

HISTORY OF MANUSCRIPT PUBLICATION
JOURNAL OF FUNCTIONAL FOOD AND NUTRACEUTICAL (SINTA 3)

Title:

Drying and Degradation Kinetics of the Physicochemical Characteristics of Parijoto Fruit (Medinilla speciosa) with Calcium Chloride Pre-Treatment

Authors:

Novita I. Putri, Jelle Van Audenhove, Clare Kyomugasho, Ann Van Loey, Marc Hendrickx

Contents:

1. Submission to JFFN
2. Submissions Needing Revision
3. Author Response
4. Revised Manuscript A
5. Revised Manuscript B
6. Accepted Confirmation
7. Final Article

I. Submission to JFFN

11/21/24, 10:24 AM

Mail - Novita Ika Putri - Outlook

[jffn] Submission Acknowledgement - Manuscript 165

From Dr. Maria D.P.T. Gunawan Puteri <no-reply@sgu.ac.id>

Date Sat 13/07/2024 20:48

To Novita Ika Putri <novitaika@unika.ac.id>

Dear Novita Ika Putri,

Your manuscript entitled "DRYING AND DEGRADATION KINETICS OF THE PHYSICOCHEMICAL CHARACTERISTICS OF PARIJOTO FRUIT (MEDINILLA SPECIOSA) WITH CALCIUM CHLORIDE PRE-TREATMENT" has been successfully submitted online and is presently being given full consideration for publication in Journal of Functional Food and Nutraceutical

Your manuscript ID is 165

Please mention the above manuscript ID in all future correspondence or when calling the office for questions.

You can also view the status of your manuscript at any time by checking your Author Center after logging in to: <https://journal.sgu.ac.id/jffn/index.php/jffn/authorDashboard/submission/165>

Thank you for submitting your manuscript to Journal of Functional Food and Nutraceutical.

Dr. Maria D.P.T. Gunawan Puteri

Editorial Office Journal of Functional Food and Nutraceutical (JFFN)

The Prominence Tower Alam Sutera, Jl. Jalur Sutera Barat. No. 15, RT.003/RW.006, Panunggangan Tim., Kec. Pinang, Kota Tangerang, Banten 15143

Email: **jffn@sgu.ac.id**

Website: <https://journal.sgu.ac.id/jffn>

II. Submissions Needing Revision

11/20/24, 10:42 AM Novita Ika Putri, DRYING AND DEGRADATION KINETICS OF THE PHYSICOCHEMICAL CHARACTERISTICS OF PARIJO...

Notifications

[jffn] Editor Decision

2024-09-02 06:19 AM

Dear Novita Ika Putri, Bernardus David Lai, Gelbert Jethro Sanyoto, Victoria Kristina Ananingsih,

Your manuscript has been assessed by our reviewers. They have raised a number of points which we believe would improve the manuscript and may allow a revised version to be published in JFFN. We have reached a decision regarding your submission to Journal of Functional Food and Nutraceutical, "DRYING AND DEGRADATION KINETICS OF THE PHYSICOCHEMICAL CHARACTERISTICS OF PARIJOTO FRUIT (MEDINILLA SPECIOSA) WITH CALCIUM CHLORIDE PRE-TREATMENT".

Our decision is: **Revisions Required**

You can make revisions and answers of each reviewer comment in a separate paper. You can agree or disagree with what a reviewer comments and please make highlight by colour text in the manuscript. Once the revised manuscript is prepared including the author responses form, you can upload it and submit it through our system.

Download author responses form:

<https://drive.google.com/file/d/1k22zBVUIPPQ112UaqYoRD3aus2w9FDqb/view?usp=sharing>

Please send back the article within **5 (five) working days** time after you receive this email through our journal system.

If you do not have your username and password for the journal's web site, you can use this [link](#) to reset your password (which will then be emailed to you along with your username).

Once again, thank you for submitting your manuscript to JFFN and I look forward to receiving your revision.

Best regards,

Della Rahmawati

Department of Food Technology, Faculty of Life Sciences & Technology, Swiss German University, Tangerang 15112, Indonesia

<https://journal.sgu.ac.id/jffn/index.php/jffn/authorDashboard/submit/165>

2/2

III. Author Response

Dear Editor and Reviewers,

We would like to thank you for the comments and inputs on our manuscript. We highly appreciate the remarks and suggestions which we believe will improve the quality of this manuscript.

Each comment has been carefully considered and the manuscript has been revised accordingly. Please find below our reply for the comments from the reviewers. Authors' responses can be found under the comment written in **red**. Changes made in the paper will be indicated by the Track Changes function in Ms. Word. Comments given in the word file of the manuscript are replied in the word file. The comments from Reviewer B (written in pdf file) has been added to the word file as well.

We did not find a template for Author response form. We also did not find any requirement or template on how to submit the revised manuscript. Therefore, we are hoping that this Ms. Word file is sufficient. Please let us know if a certain format needs to be followed.

We would like to thank you for reconsidering our manuscript and we are looking forward to your response.

Yours sincerely,

On behalf of all authors

Dr. Novita Ika Putri, MS

Reviewer A:

Recommendation: Accept Submission

Insight aspirations

National

Originality of work

High

Originality of work (comment)

Mengangkat Pangan lokal "parijoto" mengandung antioksidan alami sebagai pangan fungsional.

The meaning of contribution to the advancement of science

Very Obvious

The meaning of contribution to the advancement of science (comments)

kinetika kerusakan komponen aktif selama proses pengeringan "parojoto" penting dalam pengembangannya sebagai pangan fungsional

Analysis and synthesis

Sufficient

Analysis and synthesis (comment) 08998904545

Telah dijelaskan mekanisme stabilitas dan degradasi antioksidannya dengan baik, kecuali warna. Namun model kinetika yang digunakan belum dicantumkan. Kajian ini juga perlu merekomendasikan suhu pengeringan yang optimal untuk "parijoto" berdasarkan parameter yang dianalisis. File naskah terlampir.

Author's response :

- All the kinetic models used have been described in the methodology section. Degradation kinetic using the first order kinetic is described in Equation 4. The drying kinetic models are described in Table 1.
- Optimum drying temperature has been explained in the discussion, conclusion and abstract section.

Conclusion

Sufficient

Conclusion (comment)

suhu pengeringan yang optimal untuk "parijoto" dan model kinetika perlu ditambahkan

Authors' response :

- Optimum drying temperature has been explained in the discussion, conclusion and abstract section.

Effectiveness of article titles

Straightforward and informative

Effectiveness of article titles (comment)

-

Abstract

Abstracts are not clear and concise

Authors' response :

- Abstract has been modified to hopefully become clearer and more concise

Abstract (comment)

suhu pengeringan yang optimal untuk "parijoto" dan model kinetika perlu ditambahkan.

Authors' response :

- Optimum drying temperature has been explained in the discussion, conclusion and abstract section.

Keywords

The keywords are existed, consistent and reflect important concepts in the article

Keywords (comment)

-

Use of supporting instruments (tables, graphs, images)

Less informative or less complementary

Use of supporting instruments (tables, graphs, images) (comment)

Terkait keterangan Tabel dan Gambar dapat dilihat pada file naskah terlampir.

Authors response :

- Additional information on the caption of table and graph has been added in the revised manuscript

Use of terms and language

Good terms and language

Use of terms and language (comment)

-

General comments

Kajian yang menarik untuk dikembangkan sebagai data dasar pengembangan pangan fungsional dari "parijoto"

Reviewer B:

Recommendation: Revisions Required

Insight aspirations

Local

Originality of work

Enough

Originality of work (comment)

The meaning of contribution to the advancement of science

Very Obvious

The meaning of contribution to the advancement of science (comments)

Prolonging the anthocyanin activities of Parijoto fruit allows the fruit to be used as a functional ingredient.

Authors' response :

- Thank you very much for the input. It has been added to the discussion section of the manuscript.

Analysis and synthesis

Good

Analysis and synthesis (comment)

The author provided sufficient data and analysis. Some statistical terms need to be explained further. Additionally, some conclusions need to consider the results of statistical analysis.

Authors' response :

- The physical meaning of the coefficient obtained from the modelling has been explained further. Most of the conclusions were drawn from the model fitting process, more specifically by comparing the coefficient obtained, which could be considered as statistical analysis. The authors feel that solid conclusions could be drawn about the physical meaning of these coefficients for the drying process of *parijoto* fruits since many studies have shown the validity of these coefficients to describe the kinetics of drying and degradation.

Conclusion

Good

Conclusion (comment)

Effectiveness of article titles

Straightforward and informative

Effectiveness of article titles (comment)

Abstract

Clear and concise abstract

Abstract (comment)

Keywords

The keywords are existed, consistent and reflect important concepts in the article

Keywords (comment)

Use of supporting instruments (tables, graphs, images)

Less informative or less complementary

Use of supporting instruments (tables, graphs, images) (comment)

Most of the figures and tables are clear. More explanation is required about the colour analysis method and results.

Authors' response :

- Colour analysis method has been modified to be clearer.
- More interpretation of the colour analysis has been added to the discussion section.

Use of terms and language

Good terms and language

Use of terms and language (comment)

Overall, the manuscript is easy to read and uses proper English. Be careful with some typos, use of articles (a, an, the) and formatting (e.g. subscript).

Authors' response :

- Misspelling, formatting mistakes and improper use of articles has been minimized.

General comments

The paper explains the effect of CaCl₂ pretreatment on the degradation of antioxidant activities and anthocyanin content of Paritojo fruit dried at different temperatures (60, 70, and 80 C). The author has shown the results in sequential order, and has clearly explained the possible mechanism of CaCl₂ in preserving anthocyanin and assisting the drying process. However, there are some notes:

- 1) The equipment used (Heto PowerDry LL1500) was a freeze dryer. Please explain how you dried the fruits at 60, 70, and 80 C.
- 2) Please make Figure 4-6 (L,a,b results) clearer
- 3) Other notes in the file

Authors' response :

- 1). We apologize for the confusion. The cabinet drier used is Binder ED 115. The manuscript has been revised. Thank you for the correction
- 2). In order to make Figure 4-6 clearer, the graph is separated into 2, based on the pre-treatment.
- 3) Other notes have been addressed

IV. Revised Manuscript A

1 Drying and Degradation Kinetics of the Physicochemical Characteristics of Parijoto Fruit 2 (*Medinilla speciosa*) with Calcium Chloride Pre-Treatment 3

4 ABSTRACT 5

6 *Parijoto* (*Medinilla speciosa*) is an Indonesian local plant with high levels of bioactive
7 compounds crucial in improving overall health. However, these bioactive compounds are
8 susceptible to high temperatures from prolonged heating processes and environmental factors such
9 as oxygen, light, and pH. Therefore, a significant decline in the *parijoto* fruit quality may occur
10 during drying, which prompts a need for a solution to prevent damage to the bioactive compounds
11 in the fruits. As a food additive, calcium chloride (CaCl_2) can help maintain cell wall strength and
12 prevent damage from enzymatic, mechanical, and microbial activities in food products. The study
13 aimed to investigate the impact of soaking with CaCl_2 (10 min) and drying temperatures (60, 70,
14 and 80°C) for 8 hours on physicochemical characteristics such as antioxidant activity, total
15 anthocyanin content, and colour. The moisture ratio, colour intensity, antioxidant activity and total
16 anthocyanin content at hourly intervals during drying were measured. The results indicated that
17 soaking in CaCl_2 can lead to osmotic dehydration, accelerating the drying rates and preserving the
18 anthocyanin content. The kinetics of the degradation of anthocyanins and antioxidant activity were
19 established, as well as the drying kinetic model for *parijoto* fruits. The Page model was found to
20 be the most relevant and suitable drying kinetics model based on the drying design in this study
21 compared to the other two models.
22

23 **Keywords:** *Parijoto* fruit; Degradation kinetic, Drying kinetic, Calcium chloride

24 Kinetika Pengeringan dan Degradasi Karakteristik Fisikokimia Pada Buah Parijoto 25 (*Medinilla speciosa*) dengan Pra-Perlakuan Kasium Klorida 26

27 ABSTRAK 28

29 *Parijoto* (*Medinilla speciosa*) adalah tanaman lokal Indonesia yang mengandung senyawa
30 bioaktif tinggi yang penting untuk meningkatkan kesehatan secara keseluruhan. Namun, senyawa
31 bioaktif ini rentan terhadap suhu tinggi dari proses pemanasan yang panjang dan faktor lingkungan
32 seperti oksigen, cahaya, dan pH. Oleh karena itu, penurunan kualitas buah parijoto yang signifikan
33 dapat terjadi selama pengeringan, sehingga diperlukan solusi untuk mencegah kerusakan pada
34 senyawa bioaktif di buah tersebut. Sebagai bahan tambahan makanan, kalsium klorida (CaCl_2)
35 dapat membantu menjaga kekuatan dinding sel dan mencegah kerusakan akibat aktivitas enzimatik
36 dan mikroba pada produk pangan. Penelitian ini bertujuan untuk menginvestigasi dampak
37 perendaman dengan CaCl_2 (10 menit) dan suhu pengeringan (60, 70, dan 80°C) selama 8 jam
38 terhadap karakteristik fisiko-kimia seperti aktivitas antioksidan, total kandungan antosianin, dan
39 warna. Perbandingan rasio kadar air, intensitas warna, aktivitas antioksidan, dan kandungan total
40 antosianin diuji setiap jam selama proses pengeringan. Hasil penelitian menunjukkan bahwa
41 perendaman dalam CaCl_2 dapat menyebabkan dehidrasi osmotic sehingga mempercepat laju
42 pengeringan, dan menjaga kandungan antosianin. Pada studi ini, dilakukan pula pemodelan
43 kinetika degradasi antosianin dan aktivitas antioksidan, serta model kinetika pengeringan untuk

44 **Commented [A1]:** Pada suhu pengeringan mana yang optimal
untuk mengeringkan parijoto, berdasarkan karakteristik
fisikokiminya?

45 buah parijoto. Model Page terbukti menjadi model kinetika pengeringan yang paling relevan dan
46 sesuai berdasarkan desain pengeringan dalam studi ini.
47 **Kata kunci:** Buah parijoto; Kinetika degradasi, Kinetika pengeringan, Kalsium klorida

Commented [A2]: Kinetika degradasi antosianin dan aktivitas
antiosida berdasarkan nilai k dan E_a . Perlu ditampilkan datanya
dalam abstrak, demikian pula dengan ordo reaksinya?

Commented [A3]: Tampilan model Page yang mendeskripsikan
kinetika pengeringan buah parijoto hasil penelitian ini.

48 **INTRODUCTION**

49 *Parijoto* (*Medinilla speciosa*) is a local Indonesian plant that grows, often uncultivated, in
50 Kudus, Central Java. *Parijoto* is currently often cultivated as a decorative plant. However, the fruit
51 of *parijoto* contains a high number of bioactive compounds such as ascorbic acid, carotenoids,
52 flavonoids, vitamin E, flavonol glycoside and phenolic compounds which may act as antioxidants
53 (Angriani, 2019). Antioxidant compounds play an essential role in the health of the body, as they
54 can protect the body from oxidative damage, inhibit oxidative stress, reduce inflammation, and
55 boost the immune system (Haerani et al., 2018).

56

57 Previous research has shown that anthocyanin compound in *parijoto* fruit can be used as a
58 natural blue colorant (Priska et al., 2018). Anthocyanin can also act as antioxidant, anti-cancer,
59 anti-diabetics, and anti-inflammation (Basri, 2021; Tan et al., 2021). However, the bioactive
60 compounds in the *parijoto* fruit are very vulnerable to damage, especially the anthocyanin
61 compound and the antioxidant components such as flavonoids and phenolics (Wachidah, 2013).
62 The damage to such compounds can be caused by high-temperature processes and environmental
63 conditions such as oxygen, light, and pH (Feng et al., 2015). Drying, on the other hand, is a
64 standard preservation method because it can increase the storage life and facilitate the distribution,
65 supply, and ease-of-use. Therefore, it is necessary to prevent the damage of bioactive compounds
66 due to the drying temperature of the *parijoto* fruit, e.g. by pre-treatments.

67

68 Using organic acid solutions (citric acid, acetic acid) and salt solutions (Na^+ , Ca^{2+}) with
69 specific concentrations as a pre-drying treatment can retain bioactive compounds in food materials.
70 Calcium chloride (CaCl_2) is a salt classified as a food additive. According to a study by Guo et al.
71 (2023), the lifespan of lychee fruit increased because CaCl_2 increased the strength of the cell wall
72 and prevented the activity of polyphenol oxidase (PPO) enzymes and microbes. Looking at the
73 potential of *parijoto* fruit as a novel health-promoting food ingredient, this study aims to firstly
74 examine the effect of CaCl_2 and temperature in the drying process of *parijoto* fruit. Secondly, this
75 study also aims to establish the drying and degradation kinetics, which will be useful in developing
76 *parijoto* fruit products that are shelf-stable with optimum bioactive compound activities.

77

78 **MATERIALS AND METHOD**

← Formatted: Indent: First line: 0,85 cm, Line spacing: 1,5
lines, Tab stops: 0,85 cm, Left

← Formatted: Indent: First line: 0 cm

79 **2.1. Materials**

80 Fresh *parijoto* fruits were obtained from Kudus, Central Java. Other materials used in this
81 study are CaCl₂ (E. Merck, Germany), KCl (E. Merck, Germany), CH₃COONa (E. Merck,
82 Germany), 2-diphenyl-1-picrylhydrazyl (Sigma Aldrich, USA), and methanol 99.98% (E. Merck,
83 Germany). All the chemicals used are of analytical grade unless specified.

84

85 **2.2. Methods**

86 **2.2.1. Parijoto fruit preparation and pre-treatment**

87 *Parijoto* fruits were separated from the branch, sorted and then washed under a running tap
88 water. Half of the cleaned *parijoto* fruits were submerged in CaCl₂ 2% solution for 10 min. (sample
89 code: Ca) while the other half were not submerged as a control (sample code: K).

90

91 **2.2.2. Drying process**

92 Drying was done using a dryer cabinet HetoPowerDry LL1500. *Parijoto* fruits were placed
93 on a tray and were spread evenly. The control and pre-treated samples were dried at 60, 70, and
94 80°C for 8 hours. During the drying process, the mass of the *parijoto* fruits was weighed every 1
95 hour. After drying, the samples were grinded with mortar and pestle for further chemical analysis
96 of the antioxidant activity and total anthocyanin.

97

98 **2.2.3. Ultrasound-assisted methanol extraction for chemical analysis**

99 Five grams of the grinded dried *parijoto* fruit was suspended in 50 ml methanol. The mixture
100 was subjected to ultrasound in a sonication bath (BioBase, China) at frequency 40 kHz for 30 min
101 and then was let to sit for another 1 h. The mixture was filtered and the filtrate were diluted into
102 100 ml using methanol. The extract was stored until further analysis for anthocyanin and
103 antioxidant activity analysis.

104

105 **2.2.4. Total anthocyanin analysis**

106 Anthocyanin analysis was done using pH differential method described in Turmanidze et al.
107 (2016). The methanol extract obtained was further diluted 2x using methanol. Two milliliters of
108 the diluted samples were mixed with 2 ml of KCl buffer solution pH 1 and CH₃COONa buffer
109 solution pH 4.5. The mixture was incubated in a dark room for 15 min. The absorbance of the

Commented [A4]: Sesuaikan dengan panduan penulisan JFFN.
Sub bagian tanpa penomoran dan di "BOLD"

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Indent: First line: 0 cm

Formatted: Font: Bold

Formatted: Strikethrough

Formatted: Font: Bold

Formatted: Strikethrough

Formatted: Font: Bold

Commented [A5]: Referensi?

