- Agus Wardana, S.Sos.
- Bhakti Herdianto

REVIEWERS:

- Dr. Ir. Imam Aschuri, MT. (Indonesia)
- Dr. Ir. Dewi Kania Sari, MT. (Indonesia)
- Dr. Ir. Kusmaningrum, MT. (Indonesia)
- Dr. Dani Rusirawan, ST., MT. (Indonesia)
- Emma Akmalah, ST., MT., Ph.D. (Indonesia)
- Dr. Ir. Etih Hartati, MT. (Indonesia)
- Tarsisius Kristyadi, ST., MT., Ph.D. (Indonesia)
- Prof. Meilinda Nurbanasari, ST., MT., Ph.D. (Indonesia)
- Dr. Jamaludin, S.Sn., M.Sn. (Indonesia)
- Dr. Ir. Nurtati Soewarno, MT. (Indonesia)
- Dr. Waluyo, ST., MT. (Indonesia)
- Dr. Ir. Maya Ramadianti, MT. (Indonesia)
- Taufan Hidjaz, Drs., M.Sn. (Indonesia)
- Dr. Ing. M. Alexin Putra (Indonesia)
- Dr. Andri Masri, M.Sn. (Indonesia)
- Iwan Juwana, ST., M.EM., Ph.D. (Indonesia)

EDITORIAL BOARD:

- Jeark A. Principe Ph.D (Filipine)
- Dr. Ekbordin Winijkul (Thailand)
- Tanakorn Sritarapipat, Ph.D. (Thailand)
- Lisa Kristiana, ST., MT., Ph.D. (Indonesia)
- Arsyad Ramadhan Darlis, ST., MT. (Indonesia)
- Vibianti Dwi Pratiwi, ST., MT (Indonesia)
- Agus Wardana, S.Sos (Indonesia)
- Agus Rianto Amd. (Indonesia)

ISBN:

First Print: December 2019

Publisher:

Penerbit Itenas

Address:

Jl. P.K.H. Mustapha No. 23, Bandung 40124 Telp: +62 22 7272215, Fax: +62 22 7202892
Email: penerbit@itenas.ac.id

2019© All rights reserved

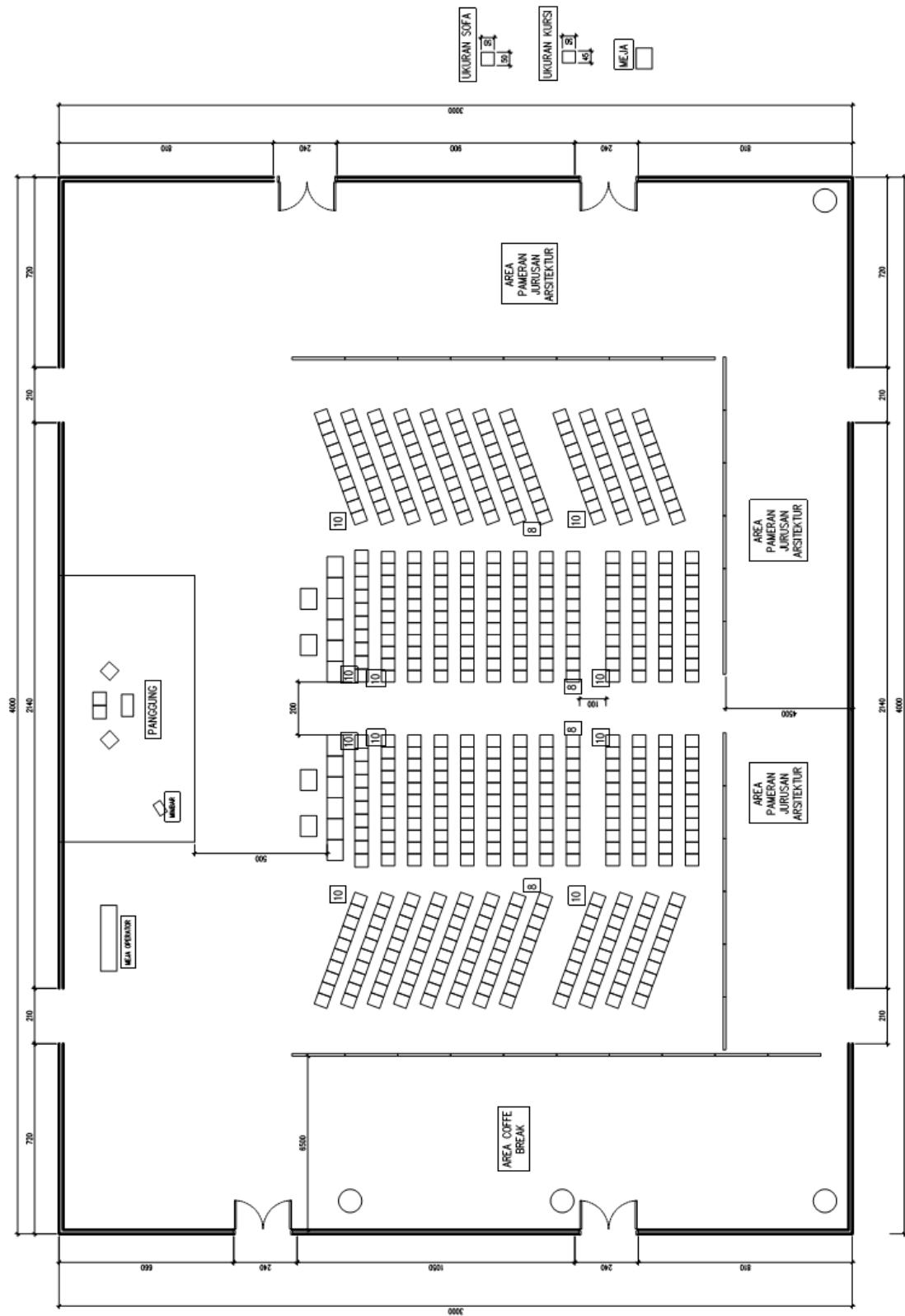
It is prohibited to quote and reproduce the contents of this book in any form and manner
without permission from the publisher

