



**INTERNATIONAL CONFERENCE ON  
FOOD SCIENCE AND TECHNOLOGY**

**THE CHALLENGE OF  
UNIVERSAL FOOD QUALITY AND  
SAFETY REGIME**

THEATRE ROOM,  
3<sup>RD</sup> FLOOR OF  
THOMAS AQUINAS BUILDING,  
SOEGIJAPRANATA  
CATHOLIC UNIVERSITY,  
SEMARANG, INDONESIA

ON:  
THURSDAY AND FRIDAY,  
31 JULY AND 1 AUGUST 2008

**PROCEEDING  
BOOK**

**ISBN : 978-979-1268-36-3**



**UNIKA**  
UNIVERSITAS KATOLIK  
SOEGIJAPRANATA

Jl. Prawiyatan Luhur IV/1 Bendan Duwur Semarang 50234  
Telp. 024-8441555 (hunting) Fax. 024-8445265, 8415429  
e-mail : unika@unika.ac.id http://www.unika.ac.id



## P R E F A C E

Food quality and safety is nowadays not just the main concern in every stage of food chain, but is likely a new stage in food culture. Food scientist, food technologists, food industry, as well as business communities and the governmental bodies are challenged not just to care of, but to guard the new era of man-kind culture on food. For this the faculty of Agricultural Technology, Soegijapranata Catholic University invites food communities all over the world to share their ideas, research findings as well as opinions in the International Conference on Food Science and Technology, to welcome "The Challenge of Universal Food Quality and Safety Regime".

The conference successfully gathering about 100 papers, presented by more than 7 countries in two days. This proceeding brings together these papers, organized in two presentation schemes :

A. Oral, covering of 6 topics :

1. Food Supply Chain Diversify
2. Food Processing and Engineering
3. Food Microbiology and Biotechnology
4. Food Marketing and Quality Management
5. Nutritional and Functional Food
6. Food Safety and Quality

B. Poster, followed by 34 papers

In order to response the newest trend on food quality and safety regime, the conference also organized 6 plenary presentation focusing on "The Challenge of Universal Food Quality and Safety Regime". The organizing committee is grateful to all honorable speakers, participants and sponsors, for joining this gathering and for their valuable contribution on the conference.

Semarang, August 2008

Editors :

Sumardi

Angelika Riyandari

Ch.Retnaningsih

Budi Widianarko

Kristina Ananigsih

Lindayani

Probo Y. Nugraheni

International Conference on Food Science and Technology

"The Challenge of Universal Food Quality and Safety Regime"

Department of Food Technology, Soegijapranata Catholic University, July 31 and August 1, 2008

## PLENARY SESSION

| TITLE / AUTHOR                                                                                                                                                                                                                                                                                           | CODE    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <p>Seeking for a Balance between Food Industry and Consumer in Meeting Food Safety and Quality Standards<br/> <b>Prof. Dr. Ir. H. Dedi Fardiaz, MSc.</b><br/> <i>Deputy Director for Food Safety and Hazardous Substance Control National Agency for Drug and Food Control Republic of Indonesia</i></p> | PS - 01 |
| <p>Food Packaging Waste in Indonesia: Is Extended Producer Responsibility (EPR) Feasible?<br/> <b>Prof. Dr. Ir. Budi Widianarko, MSc.</b><br/> <i>Department of Food Technology, Soegijapranata Catholic University (UNIKA) Semarang, Indonesia</i></p>                                                  | PS - 02 |
| <p>Genetically Modified Crops and Their Risk Assessment<br/> <b>Prof. Nico van Straalen</b><br/> <i>Vrije Universiteit Amsterdam</i></p>                                                                                                                                                                 | PS - 03 |
| <p>Advancement in Flavour Technology as a Response to Wellness Trends<br/> <b>Ed Alejandrino</b><br/> <i>VP Flavor Regional Sales Asia Pasific / President Director PT Firmenich Indonesia</i></p>                                                                                                       | PS - 04 |
| <p>Food for Medicine : Exploration Beyond Quality and Safety<br/> <b>Prof. Dr. Muhamad Bin Zakaria</b><br/> <i>Division of Biohealth Sciences, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia</i></p>                                                | PS - 05 |
| <p>Indonesian Traditional Nutraceuticals : Perspective from the "Jamu" Producer<br/> <b>Dewita Agus</b><br/> <i>PT. Mustika Ratu, Tbk. : Manufacturer of Jamu And Traditional Cosmetic</i></p>                                                                                                           | PS - 06 |

## NUTRITION AND FUNCTIONAL FOOD

| TITLE / AUTHOR                                                                                                                                                                                                                                                                                       | CODE     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Activity of DPPH (1,1-Diphenyl-2-Picrylhidrazyl) Free Radical Scavenger by Some Indonesia Tea Bags<br><i>Nana S. Achyadi, Dadan Rohdiana</i>                                                                                                                                                         | NFF - 02 |
| Application of Computational Chemistry Method to Study the Relative Antioxidant Efficiency of a Large Series of Carotenoids<br><i>Zaky Al-Fatony, Hanggara Sudrajat, Bongkot Pipoosananakaton, Sudarath Veravong, Nathaya Selphusit</i>                                                              | NFF - 05 |
| The Using of Red Betel as a Natural Antioxidant<br><i>Rifda Naufalin, Erminawati</i>                                                                                                                                                                                                                 | NFF - 06 |
| Diet Food Formula for Children Suffering Severe Malnutrition during Stabilization Phase<br><i>Astuti Lamid</i>                                                                                                                                                                                       | NFF - 07 |
| Red Palm Oil, an Effort for Saving Functional Properties of Palm Oil (a Review)<br><i>F. Ayustaningworno</i>                                                                                                                                                                                         | NFF - 08 |
| The Nutritional Composition of <i>Garcinia atroviridis</i> Leaves and its Antioxidant Availability throughout Extraction and Drying Process<br><i>Nursakinah I., Zulkhairi A., Hasnah B., Kamilah KAK., Fazali FMN., Khairunnuur A., Kamal NHM., Taufik HBM., Aris MM., Zamree MS., Shahidan MA.</i> | NFF - 09 |
| Nutritional Composition, in Vitro Antioxidant Activity and <i>Artemia salina</i> L. Lethality of Pulp and Seed of <i>Tamarindus indica</i> L. Extracts<br><i>Khairunnuur F.A., Zulkhairi A., Hasnah B., Khairul Kamilah A.K., Fazali F., M. Kamal N.H., Sakinah I.</i>                               | NFF - 10 |
| Effectiveness of Bio-Iodine and Need for Nutrigenomic Approach<br><i>Komari, Astuti Lamid, Adini Alvina</i>                                                                                                                                                                                          | NFF - 11 |
| Effects of <i>Tinospora crispa</i> Extract in Chickens Fed with High Polyunsaturated Fatty Acids (PUFAS) Diet<br><i>Hasnah B., Zulkhairi A., Loh L.L., Nursakinah I., Kamilah A.K., Fazali F., Kamal N.H., Khairunnuur A.</i>                                                                        | NFF - 12 |
| Javanese Diets Are Favored by FAO-stated Desirable Dietary Pattern Case Studies in District of Pemalang, Central Java, Indonesia<br><i>Ch. Retnaningsih, Sumardi</i>                                                                                                                                 | NFF - 14 |
| Effects of Corn-Added to Physical, Chemical, and Organoleptic Properties of Soy Milk<br><i>Amelia Anggreini, Angelia Dwi Lestiyani, Maria Matoetina Suprijono</i>                                                                                                                                    | NFF - 16 |