Formatted: Strikethrough

Formatted: Font: Bold

Formatted: Subscript

110 mixture was measured using UV-Vis spectrophotometer (UV1280, Shimadzu, Japan) at
111 wavelength 520 and 700 nm. Total anthocyanin in the extract were measured using the equations
112 below:

$$113 \quad A = (A_{520} - A_{700})_{pH\ 1} - (A_{520} - A_{700})_{pH\ 4.5} \quad (1)$$

$$114 \quad \text{Total Anthocyanin (mg/L)} = \frac{A \times MW \times DF \times 1000}{\epsilon \times L} \quad (2)$$

115 where A is the absorbance value at different wavelength, MW is the molecular weight of
116 cyanidine-3-glucoside (449.2 g/mol), DF is the dilution factor (20), ϵ is the molar absorptivity of
117 cyanidine-3-glucoside (26900 L/mol.cm) and L is the cuvet width (1 cm).

118

119 **2.2.5. Antioxidant activity analysis**

120 Antioxidant activity was measured using the method described in Ahmed et al. (2015). The
121 methanol extract was diluted into 1500 ppm using methanol. Afterwards, 0.3 ml of the diluted
122 sample were reacted with 9 ml of DPPH solution (Merck, Germany) in the dark room for 30 min.
123 Blank solution were prepared using 0.3 ml methanol and 9 ml DPPH solution. After 30 min, the
124 absorbance of the sample (Asample) and blank solution (Ablock) was measured using UV-Vis
125 spectrophotometer (UV1280, Shimadzu, Japan) at 517 nm. The antioxidant activity is calculated
126 using the equation below.

$$127 \quad \text{Antioxidant activity (\%)} = \left[\frac{(A_{block} - A_{sample})}{A_{block}} \right] \times 100 \quad (3)$$

128 **2.2.6. Degradation kinetics**

129 The degradation kinetic of the total anthocyanin content and antioxidant activity was fitted
130 into the first order kinetic equation (eq. 4). The degradation kinetic coefficient (k) was obtained
131 from the regression of the experimental data (Fogler, 2006 in Peron et al., 2017).

$$133 \quad \ln(C_t) = \ln(C_0) - kt \quad (4)$$

134 C_t = Concentration of total anthocyanin or Antioxidant activity at time t
135 C_0 = Initial concentration of total anthocyanin or Antioxidant activity
136 k = degradation kinetics coefficient
137 t = time (h)

138 Furthermore, half-life time ($t_{1/2}$), the time in which the component's degradation reached
139 half of its initial value, was calculated using eq. 6 below (Peron et al., 2017).

$$141 \quad t_{1/2} = \frac{\ln(0.5)}{k} \quad (6)$$

Formatted: Strikethrough

Formatted: Font: Bold

Formatted: Strikethrough

142
143 $t_{1/2}$ = half-life time
144 k = degradation kinetic coefficient
145

146 **2.2.7. Drying kinetics**

147 Water content analysis was done using gravimetric method, which 2.5 g sample was dried
148 in a porcelain dish at 100°C. Water content analysis was carried out throughout the drying process
149 and the drying kinetic model was done through the moisture ratio (MR) calculation in eq 7 below.

Formatted: Strikethrough

Formatted: Font: Bold

150
$$MR = \frac{M_t}{M_0} \quad (7)$$

151 M_t = moisture content (d b) at time t
152 M_0 = initial moisture content (d b)

153 The MR data obtained will be used to determine the drying kinetic based on the three types
154 of semi-empirical models (Turan & Firatligil, 2019), which can be seen in Table 1. Mathematical
155 modelling was done using nonlinear regression. Increasing R² values and increasing RMSE values
156 are factors in determining the relevant kinetic drying model (Vardin & Yilmaz, 2018). RMSE
157 determination was done following eq 8.

Commented [A6]: Lengkapi singkatan dari RMSE?

158
$$RMSE = \left[\frac{1}{N} \sum_{i=1}^N (MR_{exp,i} - MR_{pre,i})^2 \right]^{\frac{1}{2}} \quad (8)$$

159
160 N = number of observations
161 $MR_{exp,i}$ = MR experimental
162 $MR_{pre,i}$ = MR prediction

163 **Table 1.** Drying kinetic models

Model	Equation
Lewis	$MR = \exp(-kt)$
Henderson & Pabis	$MR = a \cdot \exp(-kt)$
Page	$MR = \exp(-kt^n)$

164

165 **2.2.8. Effective moisture diffusivity**

166 Effective moisture diffusivity coefficient (D_{eff}) describes the effectiveness of water diffusion
167 processes in a drying process (Chen et al., 2016). The D_{eff} was calculated based on the value of k
168 (slope) of the linear regression of eq. 9 below.

Formatted: Strikethrough

Formatted: Font: Bold

169
$$\ln(MR) = \ln\left(\frac{6}{\pi^2}\right) - \left(\frac{\pi^2 D_{eff}}{r^2}\right)(t) \quad (9)$$

170
$$k = -\frac{\pi^2 D_{eff}}{r^2} \quad (10)$$

171
172 MR = moisture ratio
173 r = material's radius
174 t = time

175 Activation energy (E_a) is the minimum energy needed to start the reaction (Syah et al., 2020).

176 The value of E_a of the moisture diffusion process was obtained through a regression of eq 11 below.

177
$$D_{eff} = D_0 \cdot e^{(-\frac{E_a}{R})(\frac{1}{T})} \quad (11)$$

178
179 T = temperature (K)
180 R = ideal gas constant (8.314 J mol⁻¹ K⁻¹)
181 D₀ = exponential equation constant

182 **2.2.9. Color intensity**

183 Color intensity measurement was done through digital imaging analysis. The digital images
184 of the *parijoto* fruits during drying was captured using a smartphone (Infinix Note 11 Pro, Infinix
185 Mobile, China). The digital images of *parijoto* fruit were taken every hour during drying inside a
186 modified mini photo studio box. Color intensity measurements of the digital images based on L*,
187 a*, and b* colors are conducted using the eyedropper tool in Adobe Photoshop CS3 software
188 (Adobe, USA). Measurements were taken three times at different points.

Formatted: Font: Times New Roman, 12 pt, Bold
Formatted: Font: Bold
Formatted: Normal, Line spacing: single, No bullets or numbering

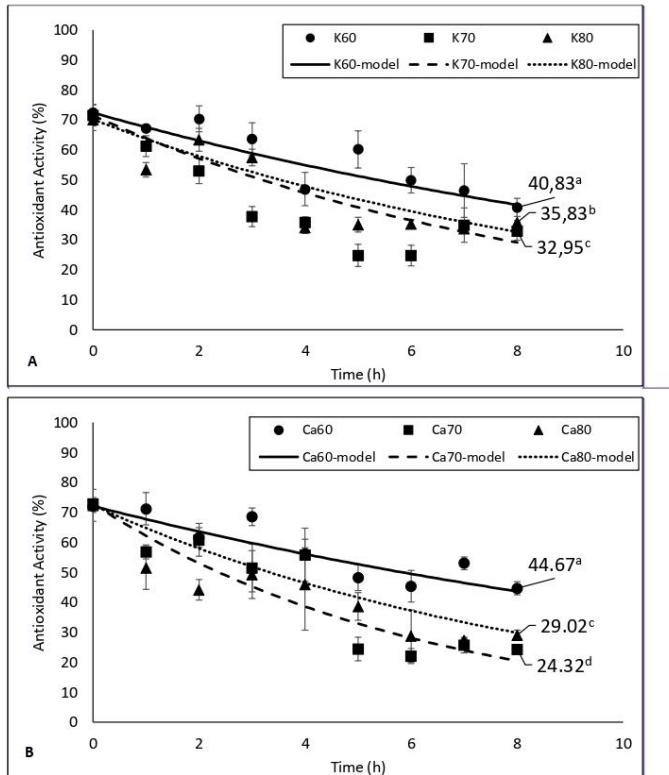
189
190 **2.2.10. Data analysis**

191 Data analysis and model fitting were carried out using Microsoft Excel and **SPSS** statistical
192 software analysis v.23. Analysis of variance was carried out to measure statistically significant
193 difference at α 0.5.

Formatted: Font: Bold
Formatted: No bullets or numbering
Commented [A7]: SPSS singkatan dari apa?

194 **RESULTS AND DISCUSSION**

195 **2.1. Antioxidant activity**


196 Figure 1 shows the antioxidant activity of the *parijoto* fruit before and after drying. The
197 CaCl₂ submersion pre-treatment did not significantly influence the antioxidant activity of *parijoto*
198 fruit, while higher drying temperature significantly decrease the antioxidant activity of *parijoto*
199 fruits.

Formatted: Font: Times New Roman, 12 pt, Bold
Formatted: Font: Bold
Formatted: Normal, Line spacing: single, No bullets or numbering

Commented [AB]: Pengulangan kata, buat kalimat efektif.

204 **Figure 1.** Antioxidant activity of *parijoto* fruit dried at different temperature without pre-
 205 treatment (A) and with CaCl_2 submersion (B)

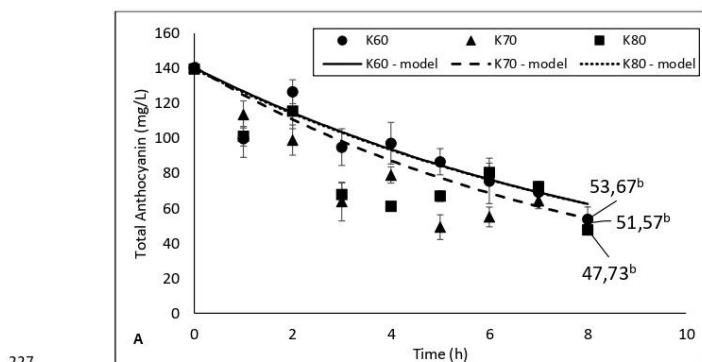
206
 207 High temperatures can damage antioxidant compounds in materials, leading to decreased
 208 antioxidant activity (Hwang & Do Thi, 2014). According to research by Aloo et al. (2022), CaCl_2
 209 soaking treatment can maintain the ascorbic acid content and antioxidant compounds in bell

Commented [A9]: Tambahkan keterangan:
 K60, K70 dan K80 menunjukkan apa?
 K60-Model, dst menunjukkan apa?

Angka 40,83 dst menunjukkan apa? huruf yang dibelakangnya
 menunjukkan apa?

Commented [A10]: Tambahkan keterangan:
 C60, C70 dan C80 menunjukkan apa?
 C60-Model, dst menunjukkan apa?

Angka 44,67 dst menunjukkan apa? huruf yang dibelakangnya
 menunjukkan apa?


210 peppers after 16 days of storage at room temperature. Similar findings can be observed in this
211 study for *parijoto* fruits dried at 60°C treatment, which shows higher results in the soaked fruit
212 than the control. Calcium ions in CaCl_2 can form calcium pectate cross-links with pectin molecules
213 in food materials. This can enhance mechanical properties in *parijoto* fruit, thereby preserving
214 intracellular antioxidant compounds. Goutam et al. (2010) in Aloo et al. (2022) also mentioned
215 that calcium ions could decrease oxidative enzyme activity, thus maintaining antioxidant activity
216 stability against oxidative degradation in *parijoto* fruit. However, the positive effect of the CaCl_2
217 soaking was not observed for drying at 70 and 80°C, indicating that the high temperature's
218 destructive effect affects the antioxidant activity more than the protection of the CaCl_2 pre-
219 treatment.

220

221 1.2. Total anthocyanin content

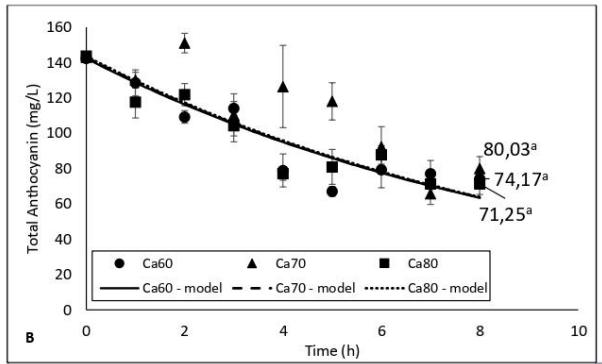
222 Figure 2 shows the total anthocyanin content of the dried *parijoto* fruits. Drying caused
223 *parijoto* fruits to lose its anthocyanin content significantly. However, the results show that CaCl_2
224 pre-treatment significantly preserve the anthocyanin content of *parijoto* fruits. On the other hand,
225 the drying temperature did not significantly affect the anthocyanin content of the fruit.

226

227

Formatted: Font: Times New Roman, 12 pt, Bold

Formatted: Font: Bold


Formatted: Normal, Line spacing: single, No bullets or
numbering

Commented [A11]: Tambahkan keterangan:
K60, K70 dan K80 memajukan apa?
K60-Model, dst memajukan apa?

Angka 53,67 dst menunjukkan apa? huruf yang dibelakangnya
menunjukkan apa?

228

229 **Figure 2.** Total anthocyanin content of *parijoto* fruit dried at different temperature without pre-
 230 treatment (A) and with CaCl_2 submersion (B)
 231

Commented [A12]: Tambahkan keterangan: C60, C70 dan C80 menunjukkan apa? C60-Model, dst menunjukkan apa?

Angka 80,03 dst menunjukkan apa? huruf yang dibelakangnya menunjukkan apa?

232

Research by Feng et al. (2022) showed that the utilization of CaCl_2 solution can preserve the phenolic compounds and stability of antioxidant compounds in luffa (*Luffa cylindrica*). Calcium pectate cross-links may form during the CaCl_2 pre-treatment and they can strengthen the interaction between pectin and anthocyanin (Lin et al., 2016) which may protect the anthocyanin content from the heat treatment during drying. Furthermore, the formation of calcium pectate cross-links enhances the integrity of the cell and prevents cellular damage which encourage of enzymatic browning in food materials due to the release of the polyphenol oxidase (PPO). Since anthocyanins are natural compounds in *parijoto* fruit belonging to the phenolic group, damage to anthocyanin compounds from the PPO activity can be prevented. This could explain the higher total anthocyanin content in CaCl_2 -soaked samples compared to the control.

233

1.3. Degradation kinetic coefficient of antioxidant activity and total anthocyanin content

The values of k , $t_{1/2}$ and E_a obtained from the first order kinetic regression from the antioxidant activity and total anthocyanin content during drying are presented in Table 2. These values are useful in describing the properties degradation kinetics during drying and to compare the susceptibility of the properties to heat degradation. Higher k value indicates faster degradation

Formatted: Font: Times New Roman, 12 pt, Bold

Formatted: Font: Bold

Formatted: Normal, Line spacing: single, No bullets or numbering

Commented [A13]: Mengapa menggunakan regresi kinetik orde 1? Apakah yang menjadi dasar penentuan orde 1? Sertai dengan referensi pendukung

248 and thus, a more susceptible material. On the other hand, higher $t_{1/2}$ showed a slower and more
249 difficult degradation, which indicate a more stable material (Peron et al., 2017).

250 The results of the antioxidant activity analysis show that the degradation rate constant (k)
251 increases with higher drying temperatures. This indicates a faster decline in antioxidant activity
252 with increasing drying temperature, affecting the time for antioxidant activity to reach half its
253 initial value ($t_{1/2}$). Thus, it can be concluded that the antioxidant activity of *parijoto* fruits is very
254 vulnerable to increase in temperature during drying.

255 On the contrary, the k value of the total anthocyanin degradation kinetic remained the same
256 with higher drying temperature. This indicate that the temperature difference in this study did not
257 affect the kinetics of the anthocyanin degradation. Interestingly, CaCl_2 treatment caused significant
258 reduction in the k value and increase in the $t_{1/2}$ value. This may be due to calcium pectate
259 interactions with anthocyanins as previously discussed (Lin et al., 2016), which can slow down
260 anthocyanin degradation. However, the CaCl_2 submersion did not slow down the degradation of
261 antioxidant activity of *parijoto* fruits during drying.

262

263 **Table 2.** [Values of k and $t_{1/2}$]

Parameter	Pre-treatment	Temp (°C)	k (h ⁻¹)	$t_{1/2}$ (h)
Antioxidant activity	Control	60	0.0691	10.03
		70	0.1121	6.18
		80	0.0955	7.26
	CaCl_2	60	0.0628	11.04
		70	0.1590	4.36
		80	0.1109	6.25
Total anthocyanin content	Control	60	0.1012	6.85
		70	0.1193	5.81
		80	0.1006	6.89
	CaCl_2	60	0.0885	7.83
		70	0.0882	7.86
		80	0.0869	7.98

264

Commented [A14]: Nilai K dan t dari apa perlakuan...? Judul Tabel harus jelas.

Commented [A15]: Beri keterangan di bawah tabel nilai k dan $t_{1/2}$ memanukkan apa?

Formatted: Line spacing: single

Formatted: Line spacing: single

265 1.4. **Moisture diffusion properties of *parijoto* fruits during drying**

266 The values of D_{eff} and E_a of *parijoto* fruits dried with different conditions are presented at
267 Table 3. Higher value of D_{eff} indicates that moisture could diffuse out of the fruit tissue more
268 effectively during drying (Chen *et al.*, 2016). On the other hand, higher E_a indicates that more
269 energy is required to start moisture diffusion out of the tissue.

270

271 With higher drying temperatures, a higher diffusion coefficient could be achieved. $CaCl_2$
272 submersion as pre-treatment also significantly increased the diffusion coefficient and lowered the
273 activation energy. This indicates that moisture more easily escaped from the tissue and cells of
274 *parijoto* fruits. Thus, a more efficient and faster drying occurred for *parijoto* fruits dried with pre-
275 treatment and at higher temperatures. The results correlate well with the drying kinetics in Figure
276 3, discussed below. The presence of salts such as $CaCl_2$ could induce osmotic dehydration in fruit
277 cells (Udomkun *et al.*, 2014). Osmotic dehydration occurred due to the difference in the osmotic
278 pressure between the materials and the salt solutions used to submerge them. Osmotic dehydration
279 can only partially remove water from the materials and usually uses a pre-treatment as the materials
280 require further processing to be shelf-stable (Berk, 2018).

281 **Table 3. [Effective Moisture Diffusivity and Activation Energy]**

Pre-treatment	Temp (°C)	D_{eff} ($m^2 s^{-1}$)	E_a (kJ/mol)
Control	60	3.27×10^{-3}	35.53
	70	6.91×10^{-3}	
	80	6.71×10^{-3}	
$CaCl_2$	60	4.49×10^{-3}	29.48
	70	9.00×10^{-3}	
	80	8.13×10^{-3}	

Formatted: Font: Times New Roman, 12 pt, Bold

Formatted: Font: Bold

Formatted: Normal, Line spacing: single, No bullets or
numbering

Formatted: Font: Not Italic

Commented [A16]: Lengkapi EMD dan AE dari perlakuan apa?

