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Preface

Glucosinolates, natural S-glycosides, have attained importance in recent years as
new class of secondary metabolites of profound physiological properties.
Glucosinolates are present in the 16 families of order Brassicales including
Brassicaceae which contains several of daily vegetables (cabbage, radish, mustard,
cauliflower, broccoli, horseradish, turnip, oilseed rape, etc.). Glucosinolates are
accumulated in all plant parts such as root, shoot, stem, and seed and also contain
an enzyme called myrosinase (b-thioglucosidase). Glucosinolates have become
important parameter to breed and develop new crop varieties for human welfare.
They possess wide ranging properties like bacteriocide, antioxidant, bioherbicide
and fungicide, and anticarcinogenic; therefore, this book is a timely compilation of
state of information about this rapidly developing field.

The book aims to present comprehensive and up-to-date information on this new
and developing field. The book comprises of 15 chapters and is divided into three
sections, viz.: Part I – Biology, Phytochemistry, Genetics, and Defense; Part II –
Biological Activity; and Part III – Analytical and Processing Methods. This com-
prehensive reference book presents the sources of glucosinolates, genetics and
breeding of Brassica crops, glucosinolates in food, glucosinolates in plant defense,
antimicrobial activity, neuroprotective effects, glucosinolates in atherosclerosis,
anticancerous effect and as modulator of drugs, methods of glucosinolates extrac-
tion, preparation, processing, and identification by mass spectroscopy. The book will
be a valuable source on glucosinolates.

The book is intended to serve the needs of graduate students, scholars, and
researchers in the field of botany, agriculture, pharmacy, biotechnology, and phyto-
chemistry; industrial scientists; and those involved in processing and marketing of
vegetable products.

This work could not be completed without active support of Springer team who
took pains in streamlining the production process. We are particularly indebted to
Drs. Lydia Mueller, Sylvia Blago, and Sylvia Jakuscheit for their continuous pro-
fessional support throughout the project.

January 2017 J.-M. Mérillon
K.G. Ramawat

Editors
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Processing and Preparation of Brassica
Vegetables and the Fate of Glucosinolates 14
Probo Yulianto Nugrahedi, Matthijs Dekker, and Ruud Verkerk

Abstract
The healthiness of a vegetable cannot solely be inferred from the amount of
health-promoting compounds in the raw materials. Brassica vegetables, for
example, are consumed mostly after processing to improve palatability and to
extend the shelf life. However, processing also results to various changes in the
content of glucosinolates which intakes are associated with a reduced risk of
several cancers. The large variety in cooking practices and processing methods
affect the glucosinolate content in the vegetables, particularly due to processes
that allow for enzymatic hydrolysis and thermal degradation of glucosinolates,
and leaching of the bioactive components. Knowledge on the effect of preparation
and processing of Brassica vegetables is important to evaluate the healthiness of
the consumed product and to investigate mechanisms to retain high glucosinolate
levels at the stage of consumption and to increase the intake of health-protective
compounds by the consumer. By using a mechanistic approach, the fate of
glucosinolates during different processing and preparation methods and condi-
tions can be explained. Boiling and blanching reduce the glucosinolate content
significantly particularly because of the mechanisms of leaching following cell
lysis and diffusion, and partly due to thermal and enzymatic degradation.
Steaming, microwave processing, and stir frying either retain or only slightly
reduce the glucosinolate content due to low degrees of leaching. These methods
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can enhance the accessibility of glucosinolates from the plant tissue. Fermenta-
tion reduces the glucosinolate content considerably, the underlying mechanisms
are not yet completely clear, but enzymatic breakdown seems to play an important
role. Studying the changes of glucosinolates during processing by a mechanistic
approach is shown to be valuable to redesign the processing and to reformulate
the product for improving health benefits of these compounds.

Keywords
Glucosinolate • Preparation • Processing • Mechanistic approach • Brassica
vegetable

Abbreviations
ESP Epithiospecifier protein
GS Glucosinolate
HPP High pressure processing
ITC Isothiocyanate
MW Microwave
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1 Introduction

Many representatives of the Brassicaceae family are of particular importance as
vegetables for our human diet, such as Brassica oleracea (e.g., cabbage, cauliflower,
broccoli, and Brussels sprouts), Brassica rapa (Chinese cabbage, pak choi, and
turnip), Brassica juncea (Indian and Chinese mustard), Brassica napus (rutabaga
and swede), and as seasonings and relishes (e.g., mustard and wasabi). Brassica
vegetables are unique in that they are rich sources of glucosinolates (GSs), sulfur-
containing compounds that deliver a pungent aroma and spicy or bitter taste
[1–3]. Moreover, GSs are claimed to be bioactive components responsible for
many of the physiological health effects proposed for Brassica vegetables in
different types of studies, including in vitro, animal, human, and epidemiological
studies [4, 5].
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Most of the vegetables need some kind of treatment, either household preparation
or industrial processing, in order to make them suitable and palatable for consump-
tion. The large variety in cooking and processing methods and conditions have in
common that they all affect the profile of GSs in the vegetables, particularly due to
(bio)chemical and physical processes such as enzymatic hydrolysis and thermal
degradation of GSs, and leaching of the bioactive components out of the plant tissue
[6]. As a consequence, we can say that the healthiness of a vegetable cannot solely be
inferred from the amount of the nutritional and health compounds in the raw
materials. Knowledge on the effect of preparation and processing of Brassica
vegetables is important to evaluate the healthiness of the final consumed product
and to investigate ways to retain high GS levels at the stage of consumption and to
increase the intake of health-protective compounds by the consumer.