## FOOD MICROBIOLOGY AND BIOTECHNOLOGY

| TITLE / AUTHOR                                                                                                                                                                                                                       | CODE     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <p>The Survival of Probiotic <i>L.acidophilus</i> as a Starter In Fermented Goat's Milk During Refrigerated Storage<br/> <i>Antonia Nani Cahyanti, Anang Mohammad Legowo, Nurwantoro</i></p>                                         | FMB - 01 |
| <p>Proteolytic Activity Profiles of <i>Bacillus</i> Sp. Strains S2-3 and S4-5 Isolated from Terasi<br/> <i>Novi Arsfarita, Sarote Nitsawang, Shannaphimon Wongkam, Jutamart Monkai, Anchalee Khuangpet, Ekachai Chukeatirote</i></p> | FMB - 02 |
| <p>Assessment of Bacterial Populations in Discoloration Spoilage of Nata De Coco Using Amplified Ribosomal DNA Restriction Analysis (ARDRA)<br/> <i>Tan W.A., Yogiara, Suwanto A.</i></p>                                            | FMB - 06 |
| <p>Preliminary Studies for Producing Lipase from Tempe's Mould for Digestion Supplement<br/> <i>Teuku Beuna Bardant, Kiky Corneliasari Sembiring, Achmad Hanafi Setiawan, Fauzan Aulia</i></p>                                       | FMB - 07 |
| <p>Application of Computational Chemistry Method to Study The Antioxidant Activity of Curcumin<br/> <i>Syahrul Khairi, Hanggara Sudrajat, Pranyong Dongdee, Nathaya Selphusit, Mongkol Sukwattanasinitt</i></p>                      | FMB - 08 |
| <p>The Occurrence of Mycotoxicogenic Moulds in Cocoa Beans from Indonesia and Queensland, Australia<br/> <i>Anton Rahmadi, Graham H. Fleet</i></p>                                                                                   | FMB - 10 |

## FOOD PROCESSING AND ENGINEERING

| TITLE / AUTHOR                                                                                                                                                                                                                      | CODE     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Optimization of GCWS Sago Starch Prepared by Alcoholic-Alkaline Treatment<br><i>Jau-Shya Lee, Kuan Yau Hoong, Aishah Bujang</i>                                                                                                     | FPE - 04 |
| Effect of Combination Egg White Powder With Tapioca and Sago Flour on The Quality of Duck Sausages<br><i>Muthia Dewi, Nurul Huda, Noryati Ismail</i>                                                                                | FPE - 06 |
| Effect of Precooling Treatment and Storage Temperatures on Physical Quality of Mangosteen ( <i>Garcinia Mangostana L.</i> )<br><i>Qanytah, I Wayan Budiastha, Roedhy Poerwanto</i>                                                  | FPE - 07 |
| Utilization of Monoacyl Glycerol for Producing Margarine Based on Virgin Coconut Oil<br><i>Kiky Corneliasari Sembiring, Teuku Beuna Bardant, Achmad Hanafi Setiawan, Hadidjah</i>                                                   | FPE - 08 |
| Improvement of Bread Quality Made from Frozen Dough using DATEM (diacetyl tartaric acid esters of monoglycerides) and HPMC (Hidroxypropylmethylcellulose)<br><i>Tania Susanti, Pertus Sri Naryanto</i>                              | FPE - 09 |
| The Partial Characters of Chemically Modified Banana Hump Starch<br><i>Rudito, Anis Syauqi, Ernita Obeth, Yuli Witono</i>                                                                                                           | FPE - 10 |
| The Effect of Calcium and / or Whey Proteins Supplementation on Textural Properties of Low-Fat Yoghurt<br><i>Umi Purwandari, Todor Vasiljevic</i>                                                                                   | FPE - 12 |
| Physico-Chemical Properties and Fatty Acids Profile of Skipjack ( <i>Katsuwonus Pelamis</i> ) Fish Oil<br><i>Christine F. Mamuaja, Hari Purnomo, Yunianta</i>                                                                       | FPE - 14 |
| The Effect of Hydrocolloids on Dough Rheology and Physical Properties in Gluten Free Bread Using Cassava Flour ( <i>Manihot Esculenta Crantz</i> )<br><i>Angelina Rosita Puspaningtyas, Kristina Ananingsih, Ita Sulistyawati</i>   | FPE - 15 |
| Evaluation of Physicochemical Properties and Microbiological Level of Pink Guava Juice ( <i>Psidium Guajava L.</i> ) During Pasteurization Process<br><i>Veronica Ima P, Amelia Jovita, Probo Y. Nugrahedi, Kristina Ananingsih</i> | FPE - 16 |

## FOOD SUPPLY CHAIN DIVERSITY

| TITLE / AUTHOR                                                                                                                                                                               | CODE      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Fatty Acid Composition and Cholesterol Content of Male Etawah Filial and Castrated Boer X Indigenous Goat Meat<br><i>Djalal Rosyidi, Hari Purnomo, Ina Musta Ina, Rulan Priesta Prastiti</i> | FSCD - 02 |
| An Analysis of Mass Transfer Inside Mango ( <i>Mangifera indica</i> ) During Osmotic Dehydration<br><i>Aditya Putranto, Maximilian Simon, Hendri Lesmana</i>                                 | FSCD - 03 |
| The Use of Bromelain in The Chitin Production of Shrimp's ( <i>Penaeus Monodon</i> ) Shell Wastes<br><i>Yuni Lanta</i>                                                                       | FSCD - 05 |
| The Assessment of Limau Orange Drink Processing in The Wetagati Village, Palasah Sub District, Majalengka District<br><i>Henry Herawati, Dian Histifarina, Mulyani, Yayan Rismayanti</i>     | FSCD - 06 |