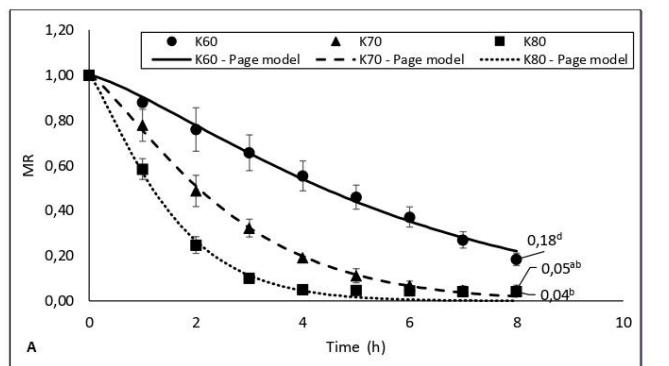
Commented [A17]: Singkatan dari D_{eff} dan E_a perlu
dideskripsikan pada keterangan di bawah Tabel

282

283 1.5. **Drying kinetics of *parijoto* fruits**

284 The change in the moisture ratio during drying for all the different treatments is shown in
285 Figure 3. Based on the drying kinetics, a moisture ratio plateau (which indicate no further moisture
286 reduction) was already reached at approximately 7 hours and 4 hours for 70 and 80°C, respectively,
287 with a final moisture ratio of about 0.05 for the control sample and about 0.02 for pre-treated
288 samples. On the other hand, *parijoto* fruits dried at 60°C, both with or without pre-treatment, did
289 not reach the same level of moisture ratio after 8 hours. *Parijoto* fruits with $CaCl_2$ submersion
290 reached a lower final moisture ratio than the control samples at all temperature levels, indicating

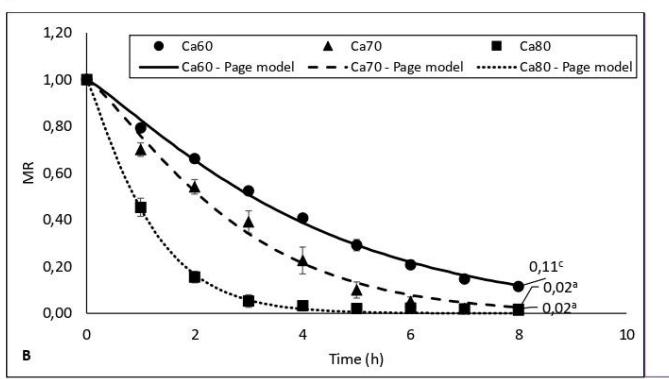
Formatted: Font: Times New Roman, 12 pt, Bold


Formatted: Font: Bold

Formatted: Normal, Line spacing: single, No bullets or
numbering

291 a more effective drying due to the pre-treatment before drying. As discussed, CaCl_2 pre-treatment
 292 caused osmotic dehydration, significantly increasing moisture diffusivity out of *parijoto* fruits
 293 (Table 3).

294


295

Commented [A18]: Tambahkan keterangan:
 MR singkatan dari apa?
 K60, K70 dan K80 memunjukkan apa?
 K60-page Model, dst memunjukkan apa?

Angka 0,18 ditunjukkan apa? huruf yang dibelakangnya
 memunjukkan apa?

296

Commented [A19]: Tambahkan keterangan:
 MR singkatan dari apa?
 Ca60, Ca70 dan Ca80 memunjukkan apa?
 Ca60-page Model, dst memunjukkan apa?

Angka 0,11 ditunjukkan apa? huruf yang dibelakangnya
 memunjukkan apa?

297 **Figure 3.** Moisture ratio of *parijoto* fruit dried at different temperature without pre-treatment (A)
 298 and with CaCl_2 submersion (B)
 299

300 Three models were fitted into the drying kinetics, i.e. Lewis, Henderson & Pabis and Page
 301 model. The coefficients obtained from the model fitting are presented at Table 3. Based on the R^2
 302 and RSME values, Page model best describe the drying kinetics of *parijoto* fruits using cabinet
 303 dryer. Similar model has been used to describe the drying of gilaburu berries (Dönmez & Kadakal,
 304 2024) and aryl of pomegranate (Vardin & Yilmaz, 2018). The value of k increased significantly
 305 with higher temperature and with CaCl_2 submersion pre-treatment, which indicate faster drying.

306

307 **Table 4.** Coefficients of drying kinetics with different models

Pre-treatment	Suhu (°C)	Model	k	n	a	R^2	RMSE
Control	60	Lewis	0.165			0.947	0.099
		Henderson & Pabis	0.174		1.041	0.952	0.119
		Page	0.103	1.292		0.966	0.019
	70	Lewis	0.379			0.977	0.143
		Henderson & Pabis	0.394		1.045	0.980	0.143
		Page	0.281	1.266		0.988	0.015
	80	Lewis	0.648			0.986	0.195
		Henderson & Pabis	0.657		1.016	0.986	0.185
		Page	0.566	1.229		0.989	0.027
CaCl_2	60	Lewis	0.239			0.989	0.112
		Henderson & Pabis	0.246		1.023	0.990	0.117
		Page	0.189	1.163		0.995	0.016
	70	Lewis	0.369			0.974	0.141
		Henderson & Pabis	0.377		1.027	0.975	0.133
		Page	0.275	1.242		0.984	0.032
	80	Lewis	0.857			0.994	0.223
		Henderson & Pabis	0.864		1.006	0.994	0.210
		Page	0.802	1.158		0.995	0.014

308

309 4.6. Color changes of *parijoto* fruits during drying

310 Digital image analysis was carried out to the *parijoto* fruits during drying. The visual
 311 representations of the color change are shown in Table 5. The results of the analysis (L^* , a^* and
 312 b^* values) are shown in Figure 4-6. Heat from the drying immediately caused a change in the
 313 color profile of *parijoto* fruits from initially dark purple to reddish color. Slight increase of the L^*
 314 values were observed after drying and a significant increase of the a^* value was observed which
 315 indicates the increased intensity of the red color after drying. On the other hand, the value of b^*
 316 changed from negative to positive, which indicate a change of color hue from dominant blue to
 317 yellow after drying.

Commented [A20]: Tambahkan referensi-nya.

Commented [A21]: Berdasarkan Nilai R^2 dan RSME yang bagaimana maksudnya?

Commented [A22]: bagaimana persamaan kinetika dari model Page yang dapat mendeskripsikan kinetika pengeringan buah parijoto dengan pengering cabinet.

Commented [A23]: cabinet?

Commented [A24]: Coef ... dari perlakuan apa...?

Commented [A25]: Temperature?

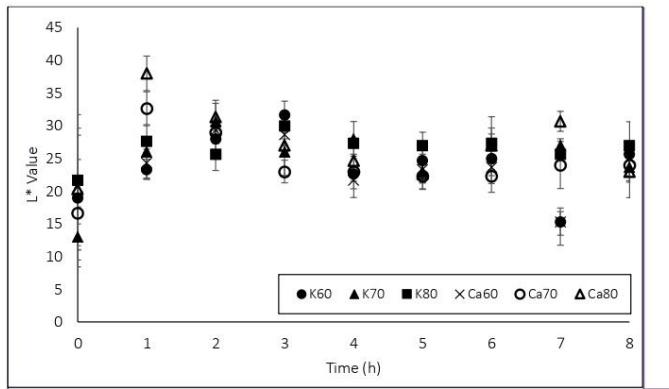
Commented [A26]: Keterangan Tabel: Nilai k, n, a, R2 dan RMSE (singkatannya?)

Formatted: Font: Times New Roman, 12 pt, Bold

Formatted: Font: Bold

Formatted: Normal, Line spacing: single, No bullets or numbering

Commented [A27]: Mengindikasikan intensitas wama apa?


318 CaCl₂ pre-treatment seems to have insignificant impact on the color of *parijoto* fruits after
319 drying. The change of the color from purple to reddish color due to drying may be caused by the
320 increase in the acidity level of the fruits, due to the change of the proportion after moisture removal.
321 [Anthocyanin color changed at different acidity level, in which it becomes redder at acidic
322 environment.]

323

Commented [A28]: Sebutkan referensinya.

324

Commented [A29]: Tambahkan keterangan:
K60 dst; Ca60 dst menujukkan apa?

325 326

Figure 4. L* values from the digital image analysis of the *parijoto* fruits during drying with different condition

Commented [A30]: Apakah ada arti tanda * pada nilai L?

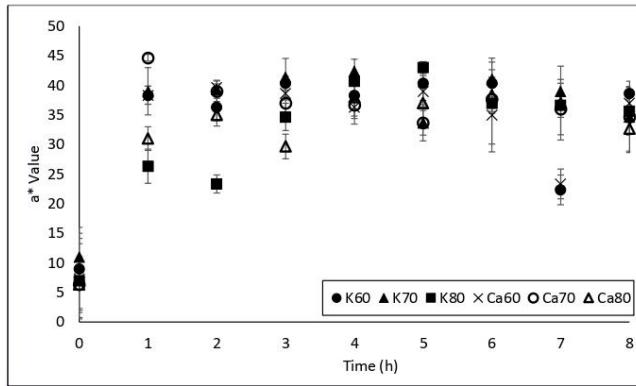


Figure 5. a^* values from the digital image analysis of the *parijoto* fruits during drying with different condition

Commented [A31]: Tambahkan keterangan: K60 dst. Ca60 dst menunjukkan apa?

Formatted: Line spacing: single

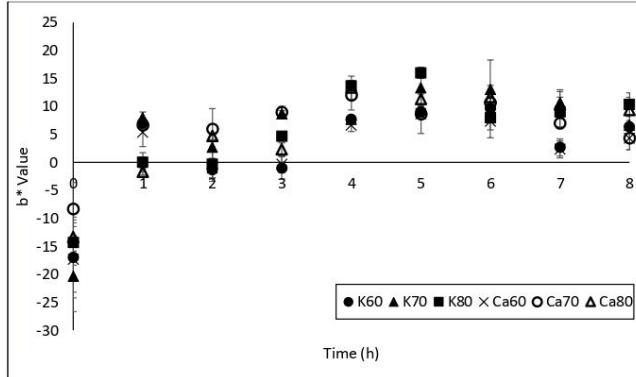


Figure 6. b^* values from the digital image analysis of the *parijoto* fruits during drying with different condition

Commented [A32]: Tambahkan keterangan: K60 dst. Ca60 dst menunjukkan apa?

Formatted: Line spacing: single

Table 5. Digital color profile of *parijoto* fruits throughout drying with different treatments

Treatment	Drying time (h)								
	0	1	2	3	4	5	6	7	8
K60									
K70									
K80									
Ca60									
Ca70									
Ca80									

Commented [A33]: Tambahan ketengen: Perlakuan K60 dit. Ca60 dit aranya apa?

CONCLUSIONS

Drying of *parijoto* fruit at 60-80°C may cause significant reduction on its antioxidant activity and total anthocyanin content. The antioxidant activity of *parijoto* fruits is especially susceptible to an increase in temperature during drying. However, with CaCl_2 submersion as pre-drying treatment, the degradation of anthocyanin content can be reduced. CaCl_2 submersion and higher drying temperature can also increase the drying rate of *parijoto* fruit, which make it possible to dry at a shorter time to prevent further degradation of the anthocyanin content. Higher drying rate correlates to a higher effective diffusion coefficient and the drying kinetics of *parijoto* fruits can best be described by the Page model.

Commented [A34]: Pada subu pengeringan mana yang optimal untuk mengerangkan parijoto, berdasarkan karakteristik fisikolumnya

Commented [A35]: Tampilan persamaan kinetika dan model Page yang mendeskripsikan kinetika pengeringan buah parijoto hasil penelitian ini.

ACKNOWLEDGEMENT

Completing this research project has been a collaborative effort that is acknowledged with gratitude. The research advisor is sincerely thanked for their invaluable guidance, support, and expertise throughout the research process. Appreciation is also extended to colleagues and fellow researchers for their assistance and cooperation, which contributed to the success of this study. Sincere gratitude is expressed to the Ministry of Research and Higher Education for funding through the Fundamental Research Grant 2024, number 108/E5/PG.02.00.PL/2024, 011/LL6/PB/AL.04/2024, which significantly facilitated the execution of this study. Additionally, appreciation is extended to the research partners for their valuable contributions, CSR YKBN, Kudus, Indonesia. This acknowledgement reflects the collective endeavor and support that have enriched the outcomes of this study.

REFERENCES

Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative Analysis Of Phenolics, Flavonoids, And Antioxidant And Antibacterial Potential Of Methanolic, Hexanic And Aqueous Extracts From *Adiantum Caudatum* Leaves. *Antioxidants*, 4(2), 394-409. <https://doi.org/10.3390/antiox4020394>

Aloo, M. A., Opiyo, A. M., & Saidi, M. (2022). Influence Of Ca CaCl_2 Dipping On Postharvest Quality And Shelf Life Of Bell Pepper (*Capsicum annuum* L. Cv. California Wonder). *African Journal of Agricultural Research*, 18(7), 510-521. <https://doi.org/10.5897/ajar2022.16058>

Angriani, L. (2019). Potensi Ekstrak Bunga Telang (*Clitoria ternatea*) Sebagai Pewarna Alami Lokal Pada Berbagai Industri Pangan. *Canrea Journal*, 2(1), 32-37.

Formatted: English (Indonesia)

<https://agritech.unhas.ac.id/ojs/index.php/canrea/article/view/120>

Basri, F. (2021). Studi Pembuatan Es Krim Dengan Penambahan Ekstrak Bunga Telang (*Clitoria Ternatea* L.) (Doctoral Dissertation, Universitas Bosowa). <https://repository.unibos.ac.id/xmlui/bitstream/handle/123456789/1210/2021%20FEBRIA NI%20BASRI%204517032008.pdf?sequence=1>

Berk, Z. (2018). Dehydration. In : Berk, Z. *Food Science and Technology, Food Processing Engineering and Technology*. Third edition. Academic Press. pp. 513-566

Chen, Y., Martynenko, A., & Mainguy, M. (2016). Wine Grape Dehydration Kinetics: Effect Of Temperature And Sample Arrangement. In *Csbe/Scgab 2016 Annual Conference, Halifax, Nova Scotia, Canada, July 3-6* (Pp. 3-6). <https://library.csbe-scgab.ca/docs/meetings/2016/CSBE16063.pdf>

Dönmez, A., & Kadakal, Ç. (2024). Hot-Air Drying And Degradation Kinetics Of Bioactive Compounds Of Gilaburu (*Viburnum Opulus* L.) Fruit: Original Scientific Paper. *Chemical Industry & Chemical Engineering Quarterly*, 30(1), 59-72. <https://doi.org/10.2298/CICEQ220614011D>

Feng, S., Luo, Z., Tao, B., & Chen, C. (2015). Ultrasonic-Assisted Extraction And Purification Of Phenolic Compounds From Sugarcane (*Saccharum Officinarum* L.) Rinds. *Lwt-Food Science And Technology*, 60(2), 970-976. <https://doi.org/10.1016/j.lwt.2014.09.066>

Formatted: English (Indonesia)

Feng, Y., Feng, C., Wang, Y., Gao, S., Sun, P., Yan, Z., Su, X., Sun, Y., & Zhu, Q. (2022). Effect Of CaCl₂ Treatment On Enzymatic Browning Of Fresh-Cut Luffa (*Luffa Cylindrica*). *Horticulturae*, 8(6), 473. <https://doi.org/10.3390/horticulturae8060473>

Guo, X., Li, Q., Luo, T., Han, D., Zhu, D., & Wu, Z. (2023). Postharvest Calcium Chloride Treatment Strengthens Cell Wall Structure To Maintain Litchi Fruit Quality. *Food*, 12(13), 2478. <https://doi.org/10.3390/foods12132478>

Formatted: Italian (Italy)

Formatted: Italian (Italy)

Formatted: Italian (Italy)

Field Code Changed

Haerani, A., Chaerunisa, A. Y., & Subarnas, A. (2018). Artikel Tinjauan: Antioksidan Untuk Kulit. *Farmaka*, 16(2), 135-151. <https://doi.org/10.24198/jf.v16i2.17789>

Hwang, E. S., & Do Thi, N. (2014). Effects Of Extraction And Processing Methods On Antioxidant Compound Contents And Radical Scavenging Activities Of Laver (*Porphyra Tenera*). *Preventive Nutrition And Food Science*, 19(1), 40. <https://doi.org/10.3746/pnf.2014.19.1.040>

Koh, J., Xu, Z., & Wicker, L. (2020). Blueberry Pectin And Increased Anthocyanins Stability Under In Vitro Digestion. *Food Chemistry*, 302, 125343. <https://doi.org/10.1016/j.foodchem.2019.125343>

Commented [A36]: Tidak ditemukan dalam tubuh tulisan

Lin, Z., Fischer, J., & Wicker, L. (2016). Intermolecular Binding Of Blueberry Pectin-Rich Fractions And Anthocyanin. *Food Chemistry*, 194, 986-993. <https://doi.org/10.1016/j.foodchem.2015.08.113>

Peron, D. V., Fraga, S. A. R. A., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (*Euterpe edulis* Martius) and "Italia" grapes (*Vitis vinifera* L.), and the effect of heating on the antioxidant capacity. *Food chemistry*, 232, 836-840. <https://doi.org/10.1016/j.foodchem.2017.04.088>

Priska, M., Peni, N., Carvallo, L., & Ngapa, Y. D. (2018). Antosianin Dan Pemanfaatannya. *Cakra Kimia (Indonesian E-Journal Of Applied Chemistry)*, 6(2), 79-97. <https://doi.org/10.24843/CK.2018.v06.i02>

Syah, H., Tambunan, A. H., Hartulistiyo, E., & Manalu, L. P. (2020). Kinetika Pengeringan Lapisan Tipis Daun Jati Belanda (Thin Layer Drying Kinetics Of Guazuma Ulmifolia Leaves). *Jurnal Keteknikan Pertanian*, 8(2), 53-62. <https://doi.org/10.19028/jtep.08.2.53-62>

Tan, C., Dadmohammadi, Y., Lee, M. C., & Abbaspourrad, A. (2021). Combination Of Copigmentation And Encapsulation Strategies For The Synergistic Stabilization Of Anthocyanins. *Comprehensive Reviews In Food Science And Food Safety*, 20(4), 3164-3191. DOI: 10.1111/1541-4337.12772

Turan, O. Y., & Firatgil, F. E. (2019). Modelling and characteristics of thin layer convective air-drying of thyme (*Thymus vulgaris*) leaves. *Czech Journal of Food Sciences*, 37(2). <https://doi.org/10.17221/243/2017-CJFS>

Turmanidze, T., Gulua, L., Jgenti, M., & Wicker, L. (2016). Effect Of Calcium Chloride Treatments On Quality Characteristics Of Blackberry Fruit During Storage. *International Journal Of Food And Allied Sciences*, 2(2), 36-41. <https://doi.org/10.24925/turjaf.v4i12.1127-1133.907>

Udomkun, P., Mahayothee, B., Nagle, M., & Müller, J. (2014). Effects Of Calcium Chloride And Calcium Lactate Applications With Osmotic Pretreatment On Physicochemical Aspects And Consumer Acceptances Of Dried Papaya. *International Journal Of Food Science & Technology*, 49(4), 1122-1131. <https://doi.org/10.1111/ijfs.12408>

Vardin, H., & Yilmaz, F. M. (2018). The Effect Of Blanching Pre-Treatment On The Drying Kinetics, Thermal Degradation Of Phenolic Compounds And Hydroxymethyl Furfural Formation In Pomegranate Arils. *Italian Journal Of Food Science*, 30(1). <https://doi.org/10.14674/IJFS-947>

Wachidah, L. N. (2013). Uji Aktivitas Antioksidan Serta Penentuan Kandungan Fenolat Dan Flavonoid Total Dari Buah Parijoto. *Skripsi. Program Studi Farmasi Uin, Jakarta*. <https://repository.uinjkt.ac.id/dspace/bitstream/123456789/25895/1/LELIANA%20NURUL%20WACHIDAH-fkik.pdf>

V. Revised Manuscript B

1 Drying and Degradation Kinetics of the Physicochemical Characteristics of Parijoto Fruit 2 (*Medinilla speciosa*) with Calcium Chloride Pre-Treatment

ABSTRACT

Parijoto (*Medinilla speciosa*) is an Indonesian local plant with high levels of bioactive compounds crucial in improving overall health. However, these bioactive compounds are susceptible to high temperatures from prolonged heating processes and environmental factors such as oxygen, light, and pH. Therefore, a significant decline in the *parijoto* fruit quality may occur during drying, which prompts a need for a solution to prevent damage to the bioactive compounds in the fruits. As a food additive, calcium chloride (CaCl_2) can help maintain cell wall strength and prevent damage from enzymatic, mechanical, and microbial activities in food products. The study aimed to investigate the impact of soaking with CaCl_2 (10 min) and drying temperatures (60, 70, and 80°C) for 8 hours on physicochemical characteristics such as antioxidant activity, total anthocyanin content, and colour. The moisture ratio, colour intensity, antioxidant activity and total anthocyanin content at hourly intervals during drying were measured. The results indicated that soaking in CaCl_2 can lead to osmotic dehydration, accelerating the drying rates and preserving the anthocyanin content. The kinetics of the degradation of anthocyanins and antioxidant activity were established, as well as the drying kinetic model for *parijoto* fruits. The Page model was found to be the most relevant and suitable drying kinetics model based on the drying design in this study compared to the other two models.