RUNDOWN ICGTD

Day	Time	Description
Wednesday, December 4th 2019	08.00 – 08.30	<i>Registration</i>
	08.30 – 09.00	<i>Welcome speech: ICGTD Chair, Rector of Itenas and Opening</i>
	09.00 – 09.45	<i>Plenary Session: "Assessment of Solar PV Power Potential over Asia Pacific Region with Remote Sensing and GIS" Jeark A. Principe, Ph.D (Philipine)</i>
	09.45 – 10.30	<i>Plenary Session: "Emissions and Mitigation Scenarios for Residential Combustion of Solid Fuels in Developing Countries" Dr. Ekbordin Winijkul (Thailand)</i>
	10.30 – 10.45	<i>Coffee Break</i>
	10.45 – 11.30	<i>Plenary Session: "Water Resource Management Framework For West Java Province, Indonesia" Iwan Juwana Ph.D (Indonesia)</i>
	11.30 – 12.30	<i>Ishoma Break</i>
	12.30 – 16.45	<i>Parallel Sessions – as attached</i>
	16.45 – 19.00	<i>Closing</i>

PRESENTATION SCHEDULE

No.	Name	Institution	Paper Topic	Presentation Time	Place
1	Niken Syafitri	Institut Teknologi Nasional Bandung	Green Automation	13.00	GSG Bale Dayang Sumbi Lt 1 (A)
2	Febrian Hadiatna	Institut Teknologi Nasional Bandung	Green Automation	13.15	
3	Florentinus budi setiawan	Soegijapranata catholic university	Green Automation	13.30	
4	Waluyo	Institut Teknologi Nasional Bandung	Green Automation	13.45	
5	Priyo Agus Setiawan	Politeknik Perkapalan Negeri Surabaya	Green Energy	14.00	
6	Lita Lidyawati	Institut Teknologi Nasional Bandung	Green Energy	14.15	
7	Bagus Rizky Pratama Budiajih	Institute Technologi Sepuluh Nopember	Green Energy	14.30	
8	Vibianti Dwi Pratiwi	Institut Teknologi Nasional Bandung	Green Energy	14.45	
9	Rachmad Ramadhan Yogaswara	Universitas Pembangunan Nasional (UPN) "Veteran"	Green Energy	15.00	
10	Lisa Kristiana	Institut Teknologi Nasional Bandung	Green IT	15.15	
11	Achmad Hizazi	Universitas Jambi	Green IT	15.30	
12	Dewi Rosmala	Institut Teknologi Nasional Bandung	Green IT	15.45	
13	Diki Ismail Permana	Institut Teknologi Nasional Bandung	Green Energy	16.00	
14	Yusup Miftahuddin	Institut Teknologi Nasional Bandung	Green IT	16.15	
15	Yudi Widiawan	Institut Teknologi Nasional Bandung	Green IT	16.30	
16	Rifqi Finaldy	Institut Teknologi Nasional Bandung	Green IT	16.45	
17	Hafidz Dayu Aditya	Institut Teknologi Nasional Bandung	Green IT	17.15	
18	Agus Hermanto	Institut Teknologi Nasional Bandung	Green Energy	17.30	
19	Meilinda Nurbanasari	Institut Teknologi Nasional Bandung	Green Energy	17.45	
20	Alfan Ekajati Latief	Institut Teknologi Nasional Bandung	Green Energy	18.00	
21	Lakshmanan Gurusamy	Universiti Malaysia Sarawak (UNIMAS)	Green IT	18.15	


No.	Name	Institution	Paper Topic	Presentation Time	Place
22	Abu Arif Jalaluddin	Universiti Malaysia Sarawak (UNIMAS)	Green IT	18.30	
23	Yanuar Z. Arief	Universiti Malaysia Sarawak (UNIMAS)	Green IT	18.45	

24	Nur Laela Latifah	Institut Teknologi Nasional Bandung	Green Building	13.00	GSG Bale Dayang Sumbi Lt 2 B
25	Riny Yolandha Parapat	Technische Universität Berlin (TU-Berlin), Berlin, Germany	Green Transportation	13.15	
26	Erwin Yuniar Rahadian	Institut Teknologi Nasional Bandung	Green Building	13.30	
27	Ardhiana Muhsin Machdi	Institut Teknologi Nasional Bandung	Green Building	13.45	
28	Tiara Anantika	Institut Teknologi Nasional Bandung	Green Building	14.00	
29	Wahyudi	Institut Teknologi Nasional Bandung	Green Building	14.15	
30	Dwi Prasetyanto	Institut Teknologi Nasional Bandung	Green Transportation	14.30	
31	Fred Soritua RUDIYANTO Manurung	Institut Teknologi Bandung	Green Transportation	14.45	
32	Tarsisius Kristyadi	Institut Teknologi Nasional Bandung	Green Transportation	15.00	
33	Tarsisius Kristyadi	Institut Teknologi Nasional Bandung	Green Transportation	15.15	
34	Reza Phalevi	Institut Teknologi Nasional Bandung	Green Building	15.30	
35	Hendro Prasetyo	Institut Teknologi Nasional Bandung	Green Building	15.45	
36	Ratna Agustina	Institut Teknologi Nasional Bandung	Green Transportation	16.00	