## FOOD SAFETY AND QUALITY

| TITLE / AUTHOR                                                                                                                                                                                  | CODE     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Stability Of Potassium Iodate (KIO <sub>3</sub> ) In Salt with Disodium Ethylene Diamin Tetra Acetat (Na <sub>2</sub> EDTA) Stabilizer<br><i>Siti Helmyati, Narendra Yoga Hendarta, Surmita</i> | FSQ - 01 |
| Enhancing Quality of Chicken Broiler Meat by Inducing Short Chain Hydrobenzene of <i>Curcuma Spp</i><br><i>Lasmono Tri Sunaryanto, Sumardi</i>                                                  | FSQ - 02 |
| The Quality Characteristics of Malaysian Commercial Chicken Nuggets<br><i>Ismed Lukman, Nurul Huda, Noryati Ismail</i>                                                                          | FSQ - 05 |
| Natural Food Colourant from Seed of Kesumba ( <i>Bixa Orellana L.</i> )<br><i>Suparmi, Leenawaty Limantara, Budhi Prasetyo</i>                                                                  | FSQ - 06 |

## FOOD MARKETING AND QUALITY MANAGEMENT

| TITLE / AUTHOR                                                                                                                                                                                        | CODE      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Outlook for Dried Tropical Fruit Production in Indonesia and Its Need of Quality Management<br><i>Fifi Sutanto-Darmadi</i>                                                                            | FMQM - 01 |
| An Investigation of Microbiological Quality of Tiger Prawn, Cockle and Squid from Traditional Market and Supermarket in Surabaya<br><i>Ignatius Srianta, Netty Kusumawati, Aysan Husein Juniawati</i> | FMQM - 02 |
| Contamination of <i>Salmonella</i> , <i>Shigella</i> and <i>S. aureus</i> in The Street Food Sold in Elementary School, Jetis, Bantul, Daerah Istimewa Yogyakarta (DIY)<br><i>Fatma Zuhrotun Nisa</i> | FMQM - 03 |
| Determination of Coloring Agents Added into Pathilo Distributed at Traditional Market at Gunungkidul Yogyakarta<br><i>Crescentiana D. Poeloengasih, Hernawan, Yuniar Khasanah, Ratnayani</i>          | FMQM - 04 |
| Children Sensorsies Acceptance to Rice Cake Enriched with Defatted Rice Bran<br><i>Anita Maya Sutedja and Ch. Yayuk Trisnawati</i>                                                                    | FMQM - 05 |
| Efficient Strategies and Results of Applying ISO 9001, OSHAS, ISO 14001 and ISO 22000 at a Drinking Water Treatment Plant and Distribution Through Pipes<br><i>Audrey Caron Rumamby</i>               | FMQM - 06 |
| Factory Layout of Guava Puree in Kaliwungu, District of Banjarnegara<br><i>Indrie Ambarsari, Sarjana, Abdul Choliq, Syamsul Bahri</i>                                                                 | FMQM - 07 |

## POSTER

| TITLE/AUTHOR                                                                                                                                                                                                                                              | CODE   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <i>Aspergillus flavus</i> Growth was Essential in Gathotan Fermentation, but Aflatoxin was not Produced<br><b>Umi Purwandari, Hani S. El-Nezami, Ann C. Lawrie</b>                                                                                        | P - 02 |
| The Influence of Improperly used Frying Oil on Lipid Metabolism in Rats<br><b>Ambar Rukmini</b>                                                                                                                                                           | P - 03 |
| Addition of Docosa Hexaenoic Acid and Arachidonic Acid into Food Formula to Improve the Intellectual Development of Severe Malnourished Children<br><b>Astuti Lamid, Komari</b>                                                                           | P - 05 |
| Potential of <i>Ipomoea batatas</i> L. Ethanol Extract in Lowering Blood Glucose Level in Diabetic Mice<br><b>Evhya A., Khotib J., Taufik Hidayat M., Zulkhairi A., Mokhlas MAM., Andang M.</b>                                                           | P - 07 |
| <i>Theobroma cacao</i> Extract Blocks Stress Induced Hypotension in Rats<br><b>Farah Idayu N., Taufik Hidayat M., Zulkhairi A., Hasnah B., Sharida F., Che Norma M.T., Moklas M.A.M., Khairul Kamila A.K., Evhya A.</b>                                   | P - 08 |
| Nutritional Composition and Toxicity Study of <i>Anacardium occidentale</i> Linn. using Brine Shrimp Lethality Test<br><b>Fazali F., Zulkhairi A., Hasnah B., Khairul-Kamila AK., Khairunnuur FA., Nursakinah I., Kamal NH., Zamree MS., Shahidan MA.</b> | P - 09 |
| Effect of Different Smoking Process on Smoked Sarden Quality<br><b>Fronthea Swastawati, Sutanto, Eko Susanto</b>                                                                                                                                          | P - 10 |
| The Influence of RMU (Rice Milling Unit) Parameter to the Rice Quality<br><b>Heny Herawati</b>                                                                                                                                                            | P - 12 |
| Various Chicken Extract on Brine Fermentation to Produce Salt Soy Sauce by using Inoculum of <i>Aspergillus oryzae</i><br><b>Yetti Mulyati Iskandar, Agustine Susilowati, Aspiyanto</b>                                                                   | P - 14 |
| Germinated Brown Rice as a Potential Hypocholesterolemic Agent<br><b>Khairul Kamila A.K., Zulkhairi A., Azrina A., Norhaizan M.E., Maznah I., Hasnah B., Sakinah I., Taufik Hidayat M., Mokhlas M.A.M., Khairunnuur F.A., Fazali F.</b>                   | P - 15 |
| Table of Nutrients Composition of Indonesian Foods<br><b>Komari</b>                                                                                                                                                                                       | P - 16 |
| Antioxidant Activities of Cider and Jelly of Mangosteen Pericarp<br><b>Mery Tambaria D. Ambarita, Herry Cahyana, Meylysa</b>                                                                                                                              | P - 17 |