Keywords: *Parijoto* fruit; Degradation kinetic, Drying kinetic, Calcium chloride

24 25 **Kinetika Pengeringan dan Degradasi Karakteristik Fisikokimawi Pada Buah Parijoto** 26 **(*Medinilla speciosa*) dengan Pra-Perlakuan Kasium Klorida**

ABSTRAK

29 Parijoto (*Medinilla speciosa*) adalah tanaman lokal Indonesia yang mengandung senyawa
 30 bioaktif tinggi yang penting untuk meningkatkan kesehatan secara keseluruhan. Namun, senyawa
 31 bioaktif ini rentan terhadap suhu tinggi dari proses pemerasan yang panjang dan faktor lingkungan
 32 seperti oksigen, cahaya, dan pH. Oleh karena itu, penurunan kualitas buah parijoto yang signifikan
 33 dapat terjadi selama pengeringan, sehingga diperlukan solusi untuk mencegah kerusakan pada
 34 senyawa bioaktif di buah tersebut. Sebagai bahan tambahan makanan, kalsium klorida (CaCl_2)
 35 dapat membantu menjaga kekuatan dinding sel dan mencegah kerusakan akibat aktivitas enzimatik
 36 dan mikroba pada produk pangan. Penelitian ini bertujuan untuk menginvestigasi dampak
 37 perendaman dengan CaCl_2 (10 menit) dan suhu pengeringan (60, 70, dan 80°C) selama 8 jam
 38 terhadap karakteristik fisiko-kimia serta aktivitas antioksidan, total kandungan antosianin, dan
 39 warna. Perbandingan rasio kadar air, intensitas warna, aktivitas antioksidan, dan kandungan total
 40 antosianin diuji setiap jam selama proses pengeringan. Hasil penelitian menunjukkan bahwa
 41 perendaman dalam CaCl_2 dapat menyebabkan dehidrasi osmotic sehingga mempercepat laju
 42 pengeringan, dan menjaga kandungan antosianin. Pada studi ini, dilakukan pula pemodelan
 43 kinetika degradasi antosianin dan aktivitas antioksidan, serta model kinetika pengeringan untuk
 44

45 buah parijoto. Model Page terbukti menjadi model kinetika pengeringan yang paling relevan dan
46 sesuai berdasarkan desain pengeringan dalam studi ini.
47 **Kata kunci:** Buah parijoto; Kinetika degradasi, Kinetika pengeringan, Kalsium klorida

48 **INTRODUCTION**

49 *Parijoto* (*Medinilla speciosa*) is a local Indonesian plant that grows, often uncultivated, in
50 Kudus, Central Java. *Parijoto* is currently often cultivated as a decorative plant. However, the fruit
51 of *parijoto* contains a high number of bioactive compounds such as ascorbic acid, carotenoids,
52 flavonoids, vitamin E, flavonol glycoside and phenolic compounds which may act as antioxidants
53 (Angriani, 2019). Antioxidant compounds play an essential role in the health of the body, as they
54 can protect the body from oxidative damage, inhibit oxidative stress, reduce inflammation, and
55 boost the immune system (Haerani, et al., 2018).

56

57 Previous research has shown that anthocyanin compound in *parijoto* fruit can be used as a
58 natural blue colorant (Priska et al., 2018). Anthocyanin can also act as antioxidant, anti-cancer,
59 anti-diabetics, and anti-inflammation (Basri, 2021; Tan et al., 2021). However, the bioactive
60 compounds in the *parijoto* fruit are very vulnerable to damage, especially the anthocyanin
61 compound and the antioxidant components such as flavonoids and phenolics (Wachidah, 2013).
62 The damage to such compounds can be caused by high-temperature processes and environmental
63 conditions such as oxygen, light, and pH (Feng et al., 2015). Drying, on the other hand, is a
64 standard preservation method because it can increase the storage life and facilitate the distribution,
65 supply, and ease-of-use. Therefore, it is necessary to prevent the damage of bioactive compounds
66 due to the drying temperature of the *parijoto* fruit, e.g by pre-treatments.

67

68 Using organic acid solutions (citic acid, acetic acid) and salt solutions (Na^+ , Ca^{2+}) with
69 specific concentrations as a pre-drying treatment can retain bioactive compounds in food materials.
70 Calcium chloride (CaCl_2) is a salt classified as a food additive. According to a study by Guo et al.
71 (2023), the lifespan of lychee fruit increased because CaCl_2 increased the strength of the cell wall
72 and prevented the activity of polyphenol oxidase (PPO) enzymes and microbes. Looking at the
73 potential of *parijoto* fruit as a novel health-promoting food ingredient, this study aims to firstly
74 examine the effect of CaCl_2 and temperature in the drying process of *parijoto* fruit. Secondly, this
75 study also aims to establish the drying and degradation kinetics, which will be useful in developing
76 *parijoto* fruit products that are shelf-stable with optimum bioactive compound activities.

77

78 **MATERIALS AND METHOD**

79 **2.1. Materials**

80 Fresh *parijoto* fruits were obtained from Kudus, Central Java. Other materials used in this
81 study are CaCl₂ (E. Merck, Germany), KCl (E. Merck, Germany), CH₃COONa (E. Merck,
82 Germany), 2-diphenyl-1-picrylhydrazyl (Sigma Aldrich, USA), and methanol 99.98% (E. Merck,
83 Germany). All the chemicals used are of analytical grade unless specified.

Commented [F11]: At what ripeness state are the parijoto fruits used in the experiment? Since fruit at different maturity might have different color and anthocyanin content

84

85 **2.2. Methods**

86 **2.2.1. *Parijoto* fruit preparation and pre-treatment**

87 *Parijoto* fruits were separated from the branch, sorted and then washed under a running tap
88 water. Half of the cleaned *parijoto* fruits were submerged in CaCl₂ 2% solution for 10 min. (sample
89 code : Ca) while the other half were not submerged as a control (sample code : K).

90

91 **2.2.2. Drying process**

92 Drying was done using a dryer cabinet HetoPowerDry LL1500. *Parijoto* fruits were placed
93 on a tray and were spread evenly. The control and pre-treated samples were dried at 60, 70, and
94 80°C for 8 hours. During the drying process, the mass of the *parijoto* fruits was weighed every 1
95 hour. After drying, the samples were grinded with mortar and pestle for further chemical analysis
96 of the antioxidant activity and total anthocyanin.

Commented [F12]: This is a Freeze Dryer. How can a freeze
dryer dry at these temperatures? Did you use an additional dryer? If
so, please mention.

97

98 **2.2.3. Ultrasound-assisted methanol extraction for chemical analysis**

99 Five grams of the grinded dried *parijoto* fruit was suspended in 50 ml methanol. The mixture
100 was subjected to ultrasound in a sonication bath (BioBase, China) at frequency 40 kHz for 30 min
101 and then was let to sit for another 1 h. The mixture was filtered and the filtrate were diluted into
102 100 ml using methanol. The extract was stored until further analysis for anthocyanin and
103 antioxidant activity analysis.

104

105 **2.2.4. Total anthocyanin analysis**

106 Anthocyanin analysis was done using pH differential method described in Turmanidze et al.
107 (2016). The methanol extract obtained was further diluted 2x using methanol. Two milliliters of
108 the diluted samples were mixed with 2 ml of KCl buffer solution pH 1 and CH₃COONa buffer

109 solution pH 4.5. The mixture was incubated in a dark room for 15 min. The absorbance of the
110 mixture was measured using UV-Vis spectrophotometer (UV1280, Shimadzu, Japan) at
111 wavelength 520 and 700 nm. Total anthocyanin in the extract were measured using the equations
112 below:

113
$$A = (A_{520} - A_{700})_{pH\ 1} - (A_{520} - A_{700})_{pH\ 4.5} \quad (1)$$

114
$$\text{Total Anthocyanin (mg/L)} = \frac{A \times MW \times DF \times 1000}{\epsilon \times L} \quad (2)$$

115 where A is the absorbance value at different wavelength, MW is the molecular weight of
116 cyanidine-3-glucoside (449.2 g/mol), DF is the dilution factor (20), ϵ is the molar absorptivity of
117 cyanidine-3-glucoside (26900 L/mol.cm) and L is the cuvet width (1 cm).

118

119 2.2.5. Antioxidant activity analysis

120 Antioxidant activity was measured using the method described in Ahmed et al. (2015). The
121 methanol extract was diluted into 1500 ppm using methanol. Afterwards, 0.3 ml of the diluted
122 sample were reacted with 9 ml of DPPH solution (Merck, Germany) in the dark room for 30 min.
123 Blank solution were prepared using 0.3 ml methanol and 9 ml DPPH solution. After 30 min, the
124 absorbance of the sample (A_{sample}) and blank solution (A_{blank}) was measured using UV-Vis
125 spectrophotometer (UV1280, Shimadzu, Japan) at 517 nm. The antioxidant activity is calculated
126 using the equation below.

127
$$\text{Antioxidant activity (\%)} = \left[\frac{(A_{\text{blank}} - A_{\text{sample}})}{A_{\text{blank}}} \right] \times 100 \quad (3)$$

128 2.2.6. Degradation kinetics

129 The degradation kinetic of the total anthocyanin content and antioxidant activity was fitted
130 into the first order kinetic equation (eq. 4). The degradation kinetic coefficient (k) was obtained
131 from the regression of the experimental data (Fogler, 2006 in Peron et al., 2017).

132
$$\ln(C_t) = \ln(C_0) - kt \quad (4)$$

133 C_t = Concentration of total anthocyanin or Antioxidant activity at time t

134 C_0 = Initial concentration of total anthocyanin or Antioxidant activity

135 k = degradation kinetics coefficient

136 t = time (h)

137 Furthermore, half-life time ($t_{1/2}$), the time in which the component's degradation reached
138 half of its initial value, was calculated using eq. 6 below (Peron et al., 2017).

Commented [F13]: Subscript

141
$$t_{1/2} = \ln\left(\frac{0.5}{k}\right) \quad (6)$$

142

143 $t_{1/2}$ = half-life time
144 k = degradation kinetic coefficient
145

146 2.2.7. Drying kinetics

147 ~~Water content analysis was done using gravimetric method, which 2.5 g sample was dried in~~
148 a porcelain dish at 100°C. Water content analysis was carried out throughout the drying process
149 and the drying kinetic model was done through the moisture ratio (MR) calculation in eq 7 below.

Commented [F14]: How may repetition?

Commented [F15]: typo

150
$$MR = \frac{M_t}{M_0} \quad (7)$$

151 M_t = moisture content (d.b) at time t
152 M_0 = initial moisture content (d.b)

153 The MR data obtained will be used to determine the drying kinetic based on the three types
154 of semi-empirical models (Turan & Firatligil, 2019), which can be seen in Table 1. Mathematical
155 modelling was done using nonlinear regression. Increasing R2 values and increasing RMSE values
156 are factors in determining the relevant kinetic drying model (Vardin & Yilmaz, 2018). RMSE
157 determination was done following eq 8.

158
$$RMSE = \left[\frac{1}{N} \sum_{i=1}^N (MR_{exp,i} - MR_{pre,i})^2 \right]^{\frac{1}{2}} \quad (8)$$

159
160 N = number of observations
161 $MR_{exp,i}$ = MR experimental
162 $MR_{pre,i}$ = MR prediction

163 **Table 1.** Drying kinetic models

Model	Equation
Lewis	$MR = \exp(-kt)$
Henderson & Pabis	$MR = a \cdot \exp(-kt)$
Page	$MR = \exp(-kt^n)$

164

165 2.2.8. Effective moisture diffusivity

166 Effective moisture diffusivity coefficient (D_{eff}) describes the effectiveness of water diffusion
167 processes in a drying process (Chen et al., 2016). The D_{eff} was calculated based on the value of k
168 (slope) of the linear regression of eq. 9 below.

169
$$\ln(MR) = \ln\left(\frac{6}{\pi^2}\right) - \left(\frac{\pi^2 D_{eff}}{r^2}\right)(t) \quad (9)$$

170
$$k = -\frac{\pi^2 D_{eff}}{r^2} \quad (10)$$

171
172 MR = moisture ratio
173 r = material's radius
174 t = time

175 Activation energy (E_a) is the minimum energy needed to start the reaction (Syah et al., 2020).

176 The value of E_a of the moisture diffusion process was obtained through a regression of eq 11 below.

177
$$D_{eff} = D_0 \cdot e^{(-\frac{E_a}{R})(\frac{t}{T})} \quad (11)$$

178
179 T = temperature (K)
180 R = ideal gas constant (8.314 J mol⁻¹ K⁻¹)
181 D₀ = exponential equation constant

182 2.2.9. Color intensity

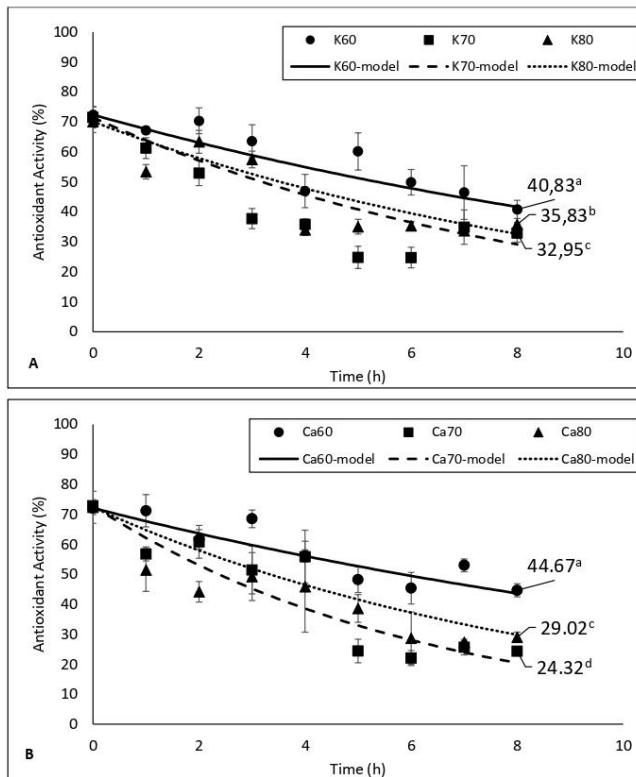
183 Color intensity measurement was done through digital imaging analysis. The digital images
184 of the *parijoto* fruits during drying was captured using a smartphone (Infinix Note 11 Pro, Infinix
185 Mobile, China). The digital images of *parijoto* fruit were taken every hour during drying inside a
186 modified mini photo studio box. Color intensity measurements of the digital images based on L*,
187 a*, and b* colors are conducted using the eyedropper tool in Adobe Photoshop CS3 software
188 (Adobe, USA). Measurements were taken three times at different points.

Commented [F16]: It would be clearer to have a picture of the color intensity measurement set up.

Commented [F17]: Which parts? Per 1 fruit?

189
190 2.2.10. Data analysis

191 Data analysis and model fitting were carried out using Microsoft Excel and SPSS statistical
192 software analysis v.23. Analysis of variance was carried out to measure statistically significant
193 difference at $\alpha 0.5$.


Commented [F18]: Are you sure the alpha is 0.5?

194
195 RESULTS AND DISCUSSION

196 1.1. Antioxidant activity

197 Figure 1 shows the antioxidant activity of the *parijoto* fruit before and after drying. The
198 CaCl₂ submersion pre-treatment did not significantly influence the antioxidant activity of *parijoto*
199 fruit, while higher drying temperature significantly decrease the antioxidant activity of *parijoto*
200 fruits.

202

203

Figure 1. Antioxidant activity of *parijoto* fruit dried at different temperature without pre-treatment (A) and with CaCl_2 submersion (B)

204

205 High temperatures can damage antioxidant compounds in materials, leading to decreased
 206 antioxidant activity (Hwang & Do Thi, 2014). According to research by Aloo et al. (2022), CaCl_2
 207 soaking treatment can maintain the ascorbic acid content and antioxidant compounds in bell
 208

Commented [F19]: Elaborate what the a,b,c,d are? The numbers represent?

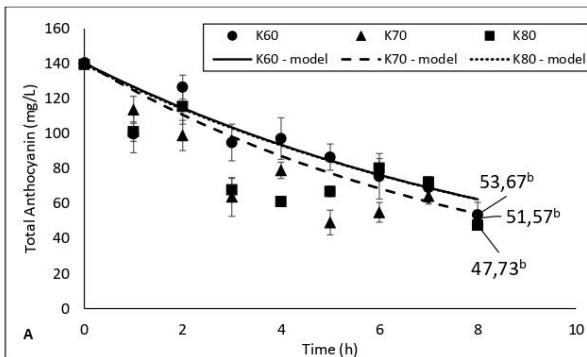
210 peppers after 16 days of storage at room temperature. Similar findings can be observed in this
 211 study for *parijoto* fruits dried at 60°C treatment, which shows higher results in the soaked fruit
 212 than the control. Calcium ions in CaCl_2 can form calcium pectate cross-links with pectin molecules
 213 in food materials. This can enhance mechanical properties in *parijoto* fruit, thereby preserving
 214 intracellular antioxidant compounds. Goutam et al. (2010) in Aloo et al. (2022) also mentioned
 215 that calcium ions could decrease oxidative enzyme activity, thus maintaining antioxidant activity
 216 stability against oxidative degradation in *parijoto* fruit. However, the positive effect of the CaCl_2
 217 soaking was not observed for drying at 70 and 80°C, indicating that the high temperature's
 218 destructive effect affects the antioxidant activity more than the protection of the CaCl_2 pre-
 219 treatment.

220

221 1.2. Total anthocyanin content

222 Figure 2 shows the total anthocyanin content of the dried *parijoto* fruits. Drying caused
 223 *parijoto* fruits to lose its anthocyanin content significantly. However, the results show that CaCl_2
 224 pre-treatment significantly preserve the anthocyanin content of *parijoto* fruits. On the other hand,
 225 the drying temperature did not significantly affect the anthocyanin content of the fruit.