37	Jatmiko Wahyudi	Regional Development Planning Agency	Sustainability Environment	13.00	GSG Bale Dayang Sumbi Lt 1 (B)
38	Desti Santi Pratiwi	Institut Teknologi Nasional Bandung	Sustainability Environment	13.15	
39	Nguyen Thi Kim Oanh	Asian Institute of Technology (AIT)	Sustainability Environment	13.30	
40	Agung Pramudya Wijaya	Institut Teknologi Nasional Bandung	Sustainability Environment	13.45	
41	Edi Wahyu Wibowo	Politeknik LP3I Jakarta	Sustainability Environment	14.00	

No.	Name	Institution	Paper Topic	Presentation Time	Place
42	Taufan Hidjaz	Institut Teknologi Nasional Bandung	Sustainability Environment	14.15	
43	Elvira Rizqita Utami	Institut Teknologi Nasional Bandung	Sustainability Environment	14.30	
44	Farah Fauzia Raihana	Institut Teknologi Nasional Bandung	Sustainability Environment	14.45	
45	Byna Kameswara	Institut Teknologi Nasional Bandung	Sustainability Environment	15.00	
46	Ajeng Alya Hidrijanti	Institut Teknologi Nasional Bandung	Sustainability Environment	15.15	
47	Fenty Wastika Sari	Institut Teknologi Nasional Bandung	Sustainability Environment	15.30	
48	Yudi Adi Pratama	Institut Teknologi Nasional Bandung	Sustainability Environment	15.45	
49	Jono Suhartono	Institut Teknologi Nasional Bandung	Sustainability Environment	16.00	
50	Iredo Bettie Puspita	Institut Teknologi Nasional Bandung	Sustainability Environment	16.15	
51	Ronny Kurniawan	Institut Teknologi Nasional Bandung	Sustainability Environment	16.30	
52	Yulianti Pratama	Institut Teknologi Nasional Bandung	Sustainability Environment	16.45	
53	Maya Ramadianti Musadi	Institut Teknologi Nasional Bandung	Sustainability Environment	17.00	
54	Maya Ramadianti Musadi	Institut Teknologi Nasional Bandung	Sustainability Environment	17.00	
55	Soni Darmawan	Institut Teknologi Nasional Bandung	Sustainability Environment	17.15	
56	Soni Darmawan	Institut Teknologi Nasional Bandung	Sustainability Environment	17.30	
57	Rika Hernawati	Institut Teknologi Nasional Bandung	Sustainability Environment	17.45	
58	Ida Wati	Institut Teknologi Nasional Bandung	Sustainability Environment	18.00	
59	Caecilia Sri Wahyuning	Institut Teknologi Nasional Bandung	Sustainability Environment	18.15	
60	Fifi Herni Mustofa	Institut Teknologi Nasional Bandung	Sustainability Environment	18.30	
61	Enni Lindia Mayona	Institut Teknologi Nasional Bandung	Sustainability Environment	18.45	
62	Maharani Dian Permanasari, M. Ds., PhD.	Institut Teknologi Nasional Bandung	Green Design	13.00	GSG Bale Dayang

No.	Name	Institution	Paper Topic	Presentation Time	Place
63	Ibrahim Hermawan	Institut Teknologi Nasional Bandung	Green Design	13.15	Sumbi Lt 2 A
64	Maugina Rizki Havier	Institut Teknologi Nasional Bandung	Green Design	13.30	
65	Dwi Novirani	Institut Teknologi Nasional Bandung	Green Design	13.45	
66	Mohamad Arif Waskito	Institut Teknologi Nasional Bandung	Green Design	14.00	
67	Edi Setiadi Putra	Institut Teknologi Nasional Bandung	Green Design	14.15	
68	Sulistyo Setiawan	Institut Teknologi Nasional Bandung	Green Design	14.30	
69	Edwin Widia	Institut Teknologi Nasional Bandung	Green Design	14.45	
70	Agung Pramudya Wijaya	Institut Teknologi Nasional Bandung	Green Design	15.00	
71	Gita Permata Liansari	Institut Teknologi Nasional Bandung	Green Design	15.15	
72	M. Djalu Djatmiko	Institut Teknologi Nasional Bandung	Green Design	15.30	
73	Detty Fitriany	Institut Teknologi Nasional Bandung	Green Design	15.45	
74	Andri Masri	Institut Teknologi Nasional Bandung	Green Design	16.00	
75	Aditya Januarsa	Institut Teknologi Nasional Bandung	Green Design	16.15	
76	Bambang Arief Ruby,	Institut Teknologi Nasional Bandung	Green Design	16.30	

FOREWARD

Welcome to the 1st International Conference on Green Technology and Design. This conference takes place in Bandung, 4th December 2019 and become our first international conference in green technology and design.

It is our responsibility to contribute in the national development and sustainability, the Institut Teknologi Nasional (Itenas) Bandung through its Lembaga Penelitian dan Pengabdian kepada Masyarakat (LP2M) conducts this conference and draws upon the expertise of wide range of knowledge.

The ICGTD 2019 conference aims to promote research in the field of Green Energy, Green Building Green Automation, Green Transportation, Sustainability Environment, Green IT and Green Design, and to facilitate the exchange of new ideas in these fields among academicians, engineers, junior and senior researchers, scientists and practitioners. It also includes the plenary, keynote and invited speakers.

On behalf of Organizing Committee, it is a great pleasure to welcome you in Itenas Bandung and look forward to meeting you at ICGTD2019.

Warm regards,

A handwritten signature in blue ink, appearing to read "Nurtati Soewarno".

Chair
Dr. Ir. Nurtati Soewarno M.T.