2 Brassica Vegetable Intake and Health

Brassica vegetables, like broccoli, cauliflower, Brussels sprouts, and red cabbage,
contain significant levels of health-promoting constituents, including vitamins,
minerals, fibers, and numerous types of secondary plant metabolites also called
phytochemicals. Many phytochemicals from vegetables contribute to the reported
antioxidative, anti-inflammatory, anticarcinogenic, and cardiovascular protective
effects [7]. One group of phytochemicals occurring almost exclusively in Brassica
vegetables is the group of glucosinolates [8]. Epidemiological studies showed that
the intake of Brassica vegetables is inversely associated with the risk of certain types
of cancer, including colorectal and lung cancers [9–13].

Glucosinolates (GSs) intake is expected to play a significant role in lowering this
risk of cancer. However, in epidemiologic studies, the intake of the vegetables is
monitored, the real intake of protective compounds, like GSs, is often an unknown
variable. It is demonstrated that many steps in the food production chain, like
cultivation, storage, processing, and preparation of vegetables can dramatically
affect the content and thus the intake of phytochemicals such as GSs in Brassica
vegetables [14].

3 Glucosinolates in Brassica vegetables

3.1 Occurrence

Glucosinolates (GSs), a group of plant secondary metabolites, contain
β-thioglucoside N-hydroxysulfates with a sulfur linked β-D-glucopyranose moiety
and variable side group (R), which usually classifies the aliphatic, aromatic, and
indole GSs. These three GS groups are frequently found in Brassica vegetable
species (Table 1). Moreover, each species of the family Brassicaceae has a distinct
GS profile characterized by major GSs as reviewed by Verkerk et al. [5]. Also,
different species of the same genus and different cultivars of the same species can

14 Processing and Preparation of Brassica Vegetables and the Fate of. . . 409



have highly variable GS concentrations. The majority of GSs are found in every
plant organ although the concentration and composition of the GSs can vary greatly
and can also change during plant development [5]. Usually, a single plant species
contains up to four different GSs in significant amounts, while as many as 15 differ-
ent GSs can be found in lower amounts in the same plant. Brassica vegetables occur
in different appearances: leafy (e.g., collard green and rocket salad), flowering
(cauliflower and broccoli), stems (kohlrabi), roots (radish, rutabaga, and turnips),
and buds (Brussels sprouts and cabbage). The content of GSs varies in these different
tissues, for example, GS concentrations are higher in the florets than in the stalks of
broccoli [5]. The seeds and the sprouting vegetables or cresses, such as garden cress
or watercress, usually contain one specific type of GS in substantial amounts. The
GS concentrations in vegetables, although often highly variable, are around 1% dry
weight in some Brassica vegetables.

3.2 Glucosinolate/Myrosinase System

The special feature of GS-containing vegetables is the system of compartmentaliza-
tion of GSs and the presence of specialized myrosin cells containing the hydrolytic

Table 1 Glucosinolates commonly found in Brassica vegetables [15]

Trivial name Chemical name Main source

Aliphatic

Glucoibervirin 3-Methylthiopropyl-GS Green and white cauliflowers

Glucoerucin 4-Methylthiobutyl-GS Rocket

Glucoiberin 3-Methylsulfinylpropyl-GS Broccoli sprouts, Savoy cabbage

Glucoraphanin 4-Methylsulfinylbutyl-GS Broccoli(cress), Red cabbage

Sinigrin Prop-2-enyl-GS Brussels sprouts, White cauliflower

Gluconapin But-3-enyl-GS Pak choi

Glucobrassicanapin Pent-4-enyl-GS Chinese cabbage, Pak choi

Progoitrin (2R)-2-Hydroxybut-3-enyl Turnip, Chinese broccoli

Indole

Glucobrassicin Indol-3-ylmethyl-GS Broccoli, Cauliflower, and many
more

4-Hydroxy-
glucobrassicin

4-Hydroxy-indol-3-ylmethyl-
GS

Broccoli, Cauliflower, and many
more

4-Methoxy-
glucobrassicin

4-Methoxy-indol-3-ylmethyl-
GS

Broccoli, Cauliflower, and many
more

Neo-glucobrassicin N-methoxyindol-3-ylmethyl-
GS

Broccoli, Cauliflower, and many
more

Aromatic

Glucotropaeolin Benzyl-GS Garden cress

Gluconasturtiin Phenylethyl-GS Water cress
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enzyme myrosinase (thioglucoside glucohydrolase, EC 3.2.1.147). Upon plant’s cell
disruption, GSs are highly prone to degradation by myrosinase-catalyzed hydrolysis
(see Scheme 1). Subsequently, the GS will degrade into glucose and an unstable
aglycon intermediate. The unstable aglycon rearranges into different breakdown
products, including isothiocyanates (ITCs), thiocyanates, nitriles, and epithionitriles,
depending on conditions described in the Sect. 3.3 [4, 8].