|                                                                                                                                                                                                                                                                                               |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Toxicity Assessment of Three Different Types of <i>Mitragyna speciosa</i> Extracts using Brine Shrimp Screening Test<br><i>Mokhlas M.A.M., Adib Ridzuan N.R., Taufik Hidayat M., Zulkhairi A., Nasir F.I., Abdul Rahman S., Fakurazi S.</i>                                                   | P - 18 |
| Phytate, Iron, Zinc, Calcium Contents and Their Molar Ratios in Selected Raw and Prepared Foods Commonly Consumed in Malaysia<br><i>Norhaizan Mohd. Esa, Nor Faizadatul Ain Ab Wahid</i>                                                                                                      | P - 20 |
| Storage Stability of $\beta$ - Carotene on Cassava Noodle Enriched with Yellow Pumpkin during Storage<br><i>Supriyanto</i>                                                                                                                                                                    | P - 21 |
| Rheological Properties of Exopolysaccharides Produced by <i>Streptococcus thermophilus</i> Strains and Their Role in Creation of Yoghurt Texture<br><i>Umi Purwandari, Todor Vasiljevic</i>                                                                                                   | P - 22 |
| Application of Computational Chemistry Method to Study the Antioxidant Activity of Vitamin E: Reactions of $\alpha$ -Tocopherol with the Hydroperoxy Radical<br><i>Zaky Al-Fatony, Syahrul Khairi, Wurcak Wongkwal, Nathaya Selphusit, Hanggara Sudrajat</i>                                  | P - 23 |
| Proteolytic Activity of <i>Aspergillus</i> sp-K3 in Recovery of Amino Acids as Savory Fraction through Brine Fermentation on Vegetable Broth of Mung Beans ( <i>Phaseolus radiatus</i> L.)<br><i>Agustine Susilowati, Aspiyanto, Yati Maryati</i>                                             | P - 24 |
| Performance of Ultrafiltration Membrane in Concentrating <i>Lactobacillus</i> Acid Bacteria (LAB) Produced from Mung Beans ( <i>Phaseolus radiatus</i> L.) as Probiotic Vegetable Broth<br><i>Aspiyanto, Agustine Susilowati, Yati Maryati</i>                                                | P - 25 |
| The Antioxidative Effect of <i>Anacardium occidentale</i> Linn. (AO) Leaf Aqueous Extract in Oxidised Huvec Cell Lines<br><i>M. Kamal N.H., Taufik Hidayat M., Zulkhairi A., Moklas M.A.M., Hasnah B., Khairul Kamilah A.K., Khairunnuur F.A., Fazali F., Nur Amalina I., Nur Izzati M.N.</i> | P - 26 |
| Effect of <i>Theobroma cacao</i> on Mice Exposed to Forced Swim Test (TST) and Tail Suspension Test (TST)<br><i>Taufik Hidayat M., Farah Idayu N., Zulkhairi A., Moklas M.A., Hasnah B., Sharida F., Khairul Kamilah A.K., Evhy A.</i>                                                        | P - 27 |
| A Study of GMP (Good Manufacturing Practices) Implementation in Cooling, Cutting, and Packaging Process at a "Lapis Legit" Industry in Semarang<br><i>Alfonsus Dwianto Wibowo, Fifi Sutanto-Darmadi, Inneke Hantoro</i>                                                                       | P - 28 |

|                                                                                                                                                                                                                                                      |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Food Security Survey and Environmental Pest Management in Hamadan Province, Iran<br><i>Mahdi Reyahi Khoram</i>                                                                                                                                       | P - 30 |
| The Effects of Palm Oil Addition and Meat Washing on the Quality Properties of Low-Fat Duck Sausage<br><i>Nurul Huda, Noryati Ismail, Muhammad Syahmi, Muthia Dewi</i>                                                                               | P - 32 |
| The Effect of Thickening Agents on the Textural Properties of Guava Fruit Leather<br><i>Devi Anggraini, Kristina Ananingsih, Inneke Hantoro</i>                                                                                                      | P - 33 |
| Optimization of Headspace Gas Chromatography with Flame Ionization Detector (HS/GC-FID) for the Analysis of Benzene in Beverages<br><i>Dyah Styarini and Oman Zuas</i>                                                                               | P - 34 |
| Good Manufacturing Practice Model for Ganyong Starch Sme at Gunungkidul, Yogyakarta<br><i>Crescentiana D. Poeloengasih, Prima Ditahardiyani</i>                                                                                                      | P - 35 |
| Antioxidative Effects of <i>Anacardicum occidentale</i> Linn. in Diabetic Rats<br><i>Zulkhairi A., Nur Amalina I., Taufik Hidayat M., Moklas M.A.M., Hasnah B., Khairul Kamilah A.K., Khairunnuur F.A., Fazali F., M. Kamal N.H., Nur Izzati M.N</i> | P - 36 |

## **EVALUATION OF PHYSICOCHEMICAL PROPERTIES AND MICROBIAL LOAD OF PINK GUAVA JUICE (*Psidium guajava L.*) DURING PASTEURIZATION PROCESS**

**Veronica Ima P<sup>1)</sup>, Amelia Jovita<sup>2)</sup>, Probo Y. Nugrahedi<sup>2)</sup> and  
V. Kristina Ananingsih<sup>2)</sup>**

<sup>1)</sup>Food Department of Theresiana Vocational of School Chemical Industry

<sup>2)</sup>Food Technology Department Soegijapranata Catholic University

### **ABSTRACT**

Pink Guava (*Psidium guajava L.*) is one of the tropical fruits which most of its part can be consumed or processed, for example as a fruit juice. This juice is added with water, sugar, citric acid, and stabilizer such as CMC (*Carboxy Methyl Cellulose*). A part of the method of fruit juice processing is pasteurization, which has a main purpose to decrease microorganisms load but can change the physicochemical properties of the product. This research investigated the effect of pasteurization temperatures both at 65°C and 77°C on physicochemical characteristics and microbial load of pink guava juice. Total Plate Count (TPC) of bacteria, mold, yeast, and physicochemical properties, the viscosity, color intensity, TSS (*Total Soluble Solid*), antioxidant activity, vitamin C, and pH were evaluated. Both pasteurization at 65°C and 77°C were sufficient to reduce microorganisms level below the permitted limit of SNI after 18 minutes of heating. Result also showed that based on lethal rate and F value calculation, reducing the amount of microorganisms as many as 5 D's like *Salmonella*, *Escherichia coli*, *Listeria monocytogenes*, and *Allicyclobacillus* was possible. Furthermore, the viscosity, TSS (*Total Soluble Solid*), and color intensity were increase while antioxidant activity and vitamin C were decrease. Level of pH was not affected during pasteurization.

**Keywords:** *Pasteurization, Guava Fruit, Juice, Physicochemical Characteristics, Microorganisms*

### **INTRODUCTION**

Guava (*Psidium Guajava L.*) is one of the popular tropical fruit, which is commonly consumed either as a fresh fruit or processed ones, such as juice, concentrate, and jam. Foster & Vasavada ( 2003) reported, that there are a lot of juices types in the market, that are juice ( 100% fresh fruit juice), combined juice (combination from some juice), juice beverage (non 100% fruit juice) and beverage with fruit flavor. One of the juice making steps is pasteurization. Pasteurization is able to maintain microbiological quality of food materials, with enzyme become inactive and destructs microorganism (Fellows, 1998).

The objectives of this study are to evaluated physicochemical characteristics of pink guava juice pasteurization process and to evaluate heat sufficiency of pasteurization at two different temperatures (65°C and 77°C) regarding microbial load. This also to evaluate heat sufficiency of pasteurization to lethal microorganism characteristics of pink guava juice with the calculation of lethal rate and (F value).

International Conference on Food Science and Technology  
"The Challenge of Universal Food Quality and Safety Regime"

Department of Food Technology, Soegijapranata Catholic University, July 31 and August 1 2008

## MATERIAL AND METHODS

Pink guava fruits and sugar were obtained from local market. Matured ripe guava fruit selected. Other materials like citric acid, and CMC (*carboxy methyl cellulose*) were obtained from local chemical store. Equipments which were used in this research, for example are Memmert WB/ob 14 waterbath, autoclave, heater *Laminar Air Flow* (LAF), and UV Mini 1240 Shimadzu spectrophotometry.