TABLE OF CONTENT

ORGANIZING COMMITTEE	i
RUNDOWN ICGTD	iii
PRESENTATION SCHEDULE	iv
FOREWARD	ix
TABLE OF CONTENT	x

Green Automation

1. Multimode Ultrasound Cleaner Design for Green Extraction Food Processing [Florentinus Budi Setiawan, Probo Y. Nugrahedi]	1
2. Development of Digital Simulation of Intelligent Electronic Devices Operating Platform for Digital Substation: An Overview [Lakshmanan Gurusamy, Yanuar Z. Arief, Mohd Hafiez Izzwan Saad]	5
3. IoT Thingspeak for Miniature Smart Grid Monitoring System [Waluyo, Charly Maulana Khafi, Febrian Hadiatna, Andre Widura]	11

Green Energy

4. Performance Analysis of comparison the conventional and Myring blade for n = 1 on the Savonius Current Turbine By Using CFD Approach [Priyo Agus Setiawan, Nopem Ariwyono, Rini Indarti]	16
5. Video Communication System Using LASER [Lita Lidyawati, Lucia Jambola, Arsyad Ramadhan Darlis]	20

Green IT

6. Lexicon-Based Sentiment Analysis For Analyzing Situational Variables [Dewi Rosmala, Hafidz Dayu Aditya]	24
7. Implementation of Template Matching Correlation Method in the Conversion System of Ancient Greek Letter Image into Modern Latin Letters [Rifqi Finaldy, Jasman Pardede, Irma Amelia]	29

Green Transportation

8. Production of Nano Asphalt Emulsion from Asbuton with Microemulsion Method [Riny Yolandha Parapati, Imam Aschuri, Reinhard Schomäcker]	39
---	----

9.	Prioritization of Road Accident Factors in Indonesia Using Combination of Delphi Method and Analytical Hierarchy Process	45
	[Dwi Prasetyanto, Andrean Maulana]	
10.	Rural Vehicle for Agricultural Community Function in information Society Era	50
	[Fred Soritua Rudiyanto Manurung, Agus Sachari, Setiawan Sabana]	
11.	Analysis of Stress Against Airflow on Electric Car Bodies	55
	[Tarsisius Kristiyadi, Alfian Eric Oktavianto, Fery Hidayat]	

Sustainability Environment

12.	Health Examinaton Facility Design Mobile For Elderly	64
	[Hendro Prassetyo, Ardiya Ash Shidiq, Arie Desrianty, Lauditta Irianti]	
13.	Numerical Model on 3D Finite Element Method on Slope Stability with Tyre Wall System in Road Slopes Reinforcement, West Papua	69
	[Indra Noer Hamdhan, Desti Santi Pratiwi, Acep Reno Juniandri]	
14.	Regional simulation of surface ozone over Southeast Asia	75
	[Nguyen Thi Kim Oanh, Didin Agustian Permadi]	
15.	Cymbalum Musical Instrument Design by Using Wasted Cans as Main Material	78
	[Agung Pramudya Wijaya].....	
16.	Mapping the Potential of Green Economic Development Jakarta City Based on Green GRDP	81
	[Edi Wahyu Wibowo]	
17.	The Symbolic Meaning of Mosque Architecture and Interior as Adaptation to the Residential Environment, in the Social, Economic and Cultural Contexts in Lombok	86
	[Taufan Hidjaz, Nurtati Soewarno, Detty Fitriany]	
18.	Study Program Levels of Community Participation in Waste Management of Waste Bank Programs in Tani Mulya and Langensari Villages Bandung Barat District	102
	[Adi Yudi Pratama, Iwan Juana]	
19.	A Study of Using Membranes Carbon Nanotubes Integrating with Ozone for Reducing Natural Organic Matter (NOM) Jatiluhur Dam	108
	[Jono Suhartono, Arnia Shintya, Imat Nur Alim]	
20.	Study of Several Natural Adsorbents Performance in Ethanol Purification through Distillation Process - Continuous Dehydration	114
	[Ronny Kurniawan, Yulianty Pratama, F.N. Hidayah, D. Asriyanti, Salafudin] ...	
21.	Tubular Celulotic biofilm production in double Chamber Reactor	120
	[Yulianty Pratama, Amira Zakia Lutfi, Salafudin]	

22. Investigation of PM10 Based On Landsat 8 Over Urban Area And Correlated With Ground Measurement [Rika Hernawati, Soni Darnawan]	124
23. Human Error Contributions to Potential Incident in Laboratories at Institut Teknologi Nasional [Caecilia Sri Wahyuning]	128
24. Mathematical Modeling of Green Capacitated P-Centre Problem using Mixed Integer Linear Programming [Fifi Herni MUSTOFA, Yoanita Y. Mukti, Arief Irfan Syah Tjaja]	132
25. Accuracy Analysis of Aerial Photography Using PhotoModeler UAS and Agisoft PhotoScan [Soni Darnawan, Rino Erviana, Anggun Tridawati]	136
26. Estimation of Mangrove Biomass Parameters Using Aerial Photography [Soni Darnawan, B. Heriyanto Aditya Gunawan, Anggun Tridawati]	139

Green Design

27. Eco-Design Packaging for Sustainable Farming Products [Maharani Dian Permanasari]	144
28. Application of Design and Development of Pine Waste (Cone) Pine for Construction Materials Interior Building and Furniture [Ibrahim Hermawan]	146
29. Utilization Of Corkwood Fabric In The Making Of “Corkseat” With Surface Mimicry Concept [Maugina Rizki Havier]	153
30. Initial Design of Cisumdawu Toll Rest Area [Dwi Novirani, Arief Irfansyah Tjaja, Dida Firdaus]	156
31. Parchment Skin: Alternative Materials for Manufacturing Environmentally Friendly Products [Mohamad Arif Waskito]	160
32. The Souvenir of Bebegig Sukamantri for Tourism Development in West Java [Edi Setiadi Putra]	166
33. The Learning Medium Design of Creative Literacy for 4-6 Years Old Kids Based on Used Oil Bottle Exploration [Sulistyo Setiawan]	171
34. Optimizing learning facility on Interior Design Basic level Education [Edwin Widia]	175
35. Design of Train Passenger Seat Economic Class using House of Ergonomic (HoE)	