226


Commented [FI10]: They are not statistically different (40.83 a vs 44.67 a)?

Commented [FI11]: Any reason why does CaCl_2 soaking make the antioxidant activities significantly lower than the control after 8 hours?

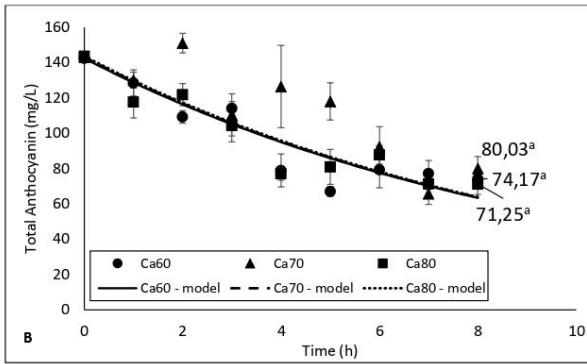
Commented [FI12]: ... after 8 hours.

Commented [FI13R12]: Did you also statistically analyze / discuss the data at other timepoints?

227

228

229 **Figure 2.** Total anthocyanin content of *parijoto* fruit dried at different temperature without pre-
 230 treatment (A) and with CaCl_2 submersion (B)


231

232 Research by Feng et al. (2022) showed that the utilization of CaCl_2 solution can preserve the
 233 phenolic compounds and stability of antioxidant compounds in luffa (*Luffa cylindrica*). Calcium
 234 pectate cross-links may form during the CaCl_2 pre-treatment and they can strengthen the
 235 interaction between pectin and anthocyanin (Lin et al., 2016) which may protect the anthocyanin
 236 content from the heat treatment during drying. Furthermore, the formation of calcium pectate
 237 cross-links enhances the integrity of the cell and prevents cellular damage which encourage of
 238 enzymatic browning in food materials due to the release of the polyphenol oxidase (PPO). Since
 239 anthocyanins are natural compounds in *parijoto* fruit belonging to the phenolic group, damage to
 240 anthocyanin compounds from the PPO activity can be prevented. This could explain the higher
 241 total anthocyanin content in CaCl_2 -soaked samples compared to the control.

242

243 1.3. Degradation kinetic coefficient of antioxidant activity and total anthocyanin content

244 The values of k , $t_{1/2}$ and E_a obtained from the first order kinetic regression from the
 245 antioxidant activity and total anthocyanin content during drying are presented in Table 2. These
 246 values are useful in describing the properties degradation kinetics during drying and to compare
 247 the susceptibility of the properties to heat degradation. Higher k value indicates faster degradation

248 and thus, a more susceptible material. On the other hand, higher $t_{1/2}$ showed a slower and more
249 difficult degradation, which indicate a more stable material (Peron et al., 2017).

250 The results of the antioxidant activity analysis show that the degradation rate constant (k)
251 increases with higher drying temperatures. This indicates a faster decline in antioxidant activity
252 with increasing drying temperature, affecting the time for antioxidant activity to reach half its
253 initial value ($t_{1/2}$). Thus, it can be concluded that the antioxidant activity of *parijoto* fruits is very
254 vulnerable to increase in temperature during drying.

255 On the contrary, the k value of the total anthocyanin degradation kinetic remained the same
256 with higher drying temperature. This indicate that the temperature difference in this study did not
257 affect the kinetics of the anthocyanin degradation. Interestingly, CaCl₂ treatment caused significant
258 reduction in the k value and increase in the $t_{1/2}$ value. This may be due to calcium pectate
259 interactions with anthocyanins as previously discussed (Lin et al., 2016), which can slow down
260 anthocyanin degradation. However, the CaCl₂ submersion did not slow down the degradation of
261 antioxidant activity of *parijoto* fruits during drying.

Commented [FI14]: Avoid using personal opinion like 'very',
'interesting', etc.

262

263 **Table 2.** Values of k and $t_{1/2}$

Parameter	Pre-treatment	Temp (°C)	k (h ⁻¹)	$t_{1/2}$ (h)
Antioxidant activity	Control	60	0.0691	10.03
		70	0.1121	6.18
		80	0.0955	7.26
	CaCl ₂	60	0.0628	11.04
		70	0.1590	4.36
		80	0.1109	6.25
	Total anthocyanin content	60	0.1012	6.85
		70	0.1193	5.81
		80	0.1006	6.89
		60	0.0885	7.83
		70	0.0882	7.86
		80	0.0869	7.98

264

265 1.4. Moisture diffusion properties of *parijoto* fruits during drying

266 The values of D_{eff} and E_a of *parijoto* fruits dried with different conditions are presented at
 267 Table 3. Higher value of D_{eff} indicates that moisture could diffuse out of the fruit tissue more
 268 effectively during drying (Chen *et al.*, 2016). On the other hand, higher E_a indicates that more
 269 energy is required to start moisture diffusion out of the tissue.

270

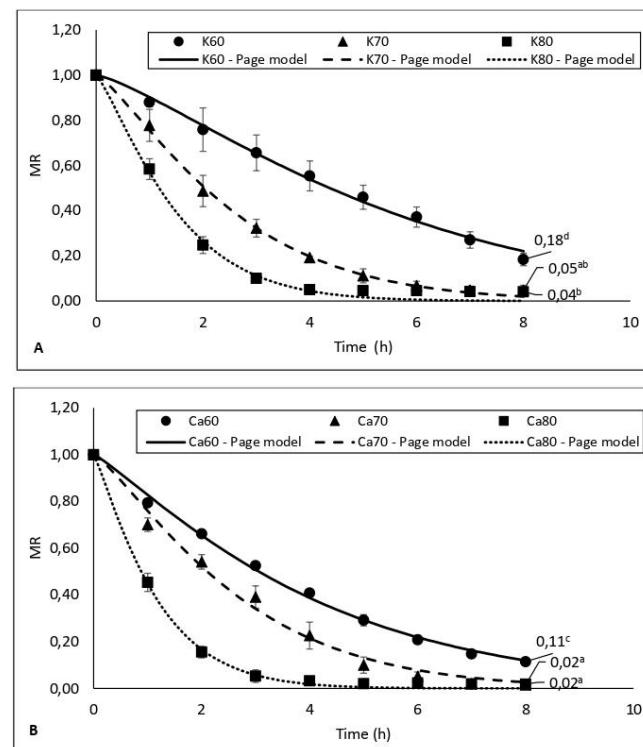
271 With higher drying temperatures, a higher diffusion coefficient could be achieved. $CaCl_2$
 272 submersion as pre-treatment also significantly increased the diffusion coefficient and lowered the
 273 activation energy. This indicates that moisture more easily escaped from the tissue and cells of
 274 *parijoto* fruits. Thus, a more efficient and faster drying occurred for *parijoto* fruits dried with pre-
 275 treatment and at higher temperatures. The results correlate well with the drying kinetics in Figure
 276 3, discussed below. The presence of salts such as $CaCl_2$ could induce osmotic dehydration in fruit
 277 cells (Udomkun *et al.*, 2014). Osmotic dehydration occurred due to the difference in the osmotic
 278 pressure between the materials and the salt solutions used to submerge them. Osmotic dehydration
 279 can only partially remove water from the materials and usually uses a pre-treatment as the materials
 280 require further processing to be shelf-stable (Berk, 2018).

281

Table 3. Effective Moisture Diffusivity and Activation Energy			
Pre-treatment	Temp (°C)	D_{eff} ($m^2 \cdot s^{-1}$)	E_a (kJ/mol)
Control	60	3.27×10^{-3}	35.53
	70	6.91×10^{-3}	
	80	6.71×10^{-3}	
$CaCl_2$	60	4.49×10^{-3}	29.48
	70	9.00×10^{-3}	
	80	8.13×10^{-3}	

282

283 1.5. Drying kinetics of *parijoto* fruits


284 The change in the moisture ratio during drying for all the different treatments is shown in
 285 Figure 3. Based on the drying kinetics, a moisture ratio plateau (which indicate no further moisture
 286 reduction) was already reached at approximately 7 hours and 4 hours for 70 and 80°C, respectively,
 287 with a final moisture ratio of about 0.05 for the control sample and about 0.02 for pre-treated
 288 samples. On the other hand, *parijoto* fruits dried at 60°C, both with or without pre-treatment, did
 289 not reach the same level of moisture ratio after 8 hours. *Parijoto* fruits with $CaCl_2$ submersion
 290 reached a lower final moisture ratio than the control samples at all temperature levels, indicating
 291 a more effective drying due to the pre-treatment before drying. As discussed, $CaCl_2$ pre-treatment

292 caused osmotic dehydration, significantly increasing moisture diffusivity out of *parijoto* fruits
293 (Table 3).

294

295

296

297 **Figure 3.** Moisture ratio of *parijoto* fruit dried at different temperature without pre-treatment (A)
298 and with CaCl_2 submersion (B)
299

300 Three models were fitted into the drying kinetics, i.e. Lewis, Henderson & Pabis and Page
 301 model. The coefficients obtained from the model fitting are presented at Table 3. Based on the R^2
 302 and RSME values, Page model best describe the drying kinetics of *parijoto* fruits using cabiner
 303 dryer. Similar model has been used to describe the drying of gilaburu berries (Dönmez & Kadakal,
 304 2024) and aryl of pomegranate (Vardin & Yilmaz, 2018). The value of k increased significantly
 305 with higher temperature and with CaCl_2 submersion pre-treatment, which indicate faster drying.

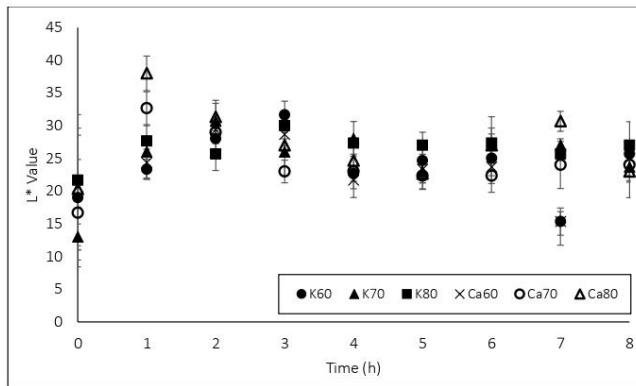
306

307 **Commented [FI15]:** typo

Table 4. Coefficients of drying kinetics with different models

Pre-treatment	Suhu (°C)	Model	k	n	a	R^2	RMSE
Control	60	Lewis	0.165			0.947	0.099
		Henderson & Pabis	0.174		1.041	0.952	0.119
		Page	0.103	1.292		0.966	0.019
	70	Lewis	0.379			0.977	0.143
		Henderson & Pabis	0.394		1.045	0.980	0.143
		Page	0.281	1.266		0.988	0.015
	80	Lewis	0.648			0.986	0.195
		Henderson & Pabis	0.657		1.016	0.986	0.185
		Page	0.566	1.229		0.989	0.027
CaCl_2	60	Lewis	0.239			0.989	0.112
		Henderson & Pabis	0.246		1.023	0.990	0.117
		Page	0.189	1.163		0.995	0.016
	70	Lewis	0.369			0.974	0.141
		Henderson & Pabis	0.377		1.027	0.975	0.133
		Page	0.275	1.242		0.984	0.032
	80	Lewis	0.857			0.994	0.223
		Henderson & Pabis	0.864		1.006	0.994	0.210
		Page	0.802	1.158		0.995	0.014

308


309 1.6. Color changes of *parijoto* fruits during drying

310 Digital image analysis was carried out to the *parijoto* fruits during drying. The visual
 311 representations of the color change are shown in Table 5. The results of the analysis (L^* , a^* and
 312 b^* values) are shown in Figure 4-6. Heat from the drying immediately caused a change in the
 313 color profile of *parijoto* fruits from initially dark purple to reddish color. Slight increase of the L^*
 314 values were observed after drying and a significant increase of the a^* value was observed which
 315 indicates the increased intensity of the red color after drying. On the other hand, the value of b^*
 316 changed from negative to positive, which indicate a change of color hue from dominant blue to
 317 yellow after drying.

318 **Commented [FI16]:** Any statistical analysis?

318 CaCl_2 pre-treatment seems to have insignificant impact on the color of *parijoto* fruits after
319 drying. The change of the color from purple to reddish color due to drying may be caused by the
320 increase in the acidity level of the fruits, due to the change of the proportion after moisture removal.
321 Anthocyanin color changed at different acidity level, in which it becomes redder at acidic
322 environment.

323

324 **Figure 4.** L* values from the digital image analysis of the *parijoto* fruits during drying with
325 different condition

Commented [FI17]: Make the L a b data points easier to see.
(Figure 4-6)

327

328
329

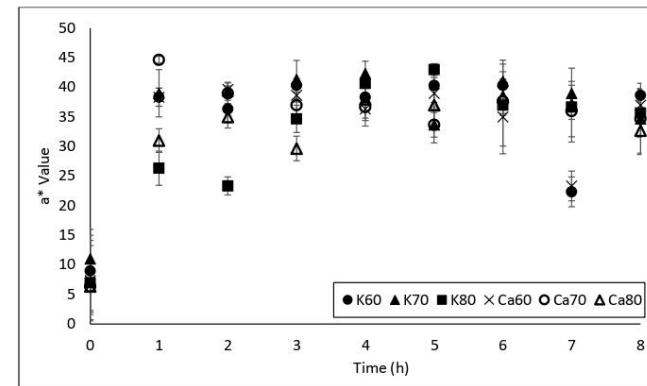


Figure 5. a^* values from the digital image analysis of the *parijoto* fruits during drying with different condition

330

331
332

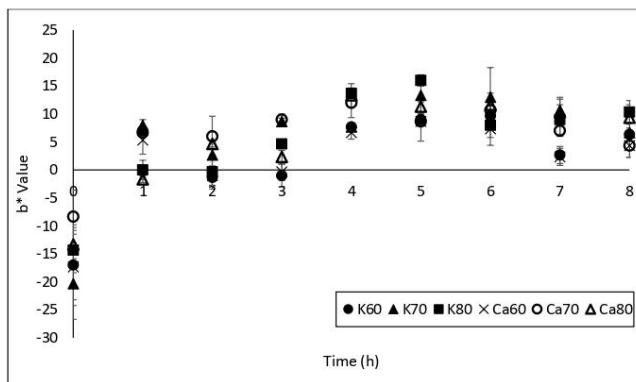


Figure 6. b^* values from the digital image analysis of the *parijoto* fruits during drying with different condition

Table 5. Digital color profile of *parijoto* fruits throughout drying with different treatments

CONCLUSIONS

Drying of *parijoto* fruit at 60-80°C may cause significant reduction on its antioxidant activity and total anthocyanin content. The antioxidant activity of *parijoto* fruits is especially susceptible to an increase in temperature during drying. However, with CaCl_2 submersion as pre-drying treatment, the degradation of anthocyanin content can be reduced. CaCl_2 submersion and higher drying temperature can also increase the drying rate of *parijoto* fruit, which make it possible to dry at a shorter time to prevent further degradation of the anthocyanin content. Higher drying rate correlates to a higher effective diffusion coefficient and the drying kinetics of *parijoto* fruits can best be described by the Page model.

ACKNOWLEDGEMENT

Completing this research project has been a collaborative effort that is acknowledged with gratitude. The research advisor is sincerely thanked for their invaluable guidance, support, and expertise throughout the research process. Appreciation is also extended to colleagues and fellow researchers for their assistance and cooperation, which contributed to the success of this study. Sincere gratitude is expressed to the Ministry of Research and Higher Education for funding through the Fundamental Research Grant 2024, number 108/E5/PG.02.00.PL/2024, 011/LL6/PB/AL.04/2024, which significantly facilitated the execution of this study. Additionally, appreciation is extended to the research partners for their valuable contributions, CSR YKBN, Kudus, Indonesia. This acknowledgement reflects the collective endeavor and support that have enriched the outcomes of this study.

REFERENCES

Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative Analysis Of Phenolics, Flavonoids, And Antioxidant And Antibacterial Potential Of Methanolic, Hexanic And Aqueous Extracts From *Adiantum Caudatum* Leaves. *Antioxidants*, 4(2), 394-409. <https://doi.org/10.3390/antiox4020394>

Aloo, M. A., Opiyo, A. M., & Saidi, M. (2022). Influence Of Ca Cl_2 Dipping On Postharvest Quality And Shelf Life Of Bell Pepper (*Capsicum annuum* L. Cv. California Wonder). *African Journal Of Agricultural Research*, 18(7), 510-521. <https://doi.org/10.5897/ajar2022.16058>

Angriani, L. (2019). Potensi Ekstrak Bunga Telang (*Clitoria ternatea*) Sebagai Pewarna Alami Lokal Pada Berbagai Industri Pangan. *Canrea Journal*, 2(1), 32-37.