### Pink Guava Juice Formulation

Samples were prepared according to Zainal *et al.* (2000). Firstly fruits were washed using water. The fruit were then blanched in a steam blancher until the temperature reached 100°C and then were held at this temperature for 3 minutes. The blanched fruit were crushed with a blender followed by a filtration. Juice was added with 0.1% of CMC (ml/juice), 10.4% sugar, 0.15% citric acid.

Pasteurization was conducted at two temperatures 65°C and 77°C and two phases that were pre-pasteurization and pasteurization. Time of pre-pasteurization at 77°C could be reached for 31.72 minute and each sample was taken every 6.344 minute. While at temperature of pre-pasteurization 65°C was 33.67 minutes and each sample was taken every 6.734 minute. Pasteurization process were done 30 minutes.

### Evaluation of Viscosity, Color Intensity, Total Soluble Solid (TSS), and pH

Viscosity was determined using viscotester with 1st rotor (used for material of 3-150 dPas). Color intensity was determined using spectrophotometry with an absorbance at 400 nm. Total soluble solid (TSS) was evaluated using hand Refractometer Atago N-1. pH was measuring using Denver Instrument pH-meter.

### Evaluation of Antioxidant Activity and Vitamin C

Antioxidant activity was measured using method that involved the use of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), where antioxidants were allowed to react with stable radical in methanol solution. Guava juice (0.5 gr) were extracted with methanol (5 ml) for 2 hours. The extract (0.1 ml) was reacted with 3.9 ml of *1,1Diphenyl-2-Pircylhydrazyl* (DPPH) solution (2.4 mg of DPPH in 100 ml of methanol). Measuring absorbance was done at 515 nm using UV Mini 1240 Shimadzu spectrophotometry.

Antioxidant Activity was calculated as % discoloration by formula bellow:

$$(1 - [A_{30 \text{ minutes}} / A_{t_0 \text{ minutes}}]) \times 100 \text{ (Beta } et al., 2005\text{).}$$

Meanwhile, vitamin C was determined by a iodimetry method with a formula below:  
mg ascorbic acid (in 100 ml sample) = titration volume \* 0.88 \* 10 (dilution factor) (Sudarmadji *et al.*, 1989).

### Microbiological Analysis

Microbiological analysis include of total plate count of bacteria, mold, and yeast during pre-pasteurization until pasteurization. Evaluation process represented determination of F value when certain process or process time is required for the F of certain value. F value can be calculated by equation:

$$F = \Delta t \sum_i^n L \quad \text{at interval time of 1 minute } \Delta t = 1$$

$\Delta t$  = interval time (minute)

L = lethal rate (minute)

(Holdsworth, 1997)

### Data Analysis

All data were subjected to analysis of variance (one way ANOVA) procedure using SPSS (*Statistical Package for Social Science for windows*) 11.5 version. Means were compared at the 95% significant difference ( $p > 0,05$ ).

### RESULT AND DISCUSSION

The effect of pasteurization temperature of 65°C and 77°C to the physicochemical characteristics and microbial load of fruit juice are shown in tables and figures below.

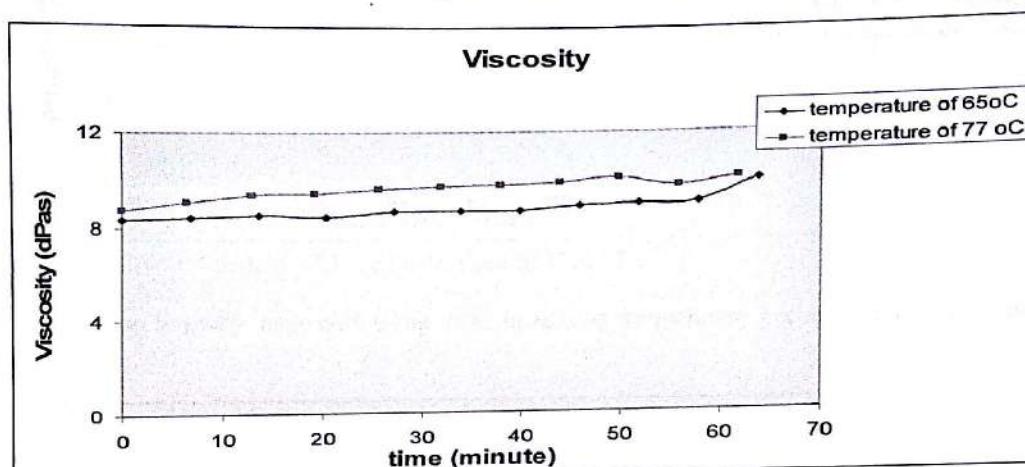



Figure 1. Viscosity of Juice Pasteurised at 65°C and 77°C

The viscosity of pink guava juice increased with increasing temperature both at 65°C and 77°C of pasteurization. The possibly due to evaporation process. evaporation is transfer process some of water of food materials to liquid because bubbling point (Fellow,2000).

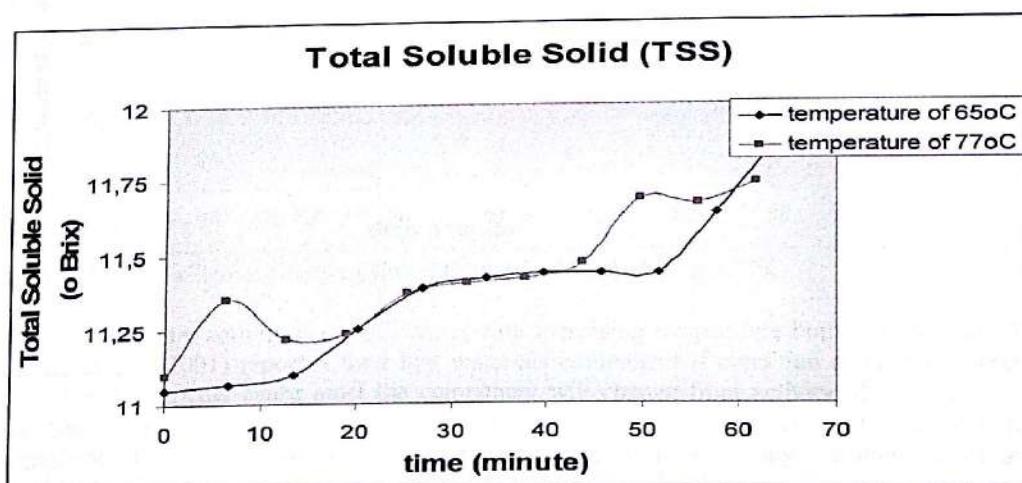



Figure 2. Total Soluble Solid of Juice Pasteurised at 65°C and 77°C

TSS (Total Soluble Solid) increased during pasteurization because of dissolved concentrate. According to Les (1998), the components of concentrate which are not the dissolved

increase of will be dissolved at the time of heating process so that will increase content of dissolved fluid.