[Gita Permata Liansari, Arie Desrianty, M. Irfan Nurmawan] 182

36. Developing Web Based Employee Saving and Loan Cooperative's Sistem Information
[Achmad Hizazi, Salman Jumaili] 187

37. K-Means Algorithm for Monitoring The Existence Of Student In Class
[Yusup Miftahuddin, Irma Amelia Dewi, Asril Arbani Hamka] 195

Multimode Ultrasound Cleaner Design for Green Extraction Food Processing

Florentinus Budi Setiawan

Electrical Engineering

Soegijapranata Catholic University

Semarang, Indonesia

fbudisetiawan@yahoo.com

Probo Y. Nugrahedi

Food Technology

Soegijapranata Catholic University

Semarang, Indonesia

probo@unika.ac.id

Abstract—Many alternative methods which are often referred to as green methods have several advantages when compared to conventional methods. Some of these advantages are the use of fewer solvents, shorter extraction times, and their application can be carried out at lower temperatures. These advantages will produce bioactive compounds in large quantities without destroying biological activities. In addition, alternative methods are also better at isolating the desired compound and reducing the formation of unwanted byproducts and reactions. Some of the advantages of the green method are the use of fewer solvents, shorter extraction times, and their application can be carried out at lower temperatures. These advantages will produce bioactive compounds in large quantities without destroying biological activities. The advantage of the ultrasonic extraction is the use of low temperatures. Also as to maintain perishable compounds with high temperatures and prevent overall structural damage. The equipment designed consists of several parts, each of which is designed according to needs. The parts are signal-generator, system settings and modes, power booster, ultrasonic transducer and tank. The setting system functions to adjust the frequency, power gain and pre-set modes. Installed modes consist of ON-OFF mode, Alternate Frequency mode, Alternate Power and a combination of frequency and power. Sonic electronic control system that is designed consists of a signal generator with a variable frequency. The signal generator output is fed to an amplifier whose gain is variable, so there is a combination of frequency and amplitude that can be adjusted. After the frequency and amplitude are set, it is then fed to a power amplifier that will drive the transducer with a fixed frequency and amplitude, with enough power. The controller functions to regulate the voltage, frequency and stability of the system. The installed mode that was previously set is saved in the control system. The sonication system is designed to have an ultrasonic frequency range from 20 kHz to 100 kHz with pre-set and self-regulated modes based on previous experiments.

Keywords—ultrasonic, seaweed, frequency, multimode, cleaning

I. INTRODUCTION

Products with various contents of bioactive compounds are experiencing an increase in the number of enthusiasts because of its potential in improving health. One such product is seaweed, which in addition to consumption, can also be used as a functional product because of its bioactive compound content [1]. Seaweed has been used as a source of food since 3000 BC. In addition, seaweed can also be used as medicine [2]. Now, seaweed has become part of daily food, especially in countries in East Asia. Seaweed environmental

conditions are classified as extreme so that seaweed has a self-protection mechanism in the form of secondary metabolite production that has the ability of bioactivity [3]. Some of these bioactivity abilities are anti-aging, antioxidant, antimicrobial, anti-poliferative, anti-inflammatory, antidiabetic, and neuroprotective activity [4]. Seaweed antioxidant sources come from the polyphenol content, especially phlorotannin. Phlorotannin is the largest polyphenol group in brown seaweed formed from several phloroglucinol units[5].Bioactive compounds in seaweed can be extracted with conventional methods and with new alternative methods. Conventional methods include extraction using Soxhlet, solid-liquid extraction, and liquid-liquid extraction. The disadvantages of conventional methods are the use of too many and often toxic solvents and long extraction times [6].

Meanwhile, alternative methods which are often referred to as green methods have several advantages when compared to conventional methods. Some of these advantages are the use of fewer solvents, shorter extraction times, and their application can be carried out at lower temperatures. These advantages will produce bioactive compounds in large quantities without destroying biological activities. In addition, alternative methods are also better at isolating the desired compound and reducing the formation of unwanted byproducts and reactions [7].

Aim of this research is design a sonication system that suitable for several kind of food, especially for seaweed. The equipment have to set with different frequency, amplitude and presentable mode.

II. ULTRASOUND EXTRACTION

A. Green Extraction Method

An extraction method can be called a green method if it fulfills some of the principles below [8]. These principles are not rules but innovative examples that can be followed.

1. Innovation using alternative resources from plants
2. Use alternative water-based or agro-solvents
3. Reduce energy consumption with innovative technology
4. Reduce waste production
5. Reduce operating units and use safe and controlled processes

6. Leads to extracts that are not denatured and biodegradable and without contaminants

Some of the advantages of the green method are the use of fewer solvents (usually able to achieve a ratio of materials and solvents of 1: 100 for conventional methods) [9], shorter extraction times, and their application can be carried out at lower temperatures. These advantages will produce bioactive compounds in large quantities without destroying biological activities. In addition, alternative methods are also better at isolating the desired compound and reducing the formation of unwanted byproducts and reactions [10].