Myrosinase is a relative thermo labile enzyme, which can be readily denatured at
moderate to high temperatures. Especially temperatures applied during processing of
Brassica vegetables quickly inactivate myrosinase [16–19]. The optimum tempera-
tures for the activity of myrosinase are different between Brassica vegetables, in the
range between 30 �C and 60 �C, and the activity is also influenced by pH, the
presence of ascorbic acid, salt, and pressure [20–24]. During the various stages of
storage, preparation, cooking, and processing of the vegetables, the GS–myrosinase
system is affected in a complex way. Dekker et al. [25] have estimated that the
concentration of GSs in Brassica vegetables may vary by five to tenfold at each
stage.

The health-promoting effect of GSs is mainly attributed to the ITCs that are
formed due to hydrolysis by myrosinase after tissue damage. Since myrosinase is
mostly inactivated during processing or preparation, formation of ITCs usually does
not occur in the product during mastication. However, a myrosinase-like activity is
also provided by the microflora in the human’s large intestine. Intake of Brassica
products containing inactive endogenous plant myrosinase still can have benefit by
the formation and absorption of bioactive breakdown products by enzymes from the
gut flora. However, their bioavailability is lower than the ones with active plant
myrosinase [10, 26–28].

Scheme 1 Enzymatic breakdown of glucosinolate [adapted from 15]
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3.3 Breakdown Products of Glucosinolates

Although GSs can be chemically degraded at higher temperatures [29–31], the
hydrolysis is mainly enzymatically driven. Previous reports have reviewed the
mechanisms of GS hydrolysis [e.g., 4, 31–34], which will be briefly described
here. Several products of hydrolysis of a GS can be produced, such as ITCs,
thiocyanates, nitriles, epithionitriles, oxazolidine-2-thiones, or indole compounds,
depending on the structure of the GS side chain, the reaction conditions (e.g., pH),
presence of additional cofactors (e.g., Fe2+), and proteins (e.g., epithiospecifier
protein (ESP) and thiocyanate-forming protein). Most frequently, the aglycon
undergoes a Lossen arrangement to produce an ITC.

At neutral pH, the major hydrolysis products are stable ITCs. For example,
hydrolysis of gluconapin and sinigrin produces mainly ITCs, namely, 3-butenyl-
ITC and 2-propenyl-ITC, respectively. Sulforaphane, the ITC derived from
glucoraphanin, is the most widely studied as the most bioactive GS hydrolysis
product. For GSs having a β-hydroxylated side chain or an indole moiety,
β-hydroxy-ITCs are unstable and spontaneously cyclize to oxazolidine-2-thiones,
while indole ITCs undergo breakdown producing, for example, indole-3-carbinol
(I3C).

At low pH, in the presence of an ESP and ferrous ions, gluconapin and sinigrin
produce cyano-epithioalkane, such as 1-cyano-3,4-epithiobutane and 1-cyano-2,3-
epithiopropane, respectively, and progoitrin is hydrolyzed into an epithionitriles.
Nitriles are the major degradation products under acidic conditions, which can be
diminished by heating. It is formed after hydrolysis of a GS with a side chain lacking
a double bond, which may involve ESP. Conversion to nitriles is also enhanced in the
presence of ferrous ions. Indole GSs can form indolyl-3-acetonitrile and elemental
sulfur. Moreover, ascorbigen and thiocyanate are the major products of indole GSs
between pH 4 and 7 in the presence of ascorbic acid. For thiocyanates production,
the mechanism from GSs is not clear yet.

4 Glucosinolate During Preparation of Brassica Vegetables

Brassica vegetables are mainly consumed after processing, either at a domestic or
industrial level. Broccoli, cauliflower, and cabbage are boiled, steamed, stir-fried, or
microwave-processed during domestic preparation to produce various dishes.
Canned or fermented vegetables are also produced after industrial processing of
these vegetables. Even when consumed raw, for example, in a salad, these vegetables
are firstly prepared, namely, by washing, cutting, and chopping. Various products or
dishes available around the globe are made based on these vegetables. For examples,
many kinds of soup, steamed, and stir-fried Brassica produced by domestic prepa-
ration and industrial processed products, such as canned and fermented Brassica
such as sauerkraut, or more local products as sayur asin, and kimchi. In some Asian
countries, the dishes made from these vegetables are usually considered as a side
dish to accompany rice or noodle [35].
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Postharvest treatments of Brassica vegetables, such as cutting or chopping and
packaging and storage, can reduce the GS content to a lower degree than the loss due
to preparation itself [5, 36–38]. However, a study on storage of chopped cabbage and
broccoli was reported to increase the indole GSs, which is suspected as physiological
response similar to response due to insect attack [39].

The preparation methods are varied depending on the types of the vegetables, the
quality attributes of intended products, and the local customs, particularly for
processing at domestic level. At industrial processing level, these are more manage-
able and standardized. In the Southeast Asian cuisine, for example, cooking vege-
tables also commonly involves the addition of spices, garlic, chili, salt, sugar, etc., as
ingredients for getting the optimum sensorial quality.

Preparation of vegetables is performed to increase the palatability and digestibil-
ity, change the sensorial properties (including softening of the texture, improving the
appearance and taste), and minimize the risk of microbial contamination. Despite
these advantages, preparation can considerably reduce the content of nutrients and
phytochemicals in the vegetables including the GS, polyphenols, and ascorbic acid
[40–44].