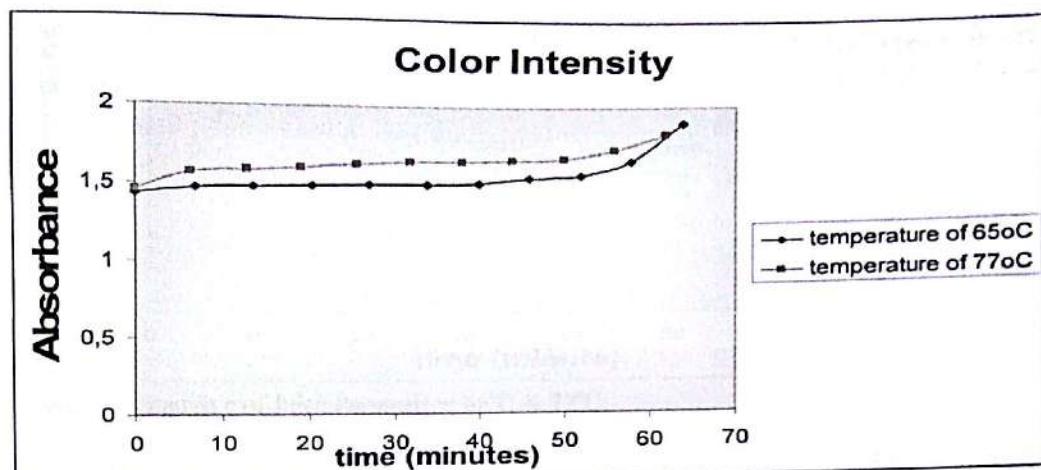



Figure 3. Colour Intensity of Juice Pasteurised 65°C & 77°C

Color intensity increased along with increasing temperature because of non enzymatic browning.

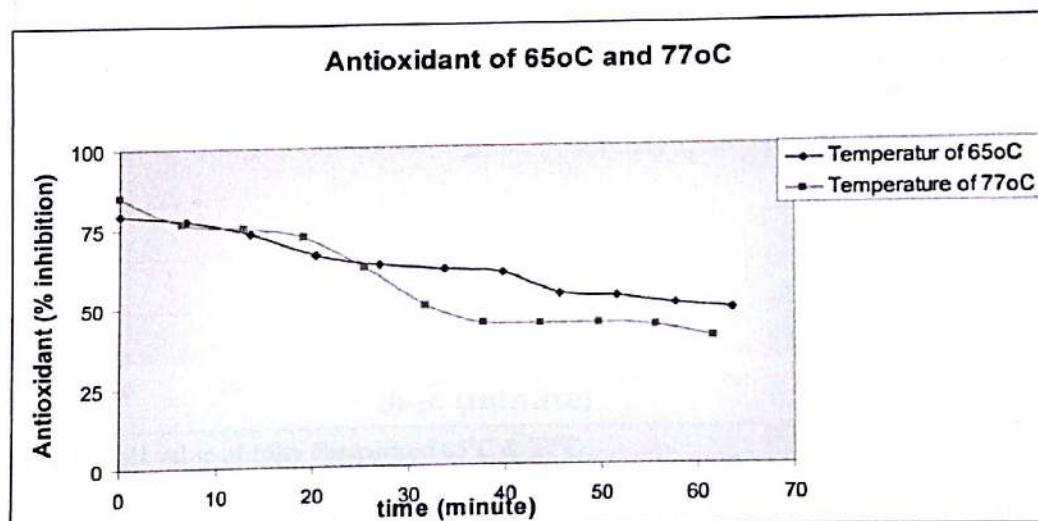



Figure 4. Antioxidant Activity of Juiced Pasteurised of at 65°C and 77°C

Antioxidant activity decreased along with increasing temperature both at 65°C and 77°C. Pokorny et.al, ( 2001) reported food that materials component if condition at high temperature during heating process cause most the component will change from activity of antioxidant and often times lessen ability. Antioxidant activity depends on many factors such as the lipid composition, antioxidant concentration, temperature, oxygen pressure, and the presence of other antioxidant and many common food component, e.g protein and water.

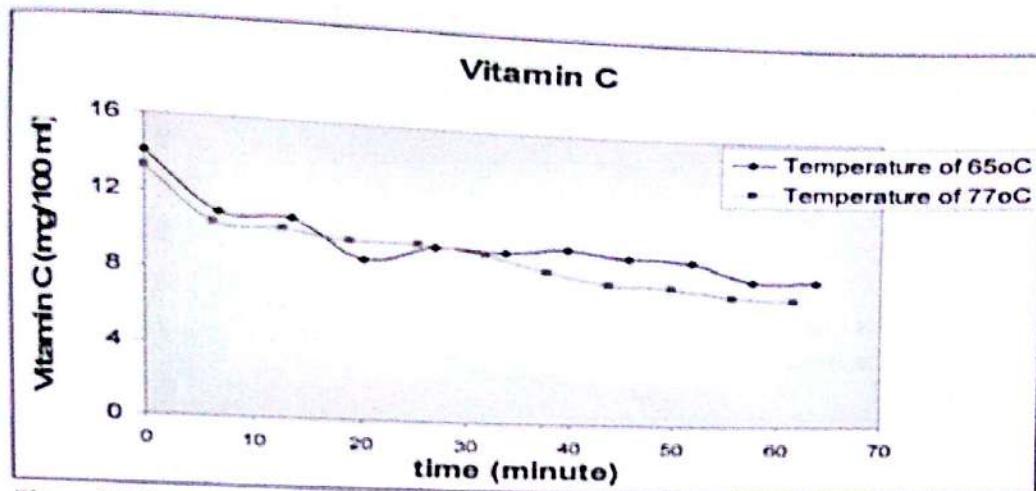



Figure 5. Vitamin C of Juice Pasteurised 65°C & 77°C

Degradation of ascorbic acid or vitamin C was observed at pasteurization temperature of both 65°C and 77°C. This due to that ascorbic acid is more sensitive to heating process. Many factors also influence the degradation, such are temperature, concentration, pH, oxygen, enzyme, metal, and acid condition ( Sudarmadji, 1989).