B. Ultrasound Assisted Extraction

UAE is an extraction method that is assisted by the use of ultrasonic waves. Ultrasonic waves are waves with frequencies above the human hearing capacity that is between 20 kHz to 100 kHz [11]. Unlike electromagnetic waves, ultrasonic waves are mechanical waves that can penetrate solid, gas and liquid media. When passing through the liquid media, the waves will cause negative pressure in the liquid. Then if the pressure exceeds the tensile strength (tensile strength) of the liquid, bubble formation will occur. Cavitation or bursting of bubbles can occur when bubbles are in high ultrasonic fields [12]. As a result of cavitation is the rupture of particles so that it helps the release of bioactives from the biological matrix. This increases the efficiency of extraction due to an increase in mass transfer by an internal diffusion mechanism [13].

Ultrasonic devices that can be used for extraction are divided into 2 types namely ultrasonic water bath (indirect sonification) and ultrasonic probes (direct sonification). The difference between the two is the operating conditions and how ultrasonic waves affect the sample. For ultrasonic water baths, they usually operate at a frequency of 40-50 kHz and at a power of 50-500 W and the sample is submerged in an ultrasonic bath. Whereas ultrasonic probes usually operate at a frequency of 20 kHz only and the sample is not submerged, but the probe is submerged in the sample.

The advantage of the UAE is the use of low temperatures so as to maintain perishable compounds with high temperatures and prevent overall structural damage). In addition, the UAE can use a variety of solvents that are only needed in small amounts so that they are environmentally friendly. When compared with conventional methods, the time required for extraction with ultrasonic is less and the yield produced is more so that the extraction runs efficiently. Then the costs needed for the tools tend to be smaller than other alternative methods.

C. UAE Application

The large ultrasonic cleaner is a wonderful industrial ultrasonic parts cleaner tank. It has very wide applications both in commercial and industrial parts cleaning and degreasing. Especially for massive cleaning work the production lines in factories. In general, there are specific applications as follows. Commercial Large Ultrasonic Parts Cleaner including musical instruments and lab equipment such as laboratory instruments and glassware cleaning. And medical instruments cleaning in hospitals. And it is a wonderful large ultrasonic parts cleaner for golf clubs. In Electronic and Optical Industry, producing the PCB circuit board, PC motherboard and optical parts cleaning. In Auto Parts Cleaner for automotive Maintenance, Ultrasonic is

using for parts cleaner of carburetors, engine parts, fuel injectors, filters and diesel injectors. Ultrasonic also applied on Gun Parts Cleaner for weapons production. It is good for cleaning various gun parts, such as pistol parts, rifle parts, and bullets cleaning. Hardware Industrial Cleaning and Parts Degreasing use ultrasonic for precision bearing parts, sealing parts, machine tool accessories cleaning, etc.

Application of UAE use for extraction of bioactive compounds from seaweed showed that it is usually used mainly for the extraction of polyphenolic compounds. The samples used were seaweed consisting of several species including *Hormosira banksii*, *Ascophyllum nodosum*, *Laminaria hyperborea*, *Ecklonia cava*, *Sargassum muticum*, *Codium tomentosum*, *Osmundea pinnatifida*, and *Laurencia obtuse*.

From some of the literature obtained, it can be seen that the ultrasonic frequencies that are often used are in the range of 20-50 KHz. While the variation of the power used ranges from 150 to 750 watts. Extraction of polyphenol compounds from brown seaweed *Hormosira banksii* was reported by Dang et al., (2017). The parameter conditions observed were frequency of 50 kHz, power of 150-250 W, use of 70% ethanol by 50 mL, temperature of 30-50 °C and extraction time for 20-60 minutes. From these various parameter conditions, the optimum yield of polyphenols of 23.12 ± 1.01 mg / g db was obtained using a power of 150 W, a temperature of 30 °C and an extraction time of 60 minutes.

Kadam et al., (2014) reported the extraction of various bioactive compounds such as polyphenols, phosocytines, and ionic acid in brown seaweed species *Ascophyllum nodosum*. The parameter conditions used were a frequency of 20 kHz, a power of 750 W, the use of a distilled water and HCl 0.03 M of 40 ml and an extraction time of 25 minutes. In the literature, there is no mention of the temperature used. Under these parameter conditions, the optimum yield of polyphenols, phosocytines, and ionic acids was 139.73 mg GAE / g db; 86.63 mg / g db; 117.44 mg / g db. The solvent used to produce the optimum yield is 0.03 M HCl.

Two species of brown seaweed, *Ascophyllum nodosum* and *Laminaria hyperborea*, were observed by Kadam et al. (2015) to determine which species produced the largest yield of polyphenol and laminarin. The parameter conditions used are the same for both species, namely frequency of 20 kHz, power of 750 W, use of solvents in the form of 200 mL aquades and 0.03 M HCl and extraction time for 15 minutes. In that study, there was no mention of the extraction temperature used.

Of the two species observed, the optimum yield of polyphenols and laminarin was found in *Laminaria hyperborea* of 0.365 ± 0.039 mg / PGE db and 6.240 ± 0.008 db. The results were obtained using 0.03 M HCl as a solvent. Whereas with the same parameter conditions, the optimum yield of polyphenols and laminarin in *Ascophyllum nodosum* species was 0.156 ± 0.014 mg / PGE db and 5.822 ± 0.343 db.

III. METHOD

The equipment designed consists of several parts, each of which is designed according to needs. The parts are:

- Signal generator

- System settings and modes
- Power booster
- Ultrasonic Transducer
- Tank

The function of each system can be described as follows. The signal generator is designed to generate sinusoidal signals with frequencies that vary from below 20 kHz to 100 kHz. Frequency is generated by sinusoids which are near pure with constant amplitude. The frequency is regulated by the system settings provided to the operator and comes from automatic mode with a predetermined pattern.