<https://agritech.unhas.ac.id/ojs/index.php/canrea/article/view/120>

Basri, F. (2021). Studi Pembuatan Es Krim Dengan Penambahan Ekstrak Bunga Telang (*Clitoria Ternatea* L.) (Doctoral Dissertation, Universitas Bosowa). <https://repository.unibos.ac.id/xmlui/bitstream/handle/123456789/1210/2021%20FEBRIA NI%20BASRI%204517032008.pdf?sequence=1>

Berk, Z. (2018). Dehydration. In : Berk, Z. *Food Science and Technology, Food Processing Engineering and Technology*. Third edition. Academic Press. pp. 513-566

Chen, Y., Martynenko, A., & Mainguy, M. (2016). Wine Grape Dehydration Kinetics: Effect Of Temperature And Sample Arrangement. In *Csbe/Scgab 2016 Annual Conference, Halifax, Nova Scotia, Canada, July* (Pp. 3-6). <https://library.csbe-scgab.ca/docs/meetings/2016/CSBE16063.pdf>

Dönmez, A., & Kadakal, Ç. (2024). Hot-Air Drying And Degradation Kinetics Of Bioactive Compounds Of Gilaburu (*Viburnum Opulus* L.) Fruit: Original Scientific Paper. *Chemical Industry & Chemical Engineering Quarterly*, 30(1), 59-72. <https://doi.org/10.2298/CICEQ220614011D>

Feng, S., Luo, Z., Tao, B., & Chen, C. (2015). Ultrasonic-Assisted Extraction And Purification Of Phenolic Compounds From Sugarcane (*Saccharum Officinarum* L.) Rinds. *Lwt-Food Science And Technology*, 60(2), 970-976. <https://doi.org/10.1016/j.lwt.2014.09.066>

Feng, Y., Feng, C., Wang, Y., Gao, S., Sun, P., Yan, Z., Su, X., Sun, Y., & Zhu, Q. (2022). Effect Of Cac12 Treatment On Enzymatic Browning Of Fresh-Cut Luffa (*Luffa Cylindrica*). *Horticulturae*, 8(6), 473. <https://doi.org/10.3390/horticulturae8060473>

Guo, X., Li, Q., Luo, T., Han, D., Zhu, D., & Wu, Z. (2023). Postharvest Calcium Chloride Treatment Strengthens Cell Wall Structure To Maintain Litchi Fruit Quality. *Foods*, 12(13), 2478. <https://doi.org/10.3390/foods12132478>

Haerani, A., Chaerunisa, A. Y., & Subarnas, A. (2018). Artikel Tinjauan: Antioksidan Untuk Kulit. *Farmaka*, 16(2), 135-151. <https://doi.org/10.24198/jf.v16i2.17789>

Hwang, E. S., & Do Thi, N. (2014). Effects Of Extraction And Processing Methods On Antioxidant Compound Contents And Radical Scavenging Activities Of Laver (*Porphyra Tenera*). *Preventive Nutrition And Food Science*, 19(1), 40. <https://doi.org/10.3746/pnf.2014.19.1.040>

Koh, J., Xu, Z., & Wicker, L. (2020). Blueberry Pectin And Increased Anthocyanins Stability Under In Vitro Digestion. *Food Chemistry*, 302, 125343. <https://doi.org/10.1016/j.foodchem.2019.125343>

Lin, Z., Fischer, J., & Wicker, L. (2016). Intermolecular Binding Of Blueberry Pectin-Rich Fractions And Anthocyanin. *Food Chemistry*, 194, 986-993. <https://doi.org/10.1016/j.foodchem.2015.08.113>

Peron, D. V., Fraga, S. A. R. A., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (*Euterpe edulis* Martius) and "Italia" grapes (*Vitis vinifera* L.), and the effect of heating on the antioxidant capacity. *Food chemistry*, 232, 836-840. <https://doi.org/10.1016/j.foodchem.2017.04.088>

Priska, M., Peni, N., Carvallo, L., & Ngapa, Y. D. (2018). Antosianin Dan Pemanfaatannya. *Cakra Kimia (Indonesian E-Journal Of Applied Chemistry)*, 6(2), 79-97. <https://doi.org/10.24843/CK.2018.v06.i02>

Syah, H., Tambunan, A. H., Hartulistiyo, E., & Manalu, L. P. (2020). Kinetika Pengeringan Lapisan Tipis Daun Jati Belanda (Thin Layer Drying Kinetics Of Guazuma Ulmifolia Leaves). *Jurnal Keteknikan Pertanian*, 8(2), 53-62. <https://doi.org/10.19028/jtep.08.2.53-62>

Tan, C., Dadmohammadi, Y., Lee, M. C., & Abbaspourrad, A. (2021). Combination Of Copigmentation And Encapsulation Strategies For The Synergistic Stabilization Of Anthocyanins. *Comprehensive Reviews In Food Science And Food Safety*, 20(4), 3164-3191. DOI: 10.1111/1541-4337.12772

Turan, O. Y., & Firatdigil, F. E. (2019). Modelling and characteristics of thin layer convective air-drying of thyme (*Thymus vulgaris*) leaves. *Czech Journal of Food Sciences*, 37(2). <https://doi.org/10.17221/243/2017-CJFS>

Turmanidze, T., Gulua, L., Jgenti, M., & Wicker, L. (2016). Effect Of Calcium Chloride Treatments On Quality Characteristics Of Blackberry Fruit During Storage. *International Journal Of Food And Allied Sciences*, 2(2), 36-41. <https://doi.org/10.24925/turjaf.v4i12.1127-1133.907>

Udomkun, P., Mahayothee, B., Nagle, M., & Müller, J. (2014). Effects Of Calcium Chloride And Calcium Lactate Applications With Osmotic Pretreatment On Physicochemical Aspects And Consumer Acceptances Of Dried Papaya. *International Journal Of Food Science & Technology*, 49(4), 1122-1131. <https://doi.org/10.1111/ijfs.12408>

Vardin, H., & Yilmaz, F. M. (2018). The Effect Of Blanching Pre-Treatment On The Drying Kinetics, Thermal Degradation Of Phenolic Compounds And Hydroxymethyl Furfural Formation In Pomegranate Arils. *Italian Journal Of Food Science*, 30(1). <https://doi.org/10.14674/IJFS-947>

Wachidah, L. N. (2013). Uji Aktivitas Antioksidan Serta Penentuan Kandungan Fenolat Dan Flavonoid Total Dari Buah Parijoto. *Skripsi. Program Studi Farmasi Uin, Jakarta*. <https://repository.uinjkt.ac.id/dspace/bitstream/123456789/25895/1/LELIANA%20NURUL%20WACHIDAH-fkik.pdf>

VI. Accepted Confirmation

11/20/24, 10:44 AM

Novita Ika Putri, DRYING AND DEGRADATION KINETICS OF THE PHYSICOCHEMICAL CHARACTERISTICS OF PARIJO...

Notifications

[jffn] Editor Decision - Manuscript {\$articleId}

2024-11-15 04:51 AM

Dear Novita Ika Putri, Bernardus David Lai, Gelbert Jethro Sanyoto, Victoria Kristina Ananingsih,

We have reached a decision regarding your submission to Journal of Functional Food and Nutraceutical, Manuscript {\$articleId}, entitled DRYING AND DEGRADATION KINETICS OF THE PHYSICOCHEMICAL CHARACTERISTICS OF PARIJOTO FRUIT (MEDINILLA SPECIOSA) WITH CALCIUM CHLORIDE PRE-TREATMENT.

Our decision is to: Accept Submission

Maria Gunawan Puteri
Swiss German University
maria.gunawanputeri@sgu.ac.id

Editorial Office Journal of Functional Food and Nutraceutical (JFFN)

The Prominence Tower Alam Sutera, Jl. Jalur Sutera Barat. No. 15, RT.003/RW.006,
Panunggangan Tim., Kec. Pinang, Kota Tangerang, Banten 15143

Email: jffn@sgu.ac.id

Website: <https://journal.sgu.ac.id/jffn>

jffn Journal of Functional Food and Nutraceutical

VII. Final Article

1 **Drying and Degradation Kinetics of the Physicochemical Characteristics of Parijoto Fruit** 2 **(*Medinilla speciosa*) with Calcium Chloride Pre-Treatment**

5 **ABSTRACT**

6 *Parijoto* (*Medinilla speciosa*) is an Indonesian plant rich in bioactive compounds beneficial
7 for human health. However, these compounds are susceptible to high temperatures, which can lead
8 to significant quality degradation during drying. To address this, calcium chloride (CaCl_2) pre-
9 treatment is proposed to help maintain cell wall integrity and prevent damage from enzymatic,
10 mechanical, and microbial activities in *parijoto* fruits. The study aims to investigate the impact of
11 soaking with CaCl_2 (10 min) and drying temperatures (60, 70, and 80°C) over 8 hours on the
12 antioxidant activity, total anthocyanin content, and color of *parijoto*. This study also aims to
13 determine the kinetic model of the quality degradation and drying rate of *parijoto*. Moisture ratio,
14 color intensity, antioxidant activity and anthocyanin content of *parijoto* were measured at hourly
15 intervals during drying. The results indicated that soaking in CaCl_2 led to accelerating drying rates
16 and preservation of anthocyanin content. Degradation kinetics of anthocyanins and antioxidant
17 activity were established using the first order kinetic equation. The values of k and $t_{1/2}$ showed
18 faster antioxidant activity degradation during drying at higher temperature, while the rate of
19 anthocyanin degradation did not significantly change. CaCl_2 soaking decreased the degradation
20 rate of the anthocyanin content. Page model ($MR = \exp(-kt^n)$) was found to be the most suitable
21 drying kinetics model compared to the other models studied. Drying *parijoto* at 80°C gave the
22 fastest drying rate with insignificant degradation to the anthocyanin and color. The result of this
23 study could be used to determine a suitable drying condition for *parijoto*.
24 **Keywords:** *Parijoto* fruit; Degradation kinetic, Drying kinetic, Calcium chloride

26 **Kinetika Pengeringan dan Degradasi Karakteristik Fisikokimiawi Pada Buah Parijoto** 27 **(*Medinilla speciosa*) dengan Pra-Perlakuan Kasium Klorida**

30 **ABSTRAK**

31 *Parijoto* (*Medinilla speciosa*) adalah tanaman Indonesia yang kaya akan senyawa bioaktif
32 yang bermanfaat bagi kesehatan manusia. Namun, senyawa ini rentan terhadap suhu tinggi yang
33 dapat menyebabkan penurunan kualitas yang signifikan selama pengeringan. Untuk mengatasi hal
34 ini, perendaman dengan kalsium klorida (CaCl_2) telah diusulkan sebagai metode untuk membantu
35 menjaga integritas dinding sel dan mencegah kerusakan akibat aktivitas enzimatik, mekanik, dan
36 mikroba pada buah *parijoto*. Penelitian ini bertujuan untuk menyelidiki dampak perendaman
37 dengan CaCl_2 (10 menit) dan pengeringan pada suhu (60, 70, dan 80°C) selama 8 jam terhadap
38 aktivitas antioksidan, total kandungan antosianin, dan warna buah *parijoto*. Penelitian ini juga
39 bertujuan untuk menentukan model kinetika untuk degradasi kualitas dan kecepatan pengeringan
40 buah *parijoto*. Rasio kadar air, intensitas warna, aktivitas antioksidan, dan kandungan total
41 antosianin pada buah *parijoto* diuji setiap jam selama proses pengeringan. Hasil penelitian
42 menunjukkan bahwa perendaman dalam CaCl_2 mempercepat laju pengeringan dan
43 mempertahankan kandungan antosianin. Kinetika degradasi antosianin dan aktivitas antioksidan
44 ditentukan dengan persamaan kinetika reaksi ordo 1. Nilai k dan $t_{1/2}$ menunjukkan bahwa aktivitas
45

46 antioksidan terdegradasi lebih cepat ketika suhu pengeringan meningkat, sedangkan kandungan
47 total antosianin tidak mengalami perubahan laju degradasi yang signifikan. Perendaman dengan
48 CaCl₂ menurunkan laju degradasi total antosianin. Kinetika pengeringan untuk buah parijoto
49 dengan Model Page ($MR = \exp(-kt^n)$) terbukti menjadi model kinetika pengeringan yang paling
50 relevan dibandingkan dengan dua model lain yang dipelajari. Pengeringan buah parijoto pada suhu
51 80°C memberikan laju pengeringan tercepat dengan penurunan kandungan antosianin dan warna
52 yang tidak signifikan. Oleh karena itu, hasil penelitian ini dapat digunakan untuk menentukan
53 proses pengeringan yang sesuai untuk buah parijoto.

54 **Kata kunci:** Buah parijoto; Kinetika degradasi; Kinetika pengeringan; Kalsium klorida

55 **INTRODUCTION**

56 *Parijoto* (*Medinilla speciosa*) is a local Indonesian plant that grows, often uncultivated, in
57 Kudus, Central Java. *Parijoto* is currently often cultivated as a decorative plant. However, the fruit
58 of *parijoto* contains a high number of bioactive compounds such as ascorbic acid, carotenoids,
59 flavonoids, vitamin E, flavonol glycoside and phenolic compounds which may act as antioxidants
60 (Angriani, 2019). Antioxidant compounds play an essential role in the health of the body, as they
61 can protect the body from oxidative damage, inhibit oxidative stress, reduce inflammation, and
62 boost the immune system (Haerani et al., 2018).

63 Previous research has shown that anthocyanin compound in *parijoto* fruit can be used as a
64 natural blue colorant (Priska et al., 2018). Anthocyanin can also act as antioxidant, anti-cancer,
65 anti-diabetics, and anti-inflammation (Basri, 2021; Tan et al., 2021). However, the bioactive
66 compounds in the *parijoto* fruit are very vulnerable to damage, especially the anthocyanin
67 compound and the antioxidant components such as flavonoids and phenolics (Wachidah, 2013).
68 The damage to such compounds can be caused by high-temperature processes and environmental
69 conditions such as oxygen, light, and pH (Feng et al., 2015). Drying, on the other hand, is a
70 standard preservation method because it can increase the storage life and facilitate the distribution,
71 supply, and ease-of-use. Therefore, it is necessary to prevent the damage of bioactive compounds
72 due to the drying temperature of the *parijoto* fruit, e.g by pre-treatments.

73 Using organic acid solutions (citric acid, acetic acid) and salt solutions (Na^+ , Ca^{2+}) with
74 specific concentrations as a pre-drying treatment can retain bioactive compounds in food materials.
75 Calcium chloride (CaCl_2) is a salt classified as a food additive. According to a study by Guo et al.
76 (2023), the lifespan of lychee fruit increased because CaCl_2 increased the strength of the cell wall
77 and prevented the activity of polyphenol oxidase (PPO) enzymes and microbes. Looking at the
78 potential of *parijoto* fruit as a novel health-promoting food ingredient, this study aims to firstly
79 examine the effect of CaCl_2 and temperature in the drying process of *parijoto* fruit. Secondly, this
80 study also aims to establish the drying and degradation kinetics, which will be useful in developing
81 *parijoto* fruit products that are shelf-stable with optimum bioactive compound activities.

82

83 **MATERIALS AND METHOD**

84 **Materials**

85 Fresh *parijoto* fruits were obtained from Kudus, Central Java. Other materials used in this
86 study are CaCl₂ (E. Merck, Germany), KCl (E. Merck, Germany), CH₃COONa (E. Merck,
87 Germany), 2-diphenyl-1-picrylhydrazyl (Sigma Aldrich, USA), and methanol 99.98% (E. Merck,
88 Germany). All the chemicals used are of analytical grade unless specified.

89

90 ***Parijoto* fruit preparation and pre-treatment**

91 *Parijoto* fruits were separated from the branch, sorted and then washed under a running tap
92 water. Half of the cleaned *parijoto* fruits were submerged in CaCl₂ 2% solution for 10 min. (sample
93 code: Ca) while the other half were not submerged as a control (sample code: K).

94

95 **Drying process**

96 Drying was done using a dryer cabinet ED 115 (Binder, Germany) (. *Parijoto* fruits were
97 placed on a tray and were spread evenly. The control and pre-treated samples were dried at 60 °C
98 (sample code : K60 and Ca60), 70°C (sample code : K70 and Ca70), and 80°C (sample code : K80
99 and Ca80) for 8 hours. During the drying process, the mass of the *parijoto* fruits was weighed
100 every 1 hour. After drying, the samples were grinded with mortar and pestle for further chemical
101 analysis of the antioxidant activity and total anthocyanin.

102

103 **Ultrasound-assisted methanol extraction for chemical analysis**

104 Five grams of the grinded dried *parijoto* fruit was suspended in 50 ml methanol (Ananingsih
105 et al., 2024). The mixture was subjected to ultrasound in a sonication bath (BioBase, China) at
106 frequency 40 kHz for 30 min and then was let to sit for another 1 h. The mixture was filtered and
107 the filtrate were diluted into 100 ml using methanol. The extract was stored until further analysis
108 for anthocyanin and antioxidant activity analysis.

109

110 **Total anthocyanin analysis**

111 Anthocyanin analysis was done using pH differential method described in Turmanidze et al.
112 (2016). The methanol extract obtained was further diluted 2x using methanol. Two milliliters of
113 the diluted samples were mixed with 2 ml of KCl buffer solution pH 1 and CH₃COONa buffer
114 solution pH 4.5. The mixture was incubated in a dark room for 15 min. The absorbance of the
115 mixture was measured using UV-Vis spectrophotometer (UV1280, Shimadzu, Japan) at

116 wavelength 520 and 700 nm. Total anthocyanin in the extract were measured using the equations
117 below:

118
$$A = (A_{520} - A_{700})_{pH\ 1} - (A_{520} - A_{700})_{pH\ 4,5} \quad (1)$$

119
$$Total\ Anthocyanin\ (mg/L) = \frac{A \times MW \times DF \times 1000}{\epsilon \times L} \quad (2)$$

120 where A is the absorbance value at different wavelength, MW is the molecular weight of
121 cyanidine-3-glucoside (449.2 g/mol), DF is the dilution factor (20), ϵ is the molar absorptivity of
122 cyanidine-3-glucoside (26900 L/mol.cm) and L is the cuvet width (1 cm).

123

124 **Antioxidant activity analysis**

125 Antioxidant activity was measured using the method described in Ahmed et al. (2015). The
126 methanol extract was diluted into 1500 ppm using methanol. Afterwards, 0.3 ml of the diluted
127 sample were reacted with 9 ml of DPPH solution (Merck, Germany) in the dark room for 30 min.
128 Blank solution were prepared using 0.3 ml methanol and 9 ml DPPH solution. After 30 min, the
129 absorbance of the sample (Asample) and blank solution (Ablank) was measured using UV-Vis
130 spectrophotometer (UV1280, Shimadzu, Japan) at 517 nm. The antioxidant activity is calculated
131 using the equation below.

132
$$Antioxidant\ activity\ (\%) = \left[\frac{(A_{blank} - A_{sample})}{A_{blank}} \right] \times 100 \quad (3)$$

133

134 **Degradation kinetics**

135 The degradation kinetic of the total anthocyanin content and antioxidant activity was fitted
136 into the first order kinetic equation (eq. 4). The degradation kinetic coefficient (k) was obtained
137 from the regression of the experimental data (Fogler, 2006 in Peron et al., 2017).

138

139
$$\ln(C_t) = \ln(C_0) - kt \quad (4)$$

140 C_t = Concentration of total anthocyanin or Antioxidant activity at time t

141 C_0 = Initial concentration of total anthocyanin or Antioxidant activity

142 k = degradation kinetics coefficient

143 t = time (h)

145

146 Furthermore, half-life time ($t_{1/2}$), the time in which the component's degradation reached
147 half of its initial value, was calculated using eq. 6 below (Peron et al., 2017).

148 $t_{1/2} = \ln(\frac{0.5}{k})$ (6)

149

150 $t_{1/2}$ = half-life time
 151 k = degradation kinetic coefficient
 152

153 **Drying kinetics**

154 Water content analysis was done using gravimetric method, which 2.5 g sample was dried in
 155 a porcelain dish at 100°C. Water content analysis was carried out throughout the drying process
 156 and the drying kinetic model was done through the moisture ratio (MR) calculation in eq 7 below.

157 $MR = \frac{M_t}{M_0}$ (7)

158 M_t = moisture content (d.b) at time t
 159 M_0 = initial moisture content (d.b)

160 The MR data obtained will be used to determine the drying kinetic based on the three types
 161 of semi-empirical models (Turan & Firatligil, 2019), which can be seen in Table 1. Mathematical
 162 modelling was done using nonlinear regression. Increasing R² values and increasing RMSE (Root
 163 Mean Square Error) values are factors in determining the relevant kinetic drying model (Vardin &
 164 Yilmaz, 2018). RMSE determination was done following eq 8.

165 $RMSE = \left[\frac{1}{N} \sum_{i=1}^N (MR_{exp,i} - MR_{pre,i})^2 \right]^{\frac{1}{2}}$ (8)

166
 167 N = number of observations
 168 $MR_{exp,i}$ = MR experimental
 169 $MR_{pre,i}$ = MR prediction

170 **Table 1.** Drying kinetic models

Model	Equation
Lewis	$MR = \exp(-kt)$
Henderson & Pabis	$MR = a \cdot \exp(-kt)$
Page	$MR = \exp(-kt^n)$

171

172 **Effective moisture diffusivity**

173 Effective moisture diffusivity coefficient (D_{eff}) describes the effectiveness of water diffusion
 174 processes in a drying process (Chen et al., 2016). The D_{eff} was calculated based on the value of k
 175 (slope) of the linear regression of eq. 9 below.