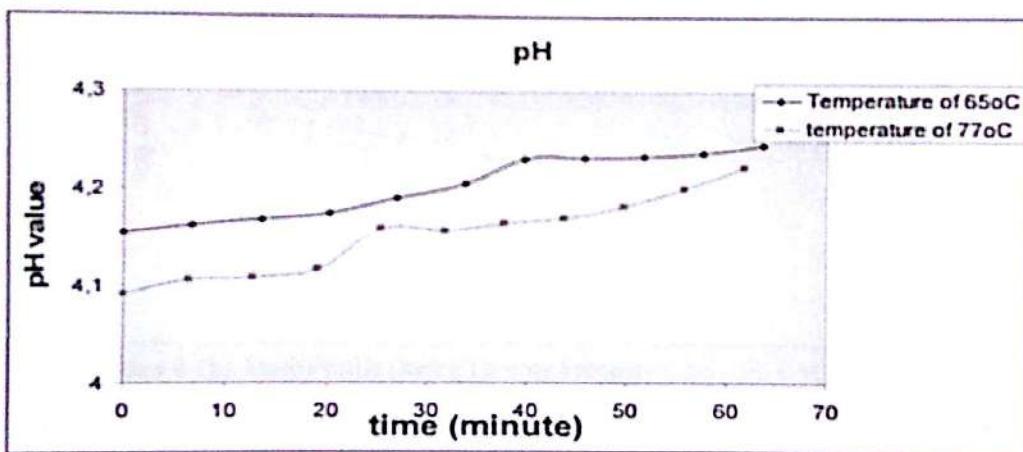



Figure 6. pH value of Juice Pasteurised 65°C & 77°C

pH values were not significantly different at pasteurization of 65°C and 77°C. Chang, et al., (1994) also reported that pH of plum juice did not change significantly during of heating process.

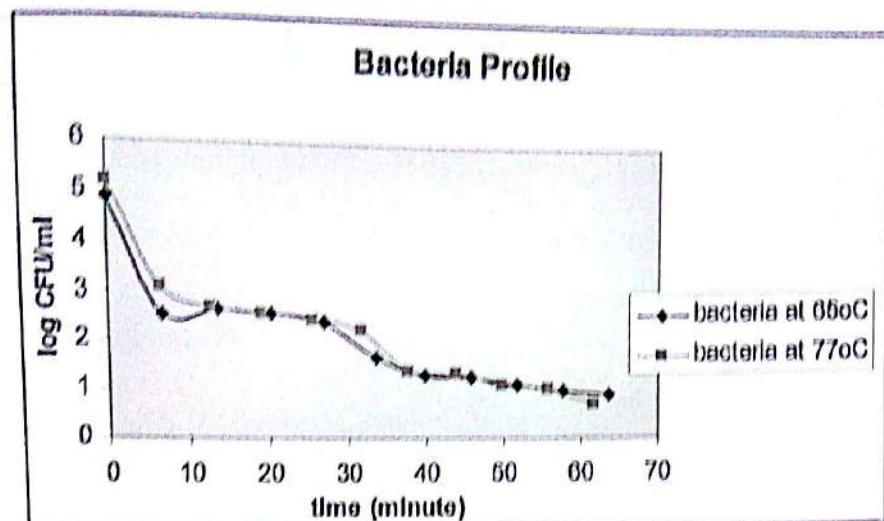



Figure 7. (a). Bacteria Profile During Heating Process

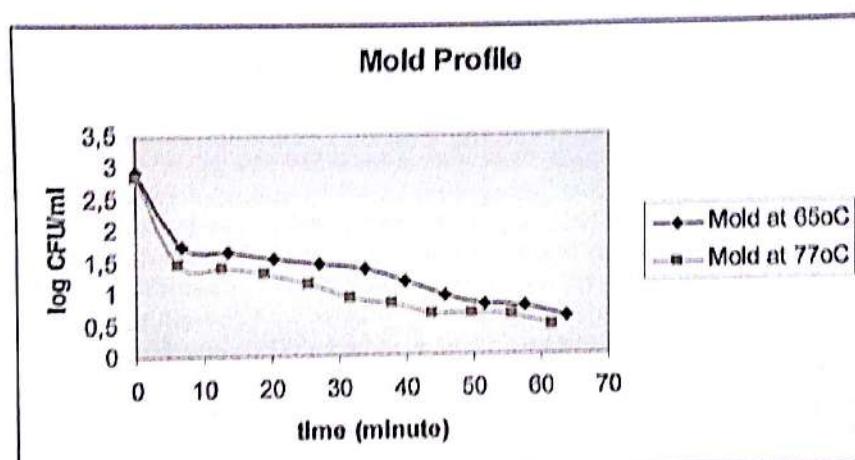



Figure 8. (b). Mold Profile During Heating Process

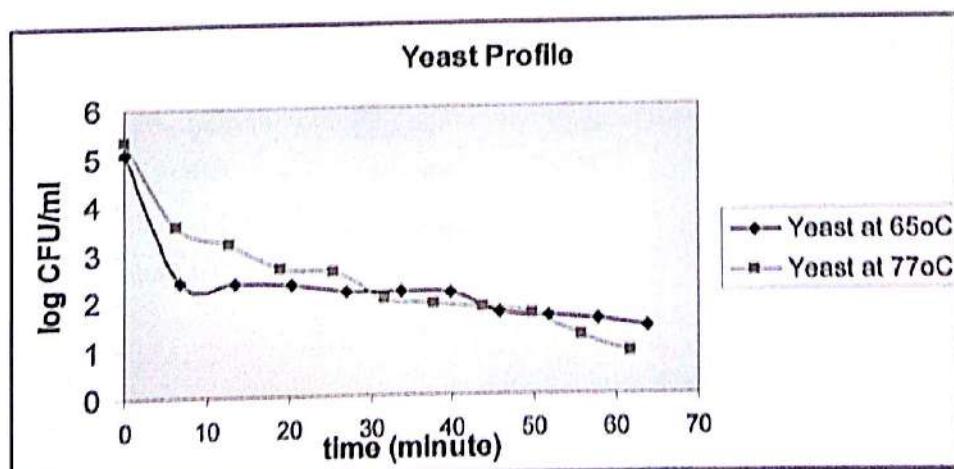



Figure 9. (c). Yeast Profile During Heating Process

Both pasteurization showed that the amount of bacteria, mold and yeast decreased significantly at temperature of 65°C and 77°C. Pasteurization at both temperature of 65°C and 77°C had fulfilled the requirement of The Indonesian National Standard for a Fruit Juice (SNI 01-3719-1995) with the maximum limit of bacteria is  $2 \times 10^2$  colony / ml (2.301 logarithm of CFU / ml) and maximum limit exists of mold and yeast is 50 colony / ml (1.699 logarithm of CFU / ml). The percentage of degradation of yeast was the least, could be due to that many yeast have the heat resistant ability, besides the initial amount of yeast was the highest among all (Ray, 2001).