The setting system functions to adjust the frequency, power gain and pre-set modes. Installed modes consist of ON-OFF mode, Alternate Frequency mode, Alternate Power and a combination of frequency and power. The power amplifier functions to produce a signal with a larger current for the ultrasonic transducer. Large power is needed to produce ultrasonic vibrations that will produce the expected amount of bubbles. Ultrasonic transducer functions to produce vibrations with frequencies that are in accordance with predetermined settings. The resulting vibration must be able to vibrate like a container, so as to produce enough bubbles. The reservoir is made of stainless steel which is able to vibrate with ultrasonic frequencies. The thickness of the material is designed so that the power transmitted through the transducer can vibrate the body wall.

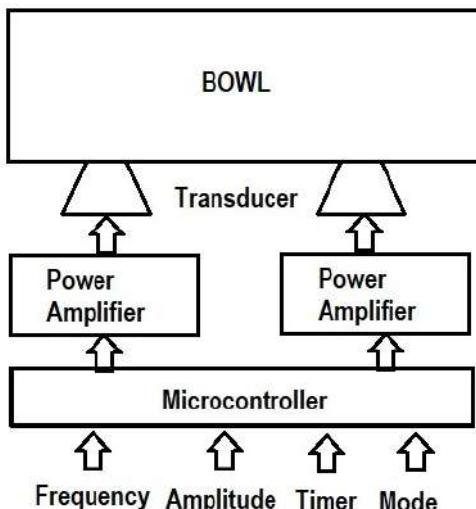


Fig. 1. Sonication System

Yakut et.al se power unit to produces an amplitude-modulated signal across the transducers, where envelope of the modulated signal has 100 Hz, but the carrier frequency is 28 KHz. The maximum voltage observed across the transducers on their experiment is about 600Vpp. Dynamic range of voltage value changes between 500V and 600V during cleaning operation [14].

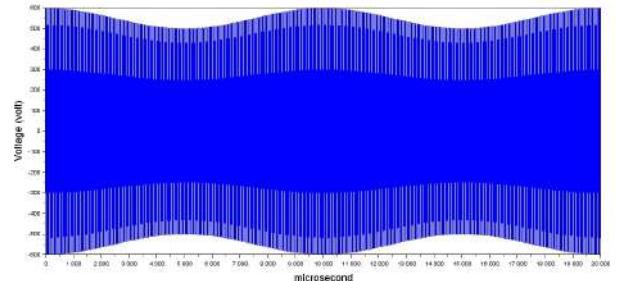


Fig. 2. Amplitude Modulation Sonication System

Sonic electronic control system that is designed consists of a signal generator with a variable frequency. The signal generator output is fed to an amplifier whose gain is variable, so there is a combination of frequency and amplitude that can be adjusted. After the frequency and amplitude are set, it is then fed to a power amplifier that will drive the transducer with a fixed frequency and amplitude, with enough power. The controller functions to regulate the voltage, frequency and stability of the system. The installed mode that was previously set is saved in the control system.

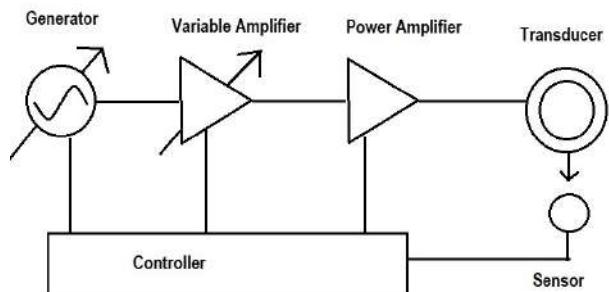


Fig. 3. Electronic Control System

The automatic mode provided can be set or the existing mode. The following are examples of the modes installed in the system. ON-OFF mode will produce a signal with a frequency of 28 kHz which will be active periodically every one millisecond. Alternate frequency mode will produce outputs with frequencies that alternate between 20 kHz and 40 kHz. Power alternate mode will produce power mode which alternates between full and half power mode.

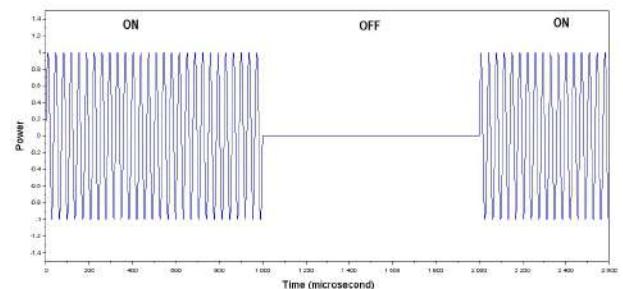


Fig. 4. On Off Mode

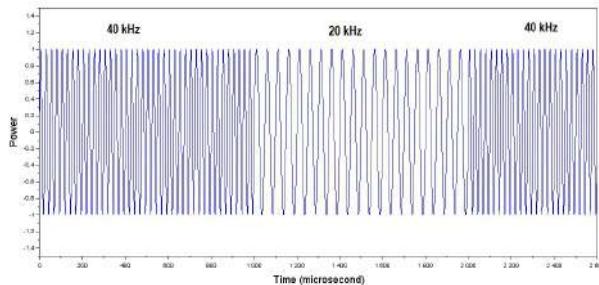


Fig. 5. Alternate Frequency Mode

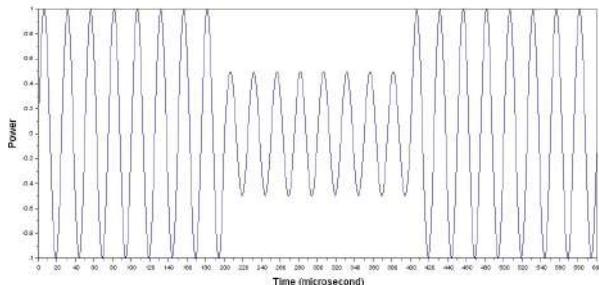


Fig. 6. Alternate Power Mode

IV. CONCLUSION

The sonication system is designed to have an ultrasonic frequency range from 20 kHz to 100 kHz with pre-set and self-regulated modes based on previous experiments. Mode of sonication design can be set based on seaweed characteristics. Signal processing can be applied to controller in order to obtain optimum cleaning for seaweed before further process.