The changes of GSs due to preparation not always have negative implications to
health. Although preparation can reduce the GS content, it can at the same time
increase the GS accessibility of the product [45]. Depending on the decrease of the
content and the increase of the accessibility, the eventual availability of GS for
conversion and absorption during digestion can actually be improved by proper
preparation.

4.1 Mechanisms Underlying the GS Changes

Previous studies reported a variety of results on the effects of preparation methods on
GS content in Brassica vegetables. These lead to the complexity to interpret data
directly due to the large variability of processing conditions and analytical methods
that were used in the various studies. Therefore, a mechanistic approach was
proposed to discuss these data by identifying the relative importance of underlying
mechanisms affecting GS changes of each preparation method [6, 25].

Either sequential or simultaneous mechanisms take place during preparation
(Fig. 1), depending on the processing conditions such as the temperature-time
profile. These can involve physical, (bio)chemical reactions, heat, and mass transfer.
These different mechanisms can be described as follows:

1. Lysis of cells and cellular compartments
Cutting or chopping is applied prior to preparation of Brassica vegetable. Con-
sequently, vegetable tissue, cells, and cellular compartments are broken. This cell
lysis continues during preparation, particularly when heat is applied. During
heating of the vegetable, lysis of the cell will gradually occur. Cell and cell
organelle membranes will collapse and cell walls will soften. The method of
processing and the type of the vegetable determine the degree of lysis.
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2. Diffusion of components through the lysed tissue
Due to the disruption, components of the cells and cellular compartments,
including GSs and myrosinase, will diffuse giving the opportunity for (bio)
chemical reactions between these components.

3. Myrosinase-catalyzed hydrolysis of GSs
Upon lysis and diffusion, myrosinase can have a contact to GSs and the hydro-
lysis of GSs occurs. The hydrolysis reaction can happen in the lysed tissue and in
the cooking water, when the preparation involves water.

4. Thermal degradation of GSs
Most preparation methods on Brassica vegetables apply heat. This is transferred
into the plant tissue, for example, by water, steam, or cooking oil. Consequently,
GSs can be chemically degraded due to the elevated temperature.

5. Inactivation of myrosinase
Heat treatment can also cause inactivation of myrosinase, as well as inactivation
of the ESP and the thiocyanate-forming protein. Also a loss can occur in the
enzymatic cofactors for myrosinase, such as ascorbic acid and Fe2+ affecting the
outcome of the hydrolysis.

6. Leaching of GSs and breakdown products

Fig. 1 Left: Schematic illustration of the main mechanisms responsible for the changes in
glucosinolate content during Brassica vegetable preparation. Right: Legend to explain the used
symbols (Taken from Nugrahedi et al. [6])
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When preparation of vegetable involves water, for example, for boiling, GSs as
well as the breakdown products will leach into the water, following lysis and
diffusion.

To identify the underlying mechanisms involved in each preparation method, all
details of preparation conditions, for example, time, temperature, size or weight of
Brassica vegetables, and water to vegetable ratio, must be taken into account. Hence,
the underlying mechanisms of GS changes in each preparation method are specific.
For instance, cell lysis, diffusion in tissue, and myrosinase inactivation are identified
as the main mechanisms in all preparation methods involving heat. Leaching is
identified as the main mechanism affecting GS losses in boiling vegetables, but not
for stir frying, short-term steaming, or microwave processing without additional
water. Meanwhile, thermal degradation of GS is one of the main mechanisms
involved in stir-frying, but also for other preparation methods involving heat this
could play an important role depending on the conditions, such as the method (hot
vs. cold start boiling), temperature, time, and the size of the vegetable parts. In
Sects. 4.2 and 4.3, examples of various conditions between preparation methods will
be described further.

Another benefit of using the mechanistic approach is that the GS content and all
factors/conditions involved in the preparation can be predicted and optimized
quantitatively by applying kinetic modeling. It is a tool to understand what is
happening since the proposed mechanisms need to be confronted with experiments.
These mechanisms can be subsequently formulated into mathematical equations
describing the rate constant of each mechanism. The reaction rate depends on the
type of GS and the plant matrix. For more detailed information, previous reports
have been studied mathematical modeling of GS changes during preparation of
Brassica vegetables [46–49].

4.2 Thermal Processing and Preparation Methods

Brassica vegetables are mainly cooked by employing high temperature. Heat treat-
ment affects the changes of GS content mainly by the mechanisms of cell lysis and
diffusion followed by thermal degradation of GSs and myrosinase inactivation.
Depending on the processing conditions, such as temperature and water to vegetable
ratio, other mechanisms can also play an important role, including enzymatic
hydrolysis of GSs and leaching.

4.2.1 Boiling, Steaming, Blanching, and Canning
Brassica vegetables are commonly prepared either by boiling or steaming. For a
longer preservative effect, canning can also be employed. Meanwhile, blanching is
considered as a pretreatment prior to the core processing. In daily practice, blanching
is sometimes considered as a light boiling without further cooling. Boiling is
performed by immersing the vegetable into cold or already boiling water. Mean-
while, steaming is employed by exposing the vegetable to saturated steam. During
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boiling, heat is transferred mainly by convection of hot water into the vegetable
tissue. While for steaming, heat is transferred mainly by condensation of steam at the
vegetable surface and by convection.