176 $\ln(MR) = \ln\left(\frac{6}{\pi^2}\right) - \left(\frac{\pi^2 D_{eff}}{r^2}\right)(t)$ (9)

$$k = -\frac{\pi^2 D_{eff}}{r^2} \quad (10)$$

178
179
180 MR = moisture ratio
181 r = material's radius
182 t = time

183 Activation energy (E_a) is the minimum energy needed to start the reaction (Syah et al., 2020).
184 The value of E_a of the moisture diffusion process was obtained through a regression of eq 11 below.

$$185 \quad D_{eff} = D_0 \cdot e^{\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right)} \quad (11)$$

186
187 T = temperature (K)
188 R = ideal gas constant (8.314 J mol⁻¹ K⁻¹)
189 D₀ = exponential equation constant

190

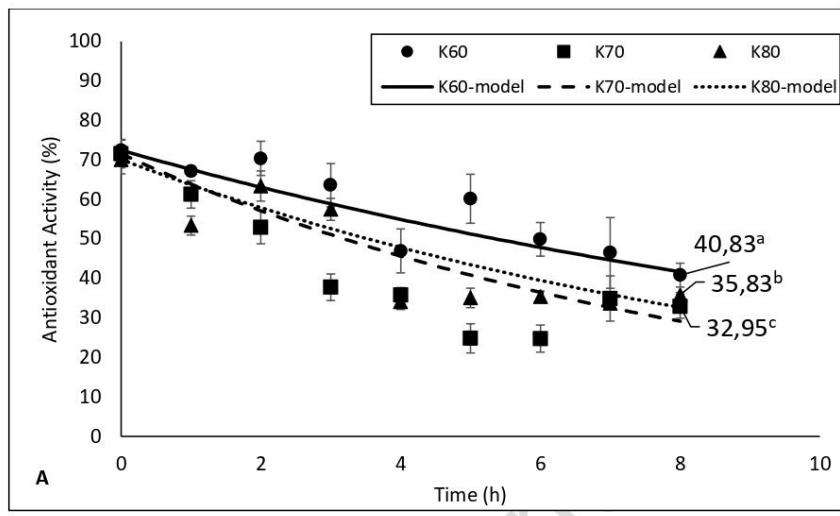
191 Color intensity

192 Color intensity measurement was done through digital imaging analysis. The digital images
193 of the *parijoto* fruits during drying was captured using a smartphone camera (Infinix Note 11 Pro,
194 Infinix Mobile, China) by taking a photo (JPG image file). The photo of *parijoto* fruit were taken
195 every hour during drying inside a modified mini photo studio box to ensure consistent lighting,
196 background and distance between the sample and the camera. Color intensity of *parijoto* fruits is
197 expressed using CIE scale using L^* , a^* , and b^* values. To obtain the L^* , a^* and b^* values,
198 eyedropper tool in Adobe Photoshop CS3 software (Adobe, USA) was used. Measurements were
199 taken three times at different points in the photo.

200

201 Data analysis

202 Data analysis and model fitting were carried out using Microsoft Excel and SPSS (Statistical
203 Package for Social Science) software v.23. Analysis of variance was carried out to measure
204 statistically significant difference at α 0.5.


205

206 RESULTS AND DISCUSSION


207 Antioxidant activity

Figure 1 shows the antioxidant activity of the *parijoto* fruit before and after drying. The CaCl₂ submersion pre-treatment did not significantly influence the antioxidant activity of *parijoto* fruit, while higher drying temperature significantly decrease it.

211

212

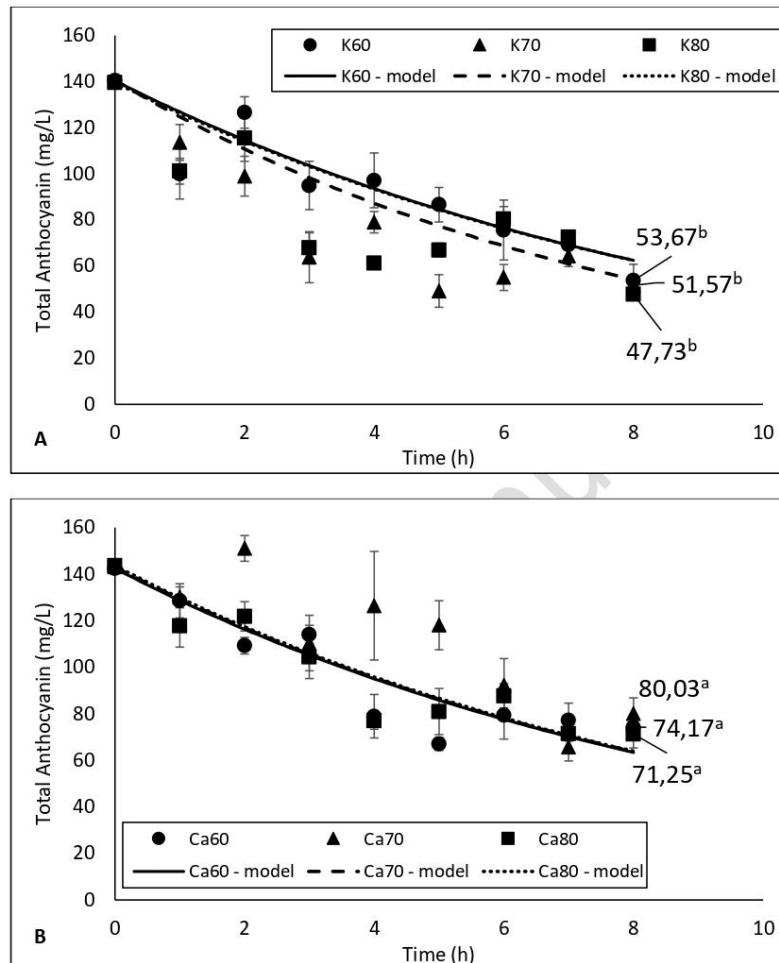
213
214
215
216
217

218

Figure 1. Antioxidant activity of *parijoto* fruit dried at different temperature without pre-treatment (A) and with CaCl_2 submersion (B). The points indicate the mean observation values and the line indicates the modelled kinetic. The numbers indicate the final value of the antioxidant activity and the superscript letters indicate significant statistical difference ($p < 0.05$).

219 High temperatures can damage antioxidant compounds in materials, leading to decreased
220 antioxidant activity (Hwang & Do Thi, 2014). According to research by Aloo et al. (2022), CaCl_2
221 soaking treatment can maintain the ascorbic acid content and antioxidant compounds in bell
222 peppers after 16 days of storage at room temperature. Similar findings can be observed in this
223 study for *parijoto* fruits dried at 60°C treatment, which shows higher results in the soaked fruit
224 than the control. Calcium ions in CaCl_2 can form calcium pectate cross-links with pectin molecules
225 in food materials. This can enhance mechanical properties in *parijoto* fruit, thereby preserving
226 intracellular antioxidant compounds. Goutam et al. (2010) in Aloo et al. (2022) also mentioned
227 that calcium ions could decrease oxidative enzyme activity, thus maintaining antioxidant activity
228 stability against oxidative degradation in *parijoto* fruit. However, the positive effect of the CaCl_2
229 soaking was not observed for drying at 70 and 80°C, indicating that the high temperature's
230 destructive effect affects the antioxidant activity more than the protection of the CaCl_2 pre-
231 treatment.

232


233 **Total anthocyanin content**

234 Figure 2 shows the total anthocyanin content of the dried *parijoto* fruits. Drying caused
235 *parijoto* fruits to lose its anthocyanin content significantly. However, the results show that CaCl_2
236 pre-treatment significantly preserve the anthocyanin content of *parijoto* fruits. On the other hand,
237 the drying temperature did not significantly affect the anthocyanin content of the fruit.

238

239

240

Figure 2. Total anthocyanin content of *parijoto* fruit dried at different temperature without pre-treatment (A) and with CaCl_2 submersion (B). The points indicate the mean observation values and the line indicates the modelled kinetic. The numbers indicate the final value of the total anthocyanin content and the superscript letters indicate significant statistical difference ($p < 0.05$).

245

246

247

248

Research by Feng et al. (2022) showed that the utilization of CaCl_2 solution can preserve the phenolic compounds and stability of antioxidant compounds in luffa (*Luffa cylindrica*). Calcium pectate cross-links may form during the CaCl_2 pre-treatment and they can strengthen the

249 interaction between pectin and anthocyanin (Lin et al., 2016) which may protect the anthocyanin
250 content from the heat treatment during drying. Furthermore, the formation of calcium pectate
251 cross-links enhances the integrity of the cell and prevents cellular damage which encourage of
252 enzymatic browning in food materials due to the release of the polyphenol oxidase (PPO). Since
253 anthocyanins are natural compounds in *parijoto* fruit belonging to the phenolic group, damage to
254 anthocyanin compounds from the PPO activity can be prevented. This could explain the higher
255 total anthocyanin content in CaCl_2 -soaked samples compared to the control.

256

257 **Degradation kinetic coefficient of antioxidant activity and total anthocyanin content**

258 The values of k and $t_{1/2}$ obtained from the first order kinetic regression from the antioxidant
259 activity and total anthocyanin content during drying are presented in Table 2. These values are
260 useful in describing the properties degradation kinetics during drying and to compare the
261 susceptibility of the properties to heat degradation. Higher k value indicates faster degradation and
262 thus, a more susceptible material. On the other hand, higher $t_{1/2}$ showed a slower and more difficult
263 degradation, which indicate a more stable material (Peron et al., 2017).

264 The results of the antioxidant activity analysis show that the degradation rate constant (k)
265 increases with higher drying temperatures. This indicates a faster decline in antioxidant activity
266 with increasing drying temperature, affecting the time for antioxidant activity to reach half its
267 initial value ($t_{1/2}$). Thus, it can be concluded that the antioxidant activity of *parijoto* fruits is very
268 vulnerable to increase in temperature during drying.

269 On the contrary, the k value of the total anthocyanin degradation kinetic remained the same
270 with higher drying temperature. This indicate that the temperature difference in this study did not
271 affect the kinetics of the anthocyanin degradation. Interestingly, CaCl_2 treatment caused significant
272 reduction in the k value and increase in the $t_{1/2}$ value. This may be due to calcium pectate
273 interactions with anthocyanins as previously discussed (Lin et al., 2016), which can slow down
274 anthocyanin degradation. However, the CaCl_2 submersion did not slow down the degradation of
275 antioxidant activity of *parijoto* fruits during drying.

276

277 **Table 2.** Values of k (degradation kinetic coefficient) and $t_{1/2}$ (half-life) of the antioxidant
278 activity and total anthocyanin content of *parijoto* fruits dried at various conditions

Parameter	Pre-treatment	Temp (°C)	k (h ⁻¹)	t _{1/2} (h)
Antioxidant activity	Control	60	0.0691	10.03
		70	0.1121	6.18
		80	0.0955	7.26
	CaCl ₂	60	0.0628	11.04
		70	0.1590	4.36
		80	0.1109	6.25
Total anthocyanin content	Control	60	0.1012	6.85
		70	0.1193	5.81
		80	0.1006	6.89
	CaCl ₂	60	0.0885	7.83
		70	0.0882	7.86
		80	0.0869	7.98

279

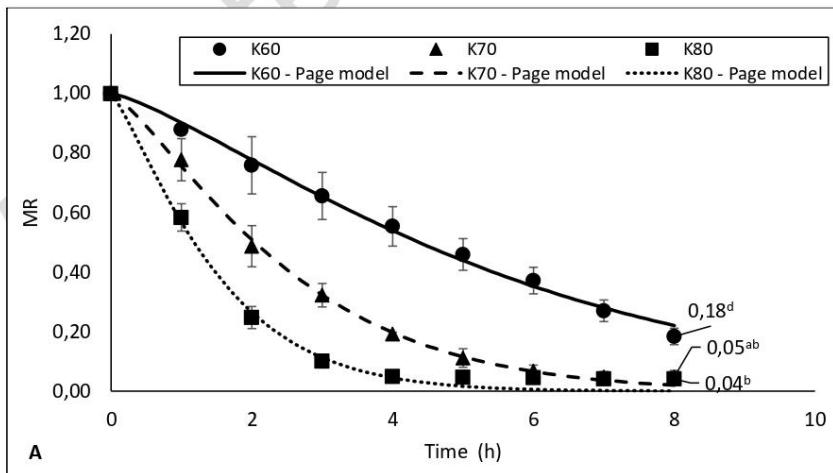
280 **Moisture diffusion properties of *parijoto* fruits during drying**

281 The values of D_{eff} and E_a of *parijoto* fruits dried with different conditions are presented at
 282 Table 3. Higher value of D_{eff} indicates that moisture could diffuse out of the fruit tissue more
 283 effectively during drying (Chen *et al.*, 2016). On the other hand, higher E_a indicates that more
 284 energy is required to start moisture diffusion out of the tissue.

285

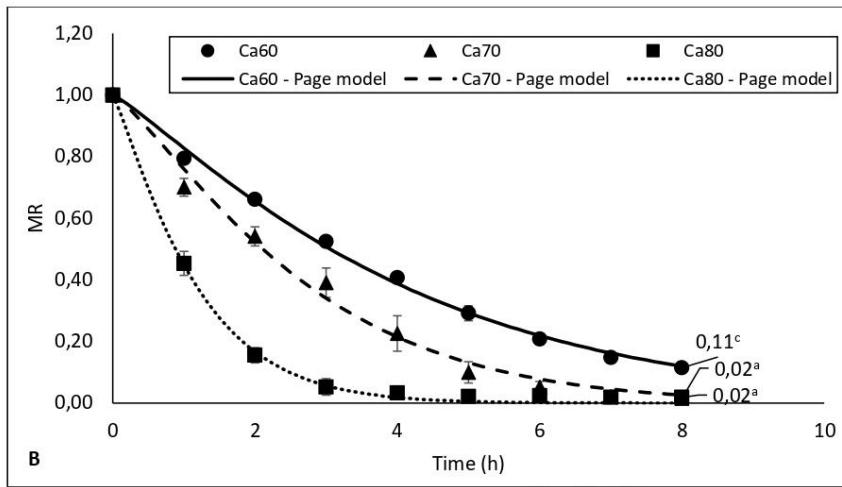
286 With higher drying temperatures, a higher diffusion coefficient could be achieved. CaCl₂
 287 submersion as pre-treatment also significantly increased the diffusion coefficient and lowered the
 288 activation energy. This indicates that moisture more easily escaped from the tissue and cells of
 289 *parijoto* fruits. Thus, a more efficient and faster drying occurred for *parijoto* fruits dried with pre-
 290 treatment and at higher temperatures. The results correlate well with the drying kinetics in Figure
 291 3, discussed below. The presence of salts such as CaCl₂ could induce osmotic dehydration in fruit
 292 cells (Udomkun *et al.*, 2014). Osmotic dehydration occurred due to the difference in the osmotic
 293 pressure between the materials and the salt solutions used to submerge them. Osmotic dehydration
 294 can only partially remove water from the materials and usually uses a pre-treatment as the materials
 295 require further processing to be shelf-stable (Berk, 2018).

296 **Table 3.** Effective Moisture Diffusivity (D_{eff}) and Activation Energy (E_a) of parijoto fruits dried
297 at various conditions


Pre-treatment	Temp (°C)	D_{eff} ($m^2 s^{-1}$)	E_a (kJ/mol)
Control	60	3.27×10^{-3}	35.53
	70	6.91×10^{-3}	
	80	6.71×10^{-3}	
$CaCl_2$	60	4.49×10^{-3}	29.48
	70	9.00×10^{-3}	
	80	8.13×10^{-3}	

298

299 Drying kinetics of *parijoto* fruits


300 The change in the moisture ratio during drying for all the different treatments is shown in
301 Figure 3. Based on the drying kinetics, a moisture ratio plateau (which indicate no further moisture
302 reduction) was already reached at approximately 7 hours and 4 hours for 70 and 80°C, respectively,
303 with a final moisture ratio of about 0.05 for the control sample and about 0.02 for pre-treated
304 samples. On the other hand, *parijoto* fruits dried at 60°C, both with or without pre-treatment, did
305 not reach the same level of moisture ratio after 8 hours. *Parijoto* fruits with $CaCl_2$ submersion
306 reached a lower final moisture ratio than the control samples at all temperature levels, indicating
307 a more effective drying due to the pre-treatment before drying. As discussed, $CaCl_2$ pre-treatment
308 caused osmotic dehydration, significantly increasing moisture diffusivity out of *parijoto* fruits
309 (Table 3).

310

311

312

313 **Figure 3.** Moisture ratio of *parijoto* fruit dried at different temperature without pre-treatment (A)
 314 and with CaCl_2 submersion (B). The points indicate the mean observation values and the line indicates the
 315 modelled kinetic. The numbers indicate the final value of the moisture ratio and the superscript letters indicate
 316 significant statistical difference ($p < 0.05$).
 317

318 Three models were fitted into the drying kinetics, i.e. Lewis, Henderson & Pabis and Page
 319 model (Panchariya et.al., 2002). The coefficients obtained from the model fitting are presented at
 320 Table 3. Based on the highest R^2 and lowest RSME values (Table 4), Page model best describe the
 321 drying kinetics of *parijoto* fruits using cabinet dryer. Page model was used to estimates the value
 322 of k and n . The value of k describes the rate of the drying process which show how fast moisture
 323 migrates out of the fruits (Panchariya et.al., 2002), while the value of n does not have significant
 324 physical meaning yet. Similar model has been used to describe the drying of gilaburu berries
 325 (Dönmez & Kadakal, 2024) and aryl of pomegranate (Vardin & Yilmaz, 2018). The value of k
 326 increased significantly with higher temperature and with CaCl_2 submersion pre-treatment, which
 327 indicate faster drying. With faster drying and insignificant degradation of anthocyanin content
 328 observed (Figure 2), drying at 80°C may be suitable to create functional ingredients from *parijoto*
 329 fruits.