ACKNOWLEDGMENT

This research obtains fund competitive grants from the Higher Education, Ministry of Research and Higher Education, Indonesia 2019 fiscal year and is part of the research of sonication method for food processing

REFERENCES

- [1] Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed : functional food applications and legislation. *Journal of Applied Phycology*, 23, 543–597. <https://doi.org/10.1007/s10811-010-9632-5>
- [2] Pal, A., Kamthania, M. C., & Kumar, A. (2014). Bioactive Compounds and Properties of Seaweeds — A Review. *Open Access Library Journal*, 1–17. <https://doi.org/10.4236/oalib.1100752>

- [3] Jithesh, M. N., Rayorath, A. P., Hodges, A. D. M., Critchley, A. T., Craigie, A. J. S., & Norrie, A. J. (2009). Seaweed Extracts as Biostimulants of Plant Growth and Development. *Journal of Plant Growth Regul*, 28, 386–399. <https://doi.org/10.1007/s00344-009-9103-x>
- [4] Wang, H. D., Li, X., Lee, D., & Chang, J. (2017). Potential biomedical applications of marine algae. *Bioresource Technology*, (May). <https://doi.org/10.1016/j.biortech.2017.05.198>
- [5] Eom, S. H., Kim, Y. M., & Kim, S. K. (2012). Antimicrobial effect of phlorotannins from marine brown algae. *Food Chem Toxicol*, 50(9), 3251–3255. <https://doi.org/10.1016/j.fct.2012.06.028>
- [6] Kadam, Shekhar Umakantrao, Tiwari, B. K., & Donnell, C. P. O. (2013). Application of novel extraction technologies for extraction of bioactives from marine algae School of Biosystems Engineering , Agriculture and Food Science Centre , University College Dublin , *Journal of Agricultural and Food Chemistry*. <https://doi.org/10.1021/jf400819p>
- [7] Duarte, K., Justino, C. I. L., Gomes, A. M., & Rocha-santos, T. (2014). Green Analytical Methodologies for Preparation of Extracts and Analysis of Bioactive Compounds. *Analysis of Marine Samples in Search of Bioactive Compounds* (Vol. 65). Elsevier B.V. <https://doi.org/10.1016/B978-0-444-63359-0.00004-5>
- [8] Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green Extraction of Natural Products : Concept and Principles. *International Journal of Molecular Sciences*, 13, 8615–8627. <https://doi.org/10.3390/ijms13078615>
- [9] Lee, S., Kang, M., Moon, S., Jeon, B., & Jeon, Y. (2013). Potential use of ultrasound in antioxidant extraction from *Ecklonia cava*. *Algae*, 28(4), 371–378.
- [10] Duarte, Kátia, Justino, C. I. L., Pereira, R., Freitas, A. C., Gomes, A. M., Duarte, A. C., & Rocha-santos, T. A. P. (2014). Trends in Environmental Analytical Chemistry Green analytical methodologies for the discovery of bioactive compounds from marine sources. *Trends in Environmental Analytical Chemistry*, 3–4, 43–52. <https://doi.org/10.1016/j.teac.2014.11.001>
- [11] Kadam, Shekhar U., Tiwari, B. K., Smyth, T. J., & Donnell, C. P. O. (2014). Optimization of ultrasound assisted extraction of bioactive components from brown seaweed *Ascophyllum nodosum* using response surface methodology. *ULTRASONICS SONOCHEMISTRY*. <https://doi.org/10.1016/j.ulsonch.2014.10.007>
- [12] Luque-García, J. L., & Luque De Castro, M. D. (2003). Ultrasound: A powerful tool for leaching. *TrAC - Trends in Analytical Chemistry*, 22(1), 41–47. [https://doi.org/10.1016/S0165-9936\(03\)00102-X](https://doi.org/10.1016/S0165-9936(03)00102-X)
- [13] Vilku, K., Manasseh, R., Mawson, R., & Ashokkumar, M. (2011). Ultrasound Technologies for Food and Bioprocessing, 345–368. <https://doi.org/10.1007/978-1-4419-7472-3>.
- [14] Yakult, M., Tangel, A., Tangel, C., (2009). A Microcontroller Based Generator Design for Ultrasonic Cleaning Machines, *Journal of Electrical and Electronics Engineering*, Instanbul University, Vol.9 Number 1, pp.853-860.

SURAT TUGAS

Nomor : 00433/B.8.10/ST.FTP/02/2021

Ketua Program Studi Fakultas Teknologi Pertanian Universitas Katolik Soegijapranata, Semarang dengan ini memberikan tugas kepada :

Nama : **Dr. R. Probo Y. Nugrahedi STP., MSc.**

Status : Dosen Fakultas Teknologi Pertanian, Universitas Katolik Soegijapranata, Semarang.

Tugas : Sebagai Penulis Pendamping (co.Author) artikel “Multimode Ultrasound Cleaner Design for Green Extraction Food Processing” untuk prosiding pada International Conference on Green Technology and Design.

Waktu : 4-5 Desember 2019

Lain-lain : Harap melaksanakan tugas dengan sebaik-baiknya dan penuh tanggung jawab, serta memberikan laporan setelah selesai melaksanakan tugas.