During boiling or water blanching, the heat of water transferred into the vegetable
tissue will lead to cell lysis, which subsequently leads to diffusion of GSs and the
myrosinase through the lysed tissue. Part of them will leach into the cooking water.
Enzymatic breakdown of GSs can occur in the lysed tissue as well as in the cooking
water as myrosinase can get in contact with GSs. This is usually expected to be
limited since the temperature increases quickly and will inactivate myrosinase
rapidly, depending to some extent on the stability of the specific myrosinase that is
present in the vegetable. Simultaneously, inactivation of myrosinase and thermal
degradation of GSs can occur due to the heat.

These preparation methods were reported to reduce considerable amount of GSs
in, for example, broccoli (Table 2), white cauliflower [43], Brussels sprouts, and kale
[50, 51]. Typically, leaching is the major factor of the loss of GSs during boiling
followed by GS thermal breakdown. Canning will have a great impact on the loss of
GSs in the products due to the more severe heat treatment. When boiling is
performed at higher pressure than the normal one, a higher degree of GS loss was
reported [41], although one study reported no significant difference in turnips
greens [52].

Although leaching is the major factor of the loss of GSs during boiling the
vegetables, the main part of leached GSs can be recovered in the cooking water. In
preparation methods that use this water for consumption (e.g., soups), this leaching
is not a loss. The rest of the GS loss is likely due to thermal degradation and
enzymatic hydrolysis [37, 53]. Contrary to these findings, some other studies
suspected that the mechanism of GS thermal breakdown is more dominant than
leaching in reducing the GS content [54, 55].

A high retention of GS after boiling was reported in broccoli and Brussels
sprouts [43, 56], most likely due to the large size of the vegetable parts and the
short boiling time employed. Short heat treatment can result in less-intensive GS
loss due to enzymatic hydrolysis, thermal breakdown, and leaching. Most of
the hydrolytic enzyme myrosinase will be inactivated and there might be an
increase of GS extractability during analysis. D’Antuono et al. [57] reported that
the total extracted GS content was twofold higher in boiled cauliflower compared
to raw.

Ranges of GS loss after blanching were also reported in broccoli (Table 2) and
other Brassica vegetables [50, 53, 58, 59]. Higher loss of GSs than boiling can be
expected [60] especially when the ratio of water to vegetable is higher, which will
lead to more extensive leaching. Moreover, the differences in type of Brassica
vegetable and blanching technique could influence the behavior of GSs during
blanching. Goodrich et al. [58] have compared total GS contents in broccoli and
Brussels sprouts after hot water and steam blanching techniques. The authors
reported no significant losses of total GS contents in Brussels sprouts after hot
water and steam blanching, but these techniques reduced total GS contents in
broccoli significantly.

416 P.Y. Nugrahedi et al.



Thus, preparation time and temperature, the ratio of vegetable to water, the
preparation method, and the type and geometrical shape of the vegetable tissues
are the factors strongly affecting the behavior of GS content during boiling and water
blanching.

For steaming, low magnitude of GS loss is expected, since there is no direct
contact between the vegetable tissue and the boiling water. The rate of cell lysis,
diffusion, leaching, enzymatic breakdown, and thermal degradation are lower than
the ones during boiling. Previous studies reported no significant effect of steaming
on total GLS content in cabbage and broccoli, cauliflower, and Brussels sprouts [16,
26, 38, 41]. Steaming can increase the accessibility of GSs in cauliflower and
broccoli [57, 61, 62]. Nugrahedi et al. [63] reported that duration of steaming affects
the behavior of GS content. Total GSs in white cabbage was found to increase during
steaming for 10 min followed by a decline during long-term steaming for 180 min.
This can be explained by leaching of the GSs to the condensated water layer on the
vegetables that is constantly refreshed by condensation and dripping.

Table 2 Effect of boiling, steaming, and blanching on GS retention in broccoli

GS retention (%)

Temperature
(C)

Time
(min) Aliphatic Indole Aromatic Total References

Boiling

Boiling
water

30 17.0 n.a. 50.0 19.4 [38]

8 126.9 70.5 n.a. 95.3 [43]

3 126.6 76.1 44.0 90.5 [56]

5 54.2 51.7 50.0 53.5 [61]

2; 5 70.3–85.5 71.3–97.5 n.a. 70.4–88.1 [64]

5 58.8 40.7 n.a. 53.5 [65]

n.a. 10–15 41.5 58.1 Traces 44.2 [50]

5 56.8 18.4 Up 25.5 [41]

Steaming

Boiling
water

15 124.3 147.0 n.a. 137.0 [43]

3.5 111.4 104.5 Up 107.1 [41]

2; 5 93.9–106.9 94.6–119.3 n.a. 96.8–109.6 [64]

5 93.3 63.2 n.a. 84.5 [65]

100 (oven) 13 133.7 143.0 n.a. 138.9 [43]

Oven n.a. 89.5 131.9 n.a. 130.8 [62]

�20–�100 2–30 91.5–136.5 44.8–135.1 n.a. 78.9–131.8 [17]

Blanching

80 3 64.7 97.2 Traces 69.9 [50]

99 4 22.4 11.5 n.a. 17.0 [58]

Steam:
99–102

5.5 72.2 47.2 n.a. 60.1

n.a. not available
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4.2.2 Frying
There are two main methods of frying of food, namely, shallow (stir) and deep-fat
frying. Stir-frying is commonly performed to prepare Brassica vegetable. By using a
small amount of hot oil, the vegetable is stir-fried at high temperature for several
minutes. This is a very common preparation method to prepare vegetables in Asian
countries, usually performed by using a pressure burner to produce a powerful flame
used for cooking. Small amounts of water might be added during stir-frying,
depending on the local custom, type of Brassica vegetable, and the expected
product.