Table 1. Percentage of degradation of microorganisms during pasteurization process

| Treatment                 | Microorganism | Initial<br>Microorganism<br>(Log<br>CFU/ml) | Final<br>(Log<br>CFU/ml) | Percentage<br>of<br>(%) |
|---------------------------|---------------|---------------------------------------------|--------------------------|-------------------------|
| Pasteurization<br>of 65°C | Bacteria      | 4.859                                       | 0.925                    | 80.963                  |
|                           | Mold          | 2.920                                       | 0.591                    | 79.760                  |
|                           | Yeast         | 5.051                                       | 1.383                    | 72.619                  |
| Pasteurization<br>of 77°C | Bacteria      | 5.211                                       | 0.709                    | 86.394                  |
|                           | Mold          | 2.833                                       | 0.464                    | 83.622                  |
|                           | Yeast         | 5.316                                       | 0.876                    | 83.521                  |

i = amount of initial microorganism (Logarithm of CFU / ml)

n = final count of final microorganism (Logarithm of CFU / ml).

During pasteurization at 65°C, the time that is needed to decrease bacteria's amount as 2.058 log of CFU / ml between 26.936 minutes until 33,67 minutes. Time that is needed to decrease mold's amount as 1.703 logarithm of CFU / ml between 6.734 minute until 13.468 minutes. Time that is needed to decrease yeast 1.699 log of CFU / ml between 45.67 minute until 51.67 minutes. During pasteurization at 77°C time that is needed to decrease bacteria's amount as 2.357 logarithm of CFU / ml between 25.376 minute until 31.72. Time that is needed to decrease mold's amount as 2.144 logarithm of CFU / ml between 0 minute until 6.344 minutes. Time that is needed to decrease yeast 1.706 log of CFU / ml between 43.72 minute until 49.72 minutes.

The initial amount of bacteria was higher than the initial amount of mold. The protection mechanism from heat at large population of microorganisms can cause the production of protective component that is produced by cell, for example protein (Jay, 2002). So the time that is needed to fulfill the maximum limit of bacteria is longer than mold.

Table 2. Heat Resistance Microorganism

| Microorganism                           | Temperature | D value     | z value | F <sub>0</sub> (minute) |
|-----------------------------------------|-------------|-------------|---------|-------------------------|
| <i>Alicyclobacillus</i>                 | 90°C        | 18 menit    | 6,6°C   | 90                      |
| <i>Salmonella</i>                       | 150°F       | 0,172 menit | 10°F    | 0.86                    |
| <i>E. coli</i> O157:H7                  | 52°C        | 18 menit    | 4,8°C   | 90                      |
| <i>Listeria</i><br><i>monocytogenes</i> | 65°C        | 1,55 menit  | 7,5°C   | 7,75                    |
|                                         | 77°C        | 0,033 menit | 7,5°C   | 0,165                   |

F<sub>0</sub> = D value \* Logarithmic cycle (5)

Table 3. Evaluation of Heat Sufficiency

|                                    | <i>Alicyclobacillus</i> | <i>Salmonella</i> | <i>E. coli</i> O157:H7 | <i>L. monocytogenes</i> |        |
|------------------------------------|-------------------------|-------------------|------------------------|-------------------------|--------|
| $F_o$ (minute)                     | 90                      | 0,86              | 90                     |                         |        |
| $\Sigma F_{count}$ 65°C (minute)   | 0,008                   | 39,405            | 26150,377              | 0,165                   | 7,75   |
| Pasteurization Heating Sufficiency | not enough              | enough            | enough                 | enough                  | -      |
| $\Sigma F_{count}$ 77°C (minute)   | 0,480                   | 5259,431          | 7597474,765            | -                       | 44,318 |
| Pasteurization Heating Sufficiency | not enough              | enough            | enough                 | -                       | enough |

$F$  count =  $L = 10(T-Tref) / z$  with  $T$  is temperature process and  $Tref$  is standard temperature

Table 3 and 4 showed that *Alicyclobacillus* has a higher heat resistant ability so it will need higher temperature on heating process to destroy. It is showed by the unsufficient heat to destroy *Alicyclobacillus* during pasteurization at 65°C and 77°C. Heating at 65°C and 77°C of in guava juice are sufficient to destroy pathogenic bacteria *Salmonella*, *E. Coli* O157:H7 and *L. Monocytogenes* as 5D.

Based on lethal rate and  $F$  value, pasteurization at 65°C and 77°C for 30 minutes could not destroy *Alicyclobacillus* as 5D because it is *thermoacidophilic* and includes forming endospores bacteria.

## CONCLUSION

The viscosity, color intensity and TSS (Total Soluble Solid) increase during pasteurizatiuon process. While antioxidant and vitamin C decreased. Meanwhile, pH was not affected during pasteurization. Pasteurization at temperature of 65°C resulted in relatively lower affect to physicochemical characteristics than 77°C. The heat pasteurization at 65°C and 77°C were sufficient to destroy microorganism until the permitted limit of SNI after 18 minutes heating. Pasteurization at 77°C reduced more percentage of microorganism than pasteurization at 65°C. Based on lethal rate and  $F$  value calculation to kill microorganism as many as 5D's, except *Alicyclobacillus* can not be killed as many as 5D's after heating at 65°C and 77°C.

## REFERENCES

Anonim. (2006). Khasiat dan Produk Olahan Jambu Biji (*Psidium guajava* L.). <http://www.pdii.lipi.go.id/wp-content/uploads/2007/07/432006>

Astawan, M. & M.W. Astawan.(1991). Teknologi Pengolahan Pangan Nabati Tepat Guna. Akademika Pressindo. Bogor.

Chang., Muhammad, S., Nirmal. (1994). Plum Juice Quality Affected by Enzyme Treatment and Finning. Journal of Food Science.59.

Eskin. (1990). Biochemistry of Food. Academic Press. San Diego

Fellow, P. (2000). Food Processing Tenchnology : Principles and Practice Second Edition. Woodhead ublishing Limited. England.

Foster, T & Vasavada, P. C. (2003). Beverage Quality & Safety. CRC Press LLC. USA.

Les,A., & Margaret. (1998). Process-Induced Chemical Changes in Food : Sucrose Loosening and Color Formation in Sugar Manufacture. Plenum Press. New York.

Pokorny, J; Nedyalka Y; Michael G. Antioxidant in Food. Woodhead Publishing Limited. England

Ray, B. (2001). Fundamental Food Microbiology Second Edition. CRC Press LLC. Boca Raton.

Terano, H.; K. Takahashi; & Y. Sakakibara. (2005). Characterization of Spore Germination of a Thermoacidophilic Spore-Forming Bacterium, *Alicyclobacillus acidoterrestris*. Biosci. Biotechnol. Biochem. 69(6), 1217-1220, 2005.

Zainal, B. S.; R. A. Rahman; A. B. Ariff; B. N. Saari; & B. A. Asbi. (2000). Effect of Temperature on the Physical Properties of Pink Guava Juice at Two Different Concentrations. Journal of Food Engineering 43 (2000) 55 – 59.

Jay, J. M. (2000). Modern Food Microbiology. Aspen Publishers, Inc. Geithersburg.