330

331

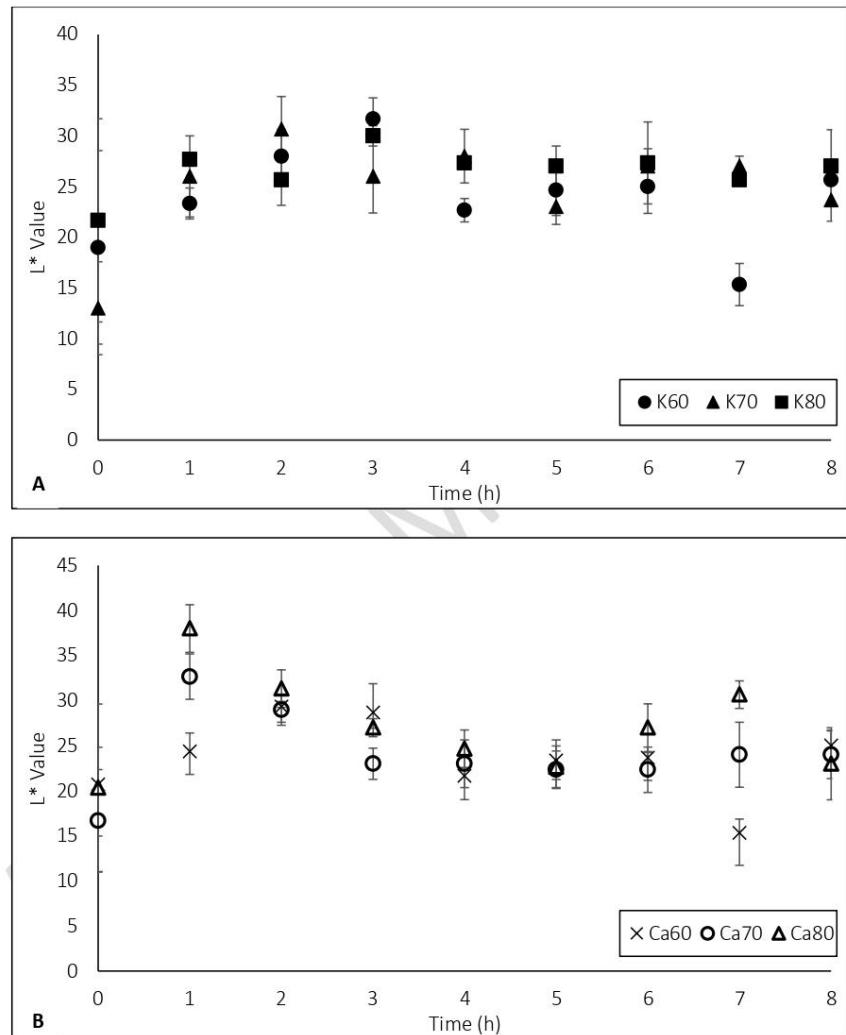
332 **Table 4.** Coefficients of drying kinetics of parijoto fruits at various conditions from different
 333 models

Pre-treatment	Temperature (°C)	Model	k	n	a	R ²	RMSE
Control	60	Lewis	0.165			0.947	0.099
		Henderson & Pabis	0.174		1.041	0.952	0.119
		Page	0.103	1.292		0.966	0.019
	70	Lewis	0.379			0.977	0.143
		Henderson & Pabis	0.394		1.045	0.980	0.143
		Page	0.281	1.266		0.988	0.015
		Lewis	0.648			0.986	0.195
	80	Henderson & Pabis	0.657		1.016	0.986	0.185
		Page	0.566	1.229		0.989	0.027
CaCl ₂	60	Lewis	0.239			0.989	0.112
		Henderson & Pabis	0.246		1.023	0.990	0.117
		Page	0.189	1.163		0.995	0.016
	70	Lewis	0.369			0.974	0.141
		Henderson & Pabis	0.377		1.027	0.975	0.133
		Page	0.275	1.242		0.984	0.032
		Lewis	0.857			0.994	0.223
	80	Henderson & Pabis	0.864		1.006	0.994	0.210
		Page	0.802	1.158		0.995	0.014

334

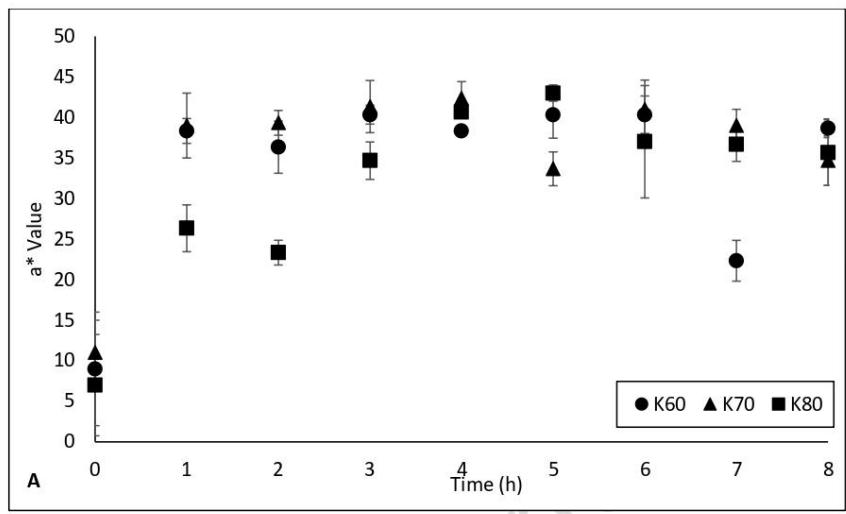
335 **Color changes of parijoto fruits during drying**

336 Digital image analysis was carried out to the *parijoto* fruits during drying. The visual
 337 representations of the color change are shown in Table 5. The results of the analysis (L*, a* and
 338 b* values) are shown in Figure 4-6. Heat from the drying immediately caused a change in the
 339 color profile of *parijoto* fruits from initially dark purple to reddish color in the first hour. Slight
 340 increase of the lightness (L*) values of the *parijoto* fruits were observed after drying and a
 341 significant increase of the a* value was observed which indicates the increased intensity of the red
 342 color after drying. On the other hand, the value of b* changed from negative to positive, which
 343 indicate a change of color hue from dominant blue to yellow after drying. The change of the color
 344 from purple to reddish color due to drying may be caused by the increase in the acidity level of the
 345 fruits, due to the change of the proportion after moisture removal. Anthocyanin color changed at
 346 different acidity level, in which it becomes redder at acidic environment (Dreçcanu, et.al., 2021).


347 Variations in the visual of *parijoto* fruits and L*, a* and b* values between the different
 348 drying conditions are observed during the drying process. However, the final color of *parijoto*
 349 fruits after 8 hr of drying was not significantly different between the conditions.

350

351


352

353

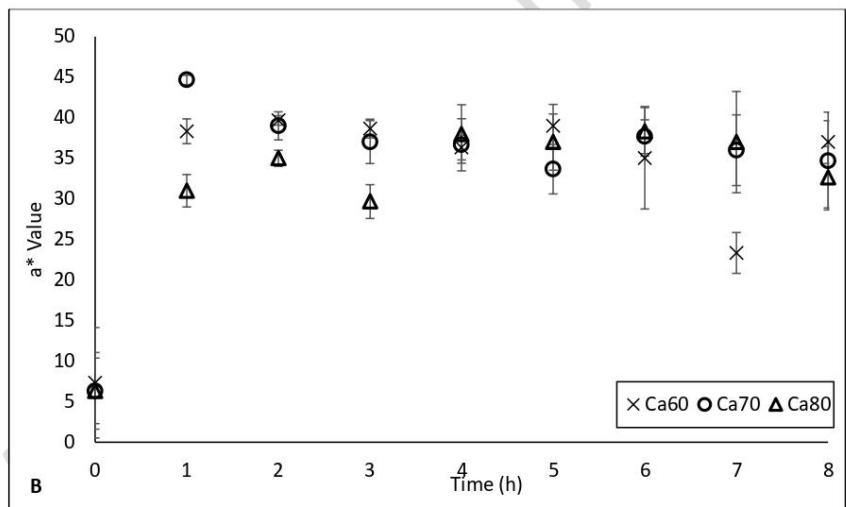
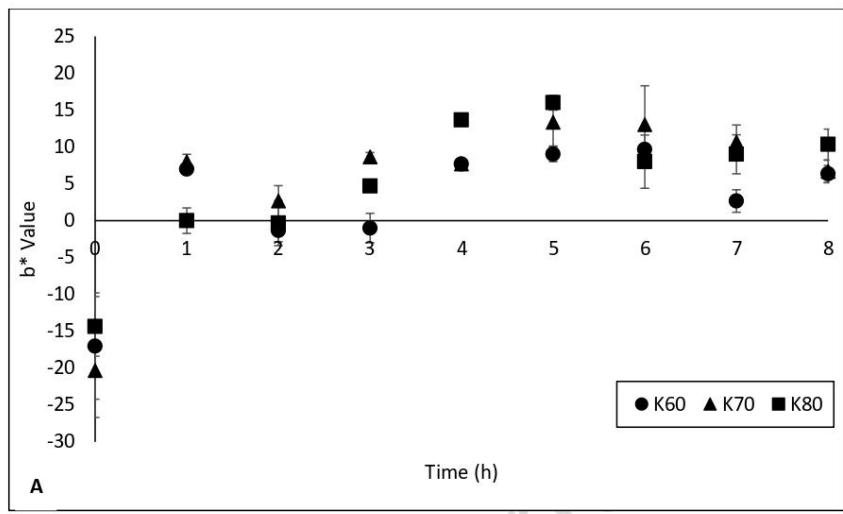


Figure 4. L^* values from the digital image analysis of the *parijoto* fruits during drying at different temperature without (A) and with CaCl_2 pre-treatment (B)

357


358

359
360
361

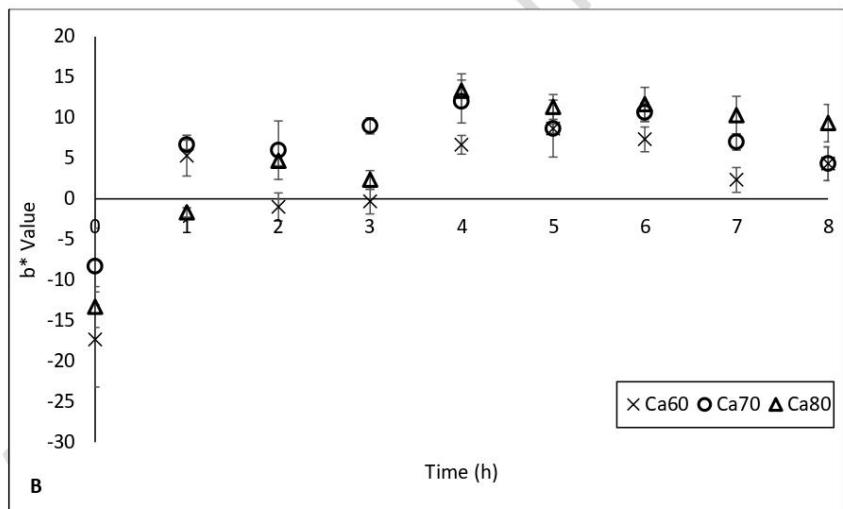

362

Figure 5. a^* values from the digital image analysis of the *parijoto* fruits during drying different temperature without (A) and with CaCl_2 pre-treatment (B)

363

364

365

Figure 6. b^* values from the digital image analysis of the *parijoto* fruits during drying different temperature without (A) and with CaCl_2 pre-treatment (B)

366

Table 5. Digital color profile of *parijoto* fruits throughout drying with different treatments

Treatment	Drying time (h)								
	0	1	2	3	4	5	6	7	8
K60									
K70									
K80									
Ca60									
Ca70									
Ca80									

CONCLUSIONS

Drying of *parijoto* fruit at 60-80°C may cause significant reduction on its antioxidant activity and total anthocyanin content. The antioxidant activity of *parijoto* fruits is especially susceptible to an increase in temperature during drying. However, with CaCl_2 submersion as pre-drying treatment, the degradation of anthocyanin content can be reduced. CaCl_2 submersion and higher drying temperature can also increase the drying rate of *parijoto* fruit, which make it possible to dry at a shorter time to prevent further degradation of the anthocyanin content. Higher drying rate correlates to a higher effective diffusion coefficient and the drying kinetics of *parijoto* fruits can best be described by the Page model($MR = \exp(-kt^n)$). In this research, drying of *parijoto* fruits at 80°C gave the fastest drying rate with insignificant degradation to the total anthocyanin content and color.

ACKNOWLEDGEMENT

Completing this research project has been a collaborative effort that is acknowledged with gratitude. The research advisor is sincerely thanked for their invaluable guidance, support, and expertise throughout the research process. Appreciation is also extended to colleagues and fellow researchers for their assistance and cooperation, which contributed to the success of this study. Sincere gratitude is expressed to the Ministry of Research and Higher Education for funding through the Fundamental Research Grant 2024, number 108/E5/PG.02.00.PL/2024, 011/LL6/PB/AL.04/2024, which significantly facilitated the execution of this study. Additionally, appreciation is extended to the research partners for their valuable contributions, CSR YKBN, Kudus, Indonesia. This acknowledgement reflects the collective endeavor and support that have enriched the outcomes of this study.

REFERENCES

Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative Analysis of Phenolics, Flavonoids, And Antioxidant And Antibacterial Potential Of Methanolic, Hexanic And Aqueous Extracts From *Adiantum Caudatum* Leaves. *Antioxidants*, 4(2), 394-409. <https://doi.org/10.3390/antiox4020394>

Aloo, M. A., Opiyo, A. M., & Saidi, M. (2022). Influence Of Ca CaCl_2 Dipping On Postharvest Quality And Shelf Life Of Bell Pepper (*Capsicum annuum* L. Cv. California

Wonder). *African Journal of Agricultural Research*, 18(7), 510-521. <https://doi.org/10.5897/ajar2022.16058>

Ananingsih, V.K., Pratiwi, A.R., Soedarini, B., & Putra, Y.A.S., (2024). Formulation of Nanoemulsion Parijoto Fruit Extract (*Medinilla speciosa*) with Variation of Tween Stabilizers. *Frontiers in Nutrition*, 11, <https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1398809>

Angriani, L. (2019). Potensi Ekstrak Bunga Telang (*Clitoria ternatea*) Sebagai Pewarna Alami Lokal Pada Berbagai Industri Pangan. *Canrea Journal*, 2(1), 32-37. <https://agritech.unhas.ac.id/ojs/index.php/canrea/article/view/120>

Basri, F. (2021). Studi Pembuatan Es Krim Dengan Penambahan Ekstrak Bunga Telang (*Clitoria Ternatea* L.) (Doctoral Dissertation, Universitas Bosowa). <https://repository.unibos.ac.id/xmlui/bitstream/handle/123456789/1210/2021%20FEBRIA NI%20BASRI%204517032008.pdf?sequence=1>

Berk, Z. (2018). Dehydration. In : Berk, Z. *Food Science and Technology, Food Processing Engineering and Technology*. Third edition. Academic Press. pp. 513-566

Chen, Y., Martynenko, A., & Mainguy, M. (2016). Wine Grape Dehydration Kinetics: Effect Of Temperature And Sample Arrangement. In *Csbe/Scgab 2016 Annual Conference, Halifax, Nova Scotia, Canada, July* (Pp. 3-6). <https://library.csbe-scgab.ca/docs/meetings/2016/CSBE16063.pdf>

Enaru, B, Drețcanu, G, Pop, TD, Stănilă, A, and Diaconeasa, Z. Anthocyanins: factors affecting their stability and degradation. *Antioxidants*. (2021) 10:1967. doi: 10.3390/antiox10121967

Dönmez, A., & Kadakal, Ç. (2024). Hot-Air Drying And Degradation Kinetics Of Bioactive Compounds Of Gilaburu (*Viburnum Opulus* L.) Fruit: Original Scientific Paper. *Chemical Industry & Chemical Engineering Quarterly*, 30(1), 59-72. <https://doi.org/10.2298/CICEQ220614011D>

Feng, S., Luo, Z., Tao, B., & Chen, C. (2015). Ultrasonic-Assisted Extraction And Purification Of Phenolic Compounds From Sugarcane (*Saccharum Officinarum* L.) Rinds. *Lwt-Food Science And Technology*, 60(2), 970-976. <https://doi.org/10.1016/j.lwt.2014.09.066>

Feng, Y., Feng, C., Wang, Y., Gao, S., Sun, P., Yan, Z., Su, X., Sun, Y., & Zhu, Q. (2022). Effect Of CaCl₂ Treatment On Enzymatic Browning Of Fresh-Cut Luffa (*Luffa Cylindrica*). *Horticulturae*, 8(6), 473. <https://doi.org/10.3390/horticulturae8060473>

Guo, X., Li, Q., Luo, T., Han, D., Zhu, D., & Wu, Z. (2023). Postharvest Calcium Chloride Treatment Strengthens Cell Wall Structure To Maintain Litchi Fruit Quality. *Foods*, 12(13), 2478. <https://doi.org/10.3390/foods12132478>

Haerani, A., Chaerunisa, A. Y., & Subarnas, A. (2018). Artikel Tinjauan: Antioksidan Untuk Kulit. *Farmaka*, 16(2), 135-151. <https://doi.org/10.24198/jf.v16i2.17789>

Hwang, E. S., & Do Thi, N. (2014). Effects Of Extraction And Processing Methods On Antioxidant Compound Contents And Radical Scavenging Activities Of Laver (*Porphyra*

Tenera). Preventive Nutrition And Food Science, 19(1), 40. <https://doi.org/10.3746/Pnf.2014.19.1.040>

Lin, Z., Fischer, J., & Wicker, L. (2016). Intermolecular Binding Of Blueberry Pectin-Rich Fractions And Anthocyanin. *Food Chemistry*, 194, 986-993. <https://doi.org/10.1016/j.foodchem.2015.08.113>

Panchariya, P. & Popović, Đorđe & Sharma, A. (2002). Thin-layer modelling of black tea drying process. *Journal of Food Engineering*, 1, 340-358. 10.1016/S0260-8774(01)00126-1.

Peron, D. V., Fraga, S. A. R. A., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (*Euterpe edulis* Martius) and "Italia" grapes (*Vitis vinifera* L.), and the effect of heating on the antioxidant capacity. *Food chemistry*, 232, 836-840. <https://doi.org/10.1016/j.foodchem.2017.04.088>

Priska, M., Peni, N., Carvallo, L., & Ngapa, Y. D. (2018). Antosianin Dan Pemanfaatannya. *Cakra Kimia (Indonesian E-Journal Of Applied Chemistry)*, 6(2), 79-97. <https://doi.org/10.24843/CK.2018.v06.i02>

Syah, H., Tambunan, A. H., Hartulistiyo, E., & Manalu, L. P. (2020). Kinetika Pengeringan Lapisan Tipis Daun Jati Belanda (Thin Layer Drying Kinetics Of Guazuma Ulmifolia Leaves). *Jurnal Keteknikan Pertanian*, 8(2), 53-62. <https://doi.org/10.19028/jtep.08.2.53-62>

Tan, C., Dadmohammadi, Y., Lee, M. C., & Abbaspourrad, A. (2021). Combination Of Copigmentation And Encapsulation Strategies For The Synergistic Stabilization Of Anthocyanins. *Comprehensive Reviews In Food Science And Food Safety*, 20(4), 3164-3191. DOI: 10.1111/1541-4337.12772

Turan, O. Y., & Firatligil, F. E. (2019). Modelling and characteristics of thin layer convective air-drying of thyme (*Thymus vulgaris*) leaves. *Czech Journal of Food Sciences*, 37(2). <https://doi.org/10.17221/243/2017-CJFS>

Turmanidze, T., Gulua, L., Jgenti, M., & Wicker, L. (2016). Effect Of Calcium Chloride Treatments On Quality Characteristics Of Blackberry Fruit During Storage. *International Journal Of Food And Allied Sciences*, 2(2), 36-41. <https://doi.org/10.24925/turjaf.v4i12.1127-1133.907>

Udomkun, P., Mahayothee, B., Nagle, M., & Müller, J. (2014). Effects Of Calcium Chloride And Calcium Lactate Applications With Osmotic Pretreatment On Physicochemical Aspects And Consumer Acceptances Of Dried Papaya. *International Journal Of Food Science & Technology*, 49(4), 1122-1131. <https://doi.org/10.1111/ijfs.12408>

Vardin, H., & Yilmaz, F. M. (2018). The Effect Of Blanching Pre-Treatment On The Drying Kinetics, Thermal Degradation Of Phenolic Compounds And Hydroxymethyl Furfural Formation In Pomegranate Arils. *Italian Journal Of Food Science*, 30(1). <https://doi.org/10.14674/IJFS-947>

Wachidah, L. N. (2013). Uji Aktivitas Antioksidan Serta Penentuan Kandungan Fenolat Dan

Flavonoid Total Dari Buah Parijoto. *Skripsi. Program Studi Farmasi Uin, Jakarta.*
<https://repository.uinjkt.ac.id/dspace/bitstream/123456789/25895/1/LELIANA%20NURUL%20WACHIDAH-fkik.pdf>

Accepted Manuscript