Heat from the hot surface of the frying pan is transferred through a thin layer of
hot oil to the vegetable. The surface temperature of the vegetable rises rapidly and a
proportion of water is vaporized [66]. Compared to other thermal preparation
methods, stir-frying applies high temperature of oil and shorter preparation time.
Therefore, most of myrosinase is expected to be inactivated. However, the temper-
ature of the main part the vegetable tissue will not exceed 100 �C for the short frying
time usually applied since the tissue will still contain most of its water. Overall, low
degrees of cell lysis and diffusion, leaching, thermal degradation of GSs, and
myrosinase hydrolysis can be expected during short-time stir-frying. On the con-
trary, deep frying to lower water contents will reduce considerable amount of GSs
due to thermal breakdown at the higher product temperatures.

Stir-frying was found to retain the GS content in green cabbage, broccoli,
Brussels sprouts, and cauliflower [38, 56] and even increased the extractability of
GS in Chinese cabbage [67]. However, Yuan et al. [65] observed stir-frying of
broccoli reduced considerable amount of the aliphatic and indole GSs by about
55% and 67%, respectively. Possibly this is due to extensive time-temperature
employed. When an amount of water is added during stir-frying, leaching does not
significantly contribute to degrade GS content in broccoli as compared to the one
without additional water. The authors suspected that thermal breakdown of GSs due
to high temperature of stir-frying affects more than leaching [65]. In another study,
the effect of various times and temperatures on the GS changes during stir-frying of
Chinese cabbage and pak choy was not clearly observed [67].

4.2.3 Microwave Processing
Brassica vegetables contain dissolved ionic contents and considerable amount of
water. During the absorption of microwave (MW) energy, the vegetable is heated by
rotation of the dipolar water molecules and translation of the ionic components. Heat
generated within is transferred throughout the tissue by conduction [68]. The mech-
anisms affecting the fate of GS content mainly are cell lysis and diffusion, inactiva-
tion of myrosinase, and to some extent thermal degradation of GSs.

Magnitude of GS changes is affected by processing time and applied MW power.
The longer the processing time, the more the plant cell lysis and thermal degradation
will occur. At moderate temperature, myrosinase activity will increase and inactiva-
tion will occur rapidly at higher temperature [45]. When considerable amount of
water is added to the vegetable, leaching during MW processing can be expected.
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Table 3 shows that MW processing affects to various degrees of GS retention in
broccoli, depending on the output power and MW time. Fuller et al. [69] and Song
and Thornalley [38] reported that MW processing can retain GS content in cabbage,
Brussels sprouts, and cauliflower. Verkerk and Dekker [45] found that the combi-
nation of output powers, i.e., 180, 540, and 900W, and various processing times, i.e.,
over 24 min, lead to little loss of GSs in red cabbage, while some treatments
increased the extractable GS content. Therefore, higher accessibility of GS of the
plant tissue can be expected during MW heating.

Loss of GSs was reported when water was added for MW processing [41, 64,
70]. Vallejo et al. [41] reported that MW processing for 5 min at 1000 W caused a
loss of total GS content of broccoli florets by about 74%, but the recovery of total
GSs was only about 1% in water. Although the amount of evaporated water was not
reported, GS thermal degradation may play significant role during MW. When a
considerable amount of water is lost from the vegetable tissue, the temperature by the
MWs can easily increase to values substantially above 100 �C inducing rapid
thermal breakdown. A similar microwave processing condition on broccoli, how-
ever, reduced only about 18% of total GS content and parts of this loss were
recovered in the cooking water [70]. Although the amount of additional water was
considerably small, the great loss of total GSs in broccoli by about 60% after
microwave processing for 5 min was also reported when a high power of 1000 W
was employed [65].

4.3 Other Processing Methods

4.3.1 Chilling and Freezing
Brassica vegetables can be minimally prepared by cutting or chopping followed by
packaging and storing at chilling temperature at 0–5 �C. The products are ready to
cook or can be prepared as salads. The combination of low temperature and modified
atmosphere packaging can reduce the rate of biochemical and microbiological
changes, hence extending the shelf life.

Changes of GSs can be expected due to mechanisms of cell lysis and diffusion,
which will lead to enzymatic hydrolysis reaction between GSs and myrosinase. The
amount of cell damage due to cutting will depend on the size of the vegetable parts,
but is expected to be a low fraction of the total amount of cells in the tissue.
Refrigerated storage is expected to inhibit the rate of reaction. Storage conditions
at low temperature (<4 �C) and high relative humidity can maintain cellular integrity
and preventing the contact of myrosinase and GSs and hence, can retard the loss of
GSs [36].

Meanwhile, freezing applies temperatures below the freezing point of the cellular
moisture. A proportion of water in the vegetable undergoes a change in state to form
ice crystals that can penetrate the cell membranes and cell walls thereby lysing the
cells. During frozen storage, this will not cause big changes, but upon thawing rapid
GS hydrolysis by myrosinase can occur if the enzyme was not inactivated by
blanching prior to the freezing. The extension of shelf life is acquired by a
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combination of low temperatures, reduced water activity, and pretreatment by
blanching whenever applied. Compared to chilling, freezing can retain more GS
content of Brassica vegetables.

In general, GS content can be best maintained by freezing, provided that
myrosinase was inactivated prior to freezing [36]. Freezing the blanched broccoli
at �18 �C within 20 min did not substantially change the total GS content but
reduced myrosinase activity by 93%. Subsequently, during storage at �20 �C for
90 days, the GS content was generally unaltered [56]. Accordingly, Volden et al. [71]
found no significant effects of frozen storage of cauliflower at�24 �C for 12 months
on the total GS content. Another study [50] reported that prolonged freezing of
blanched Brassica vegetables at �22 �C for 48 h did not produce any consistent
changes in total GS content. Losses of total GS contents relative to the blanched
vegetables were 50.7% and 4.5% in frozen Brussels sprouts and curly kale, respec-
tively. In contrast, total extractable GS contents in frozen green cauliflower and
broccoli increased by 20.9% and 28.5%, respectively [50].

The matrix structure of the vegetable tissue can also affect the magnitude of GS
changes. Loose structure of the broccoli stalk and flower head are very susceptible to
the leaching effects during prior blanching; hence, freezing the blanched broccoli at
�20 �C retained the total GS content in the principal inflorescences but significantly
decreased the total GS content in the secondary inflorescences [72].

Freezing can rupture plant cells and soften vegetables because of water crystal-
lization in extracellular and intracellular spaces within the vegetable matrix. Freeze-
thawing fracture of plant cells can disrupt the vegetable tissue to cause extensive cell
lysis and diffusion. Subsequently, this will give accessibility of myrosinase to
hydrolyze GSs during thawing and eventually cause significant loss of GSs. Song
and Thornalley [38] reported that storage of broccoli, Brussels sprouts, cauliflower,
and green cabbage at �85 �C for 2 months without prior blanching caused signif-
icant loss of GSs upon thawing.

Blanch-freezing as a treatment prior to boiling can enhance the extension of cell
lysis and diffusion. This will lead to a high degree of GS loss after boiling
[43]. However, Rungapamestry et al. [56] reported no significant change of aliphatic
and aromatic GS contents after stir-frying of broccoli when prior blanch-freezing
was applied.

4.3.2 Drying
Air drying commonly applies circulation of hot dried air on the surface of the food
causing removal of some amount of moisture. High temperature during drying is
expected to soften the plant tissue and induce cell lysis and diffusion of components.
GS loss will be influenced by enzymatic hydrolysis and thermal degradation
[73, 74].

Mrkic et al. [75] reported that different combinations of temperatures at 50 �C
through 100 �C and velocities of drying air at 1.2 through 2.25 ms�1 affect
individual GS in broccoli differently. Compared to the blanched treated only,
the remaining GSs after drying are 32–90% for 4-hydroxy-glucobrassicin, 65–92%
for glucobrassicin, 29–90% for 4-methoxy-glucobrassicin, and 36–92% for
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neoglucobrassicin. Meanwhile, Jin et al. [76] reported that mild air drying of
broccoli with the constant air temperatures at 40 �C and 50 �C can retain the
glucoraphanin content.

4.3.3 Fermentation
Fermentation is depending on the growth and metabolic activity of lactic acid
bacteria, either spontaneously or starter-induced. Salt is usually added to inhibit
the growth of undesired microorganisms during the production of fermented prod-
ucts [77]. Sauerkraut is a popular fermented product of Brassica vegetable. Some
examples of other locally produced fermented Brassicas especially from Asia are
Brassica kimchi from Korea, dakguadong from Thailand, nozawana-zuke from
Japan, suan-tsai from Taiwan, and sayur asin from Indonesia [21, 78–80].

Compared to the preparation methods on Brassica vegetables previously
described, the underlying mechanisms affecting GS changes are different.
Depending on the production method of fermentation, cell lysis and diffusion,
enzymatic hydrolysis, and leaching can occur, which will lead to GS changes.
Moreover, changes of GS content in Brassica during fermentation can be affected
by the type and activity of bacteria, concentration of salt, pH, and fermentation
substrate and temperature. Tolonen et al. [77] and Suzuki et al. [21] reported that
bacteria and sodium chloride influence on the changes of GS in Brassica vegetables
during fermentation. Moreover, a concentration of 500 mM NaCl and pH at below
5.5 inactivated myrosinase when analyzed in vitro [21].

In general, fermentation reduces the GS content significantly. In sauerkraut
production and storage, there was no GS detected in the product, irrespective of
cultivation season on the cabbage, type of fermentation, and concentration of salt
[81–83]. The breakdown products of GS were detected, such as ITCs, cyanides,
indole-3-carbinol, indole-3-acetonitrile, and ascorbigen [77, 81–83]. It is suspected
that the content of the degradation products is not only influenced by the content of
the native GS in raw cabbage, but also by to physicochemical properties, such as
volatility, stability, and reactivity in an acidic environment, and microbiological
stability [81]. Nevertheless, further studies are needed to explain the underlying
mechanisms of GS changes during fermentation.

Sarvan et al. [84] and Nugrahedi et al. [85] showed that inactivation of
myrosinase prior to the fermentation resulted in an increased retention of GSs in
the final product. Heat treatment (i.e., blanching) was applied to the cabbage
followed by fermentation (at 25 �C, 4% brine) by Lactobacillus paracasei LMG
P22043. This treatment retained 35% (27.2 � 2.3 μmol 100 g�1) of total GSs after
fermentation for 71 h as compared to the one before fermentation. Moreover, during
refrigerated vacuum storage for 30 days, 23.7 � 1.5 μmol 100 g�1 of GSs still
retained [84]. In another fermentation study, raw Indian mustard was withered by
microwave processing at 900 W for 2 min to fully inactivate myrosinase. The
concentration of sinigrin, the most dominant GS in Indian mustard, can be retained
at 30% of the one in the withered leaves, while common fermentation led to
considerable loss of GSs. After 7 days of fermentation, about 13% of sinigrin still
can be retained [85]
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4.3.4 High Pressure Processing
High pressure processing can prolong the shelf life of food by destroying microor-
ganisms. High pressures cause collapse of intracellular vacuoles and damage to cell
walls and cytoplasmic membranes [66]. Besides killing microorganism, combination
of high hydrostatic pressure and mild temperatures can be an alternative to thermal
processing to retain the health-promoting compounds. Thus, treatment on Brassica
vegetables by a high pressure and temperature combination gives an advantage over
other conventional preparation methods [86].

Changes of GS during HPP can be expected due to mechanisms of cell lysis and
diffusion, enzymatic breakdown of GS, and possibly also leaching. Nevertheless, the
accessibility of GS from the matrices can be improved by this method.

Van Eylen et al. [86] reported that mild pressure processing of broccoli can induce
the GS hydrolysis. Moreover, loss of 20% of GS was observed after 35 min of
elevated pressure, at 200–300 MPa, and at 20 �C combined treatments. When
temperature was increased at 40 �C and the range of pressure was 100–500 MPa,
the GS degradation was observed after 15 min, and the greatest GS loss at 63% was
obtained at 300 MPa. Thus, the parameters of the process, namely, time, tempera-
ture, and pressure, can be varied in order to obtained different amounts of health
beneficial products.

5 Product and Process Design

To obtain the highest GS content possible in the processed product as well as to
increase the bio-accessibility and bioavailability, the optimization of food prepara-
tion and processing methods is inevitably important. At primary production, efforts
on cultivation and plant breeding have been performed to increase the level of GSs in
fresh Brassica vegetables, such as “BroccoCress®” and “Beneforte®.” However,
since both culinary preparation and industrial processing considerably influence the
fate of GSs in the product, there is a need to (re)design and (re)formulate the
processing and preparation conditions.

To increase the GS intake in the product, as previously described in Sect. 4.3.3,
Sarvan et al. [84] have been redesigned the fermentation method of sauerkraut by
inactivation of myrosinase prior to fermentation. Similarly, myrosinase was
inactivated prior to fermentation of Indian mustard (Brassica juncea) to produce
sayur asin, a local fermented Brassica commonly produced in Asia. [85]. These
studies indicate that enzymatic hydrolysis plays an important mechanism underlying
the loss of GSs during fermentation. The reformulation strategy was employed
during pasta-like production by adding broccoli powder. It was reported that the
nutritional function, in terms of GS content, in the pasta and noodle can be improved
by enrichment up to 20% (v/v) broccoli powder, and no negative effects on accept-
ability were observed [87].

To increase the bioavailability, Oliviero et al. [88] have been designed a mild air
drying technique to obtain powdered broccoli containing high GSs as well as
retaining active myrosinase. By optimizing temperature trajectories, broccoli
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product with fully retained GSs and partially retained myrosinase can be obtained. In
Sect. 4.3.4, it was shown also that HPP [86] can be considered as a promising
technique to increase the bioavailability of GS breakdown products. Moreover, in
order to optimize processing and preparation methods, mathematical modeling of the
simultaneously occurring mechanisms that influence the fate of GSs can be a
valuable tool [25].

6 Conclusions

Processing and preparation have a significant impact on the content and accessibil-
ity of GSs in Brassica vegetables. Different preparation methods lead to various
degrees of GS changes. In general, boiling and fermentation considerably reduce
the amount of GSs, while short-term steaming, microwave processing, and stir-
frying can retain GS content. Moreover, these preparation methods can increase the
accessibility of the compounds from the plant matrix.

A mechanistic approach is valuable to explain and describe the behavior of GSs in
Brassica vegetables during preparation. By employing this mechanistic approach
underlying the GS changes during processing alternative procedures or conditions
can be redesigned to improve the retention of GSs. Moreover, reformulation can also
be performed to modify the product properties in such a way that the intake of health-
promoting GSs increases. Redesigning process and reformulating product can con-
tribute to the aim of improving the diet, especially by employing mathematical
modeling techniques.

In addition, by understanding the behavior of GS in Brassica vegetables during
processing, a more accurate estimation of the dietary intake of GSs in prepared
dishes can be performed. This estimation is important for establishing the relation
between intake of phytochemicals and health effects like reducing the risk of certain
diseases. However, since GSs do not have health protection effect but the breakdown
products, it will be useful to further investigate the breakdown products of GSs in
Brassica vegetables prior to consumption and the bioavailability of these
compounds.
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