
i

ii

PENGANTAR NLP DAN TOPIK MODEL

LDA

SAMPUL DALAM

Oleh:

Albertus Dwiyoga Widiantoro

Prof. Mustafid

Prof. Ridwan Sanjaya

Diterbitkan oleh

2024

iii

Pengantar NLP dan Topik Model LDA

Oleh:

Albertus Dwiyoga Widiantoro

Prof. Mustafid

Prof. Ridwan Sanjaya

Uk. 15,5cm x 23cm (vi + 122hlm)

ISBN: 978-623-10-4853-0

Diterbitkan oleh

Editor: Dr. Usman Ependi, S.Kom., M.Kom

Edisi November 2024

Hak Cipta dilindungi undang-undang

Dilarang memperbanyak sebagian atau seluruh isi buku ini dalam

bentuk apapun, baik secara elektronik maupun mekanik, termasuk

memfotokopi, merekam atau dengan menggunakan system

penyimpanan, tanpa izin tertulis dari Penulis.

iv

KATA PENGANTAR

Dengan bangga kami mempersembahkan buku Pengantar NLP

dan Topik Model LDA, sebuah karya yang dirancang untuk

menjembatani kesenjangan pengetahuan di bidang pemrosesan

bahasa alami (Natural Language Processing/NLP) dan pemodelan

topik. Dalam era digital yang semakin berkembang pesat,

kemampuan untuk memahami dan mengolah data teks menjadi

keterampilan yang sangat diperlukan. Buku ini hadir untuk

memenuhi kebutuhan pembaca akan pemahaman yang mendalam

dan praktis tentang bagaimana teknologi NLP dan model topik

seperti Latent Dirichlet Allocation (LDA) bekerja.

Buku ini disusun dengan alur yang sistematis, dimulai dari konsep

dasar NLP hingga ke teknik pemodelan topik yang lebih

kompleks. Setiap bab telah disusun dengan seksama untuk

memberikan wawasan yang tidak hanya mendasar tetapi juga

aplikatif, dengan berbagai contoh dan teknik yang relevan dengan

kebutuhan analisis data modern. Kami berharap buku ini dapat

memberikan manfaat yang luas bagi pembaca, baik yang baru

memulai di dunia NLP maupun yang ingin memperdalam

pengetahuan tentang pemodelan topik.

Akhir kata, kami mengucapkan terima kasih kepada seluruh pihak

yang telah berkontribusi dalam penyusunan buku ini. Semoga

buku Pengantar NLP dan Topik Model LDA ini dapat menjadi

sumber referensi yang berharga dan mendukung perkembangan

ilmu pengetahuan di bidang analisis data dan kecerdasan buatan

di Indonesia.

Penulis

v

DAFTAR ISI

SAMPUL DALAM ... ii

KATA PENGANTAR ... iv

DAFTAR ISI ... v

BAB 1 PENDAHULUAN .. 1

A. Definisi NLP .. 1

B. Sejarah singkat NLP .. 4

C. Relevansi dan penerapan NLP dalam kehidupan 5

D. Tujuan .. 7

BAB II DASAR-DASAR NLP .. 9

A. Pengertian dasar tentang bahasa alami 9

B. Teknik-teknik dasar dalam NLP .. 11

C. Algoritma dan Model dalam NLP 26

1. Naive Bayes .. 29

2. Support Vector Machines (SVM) 31

3. Recurrent Neural Networks (RNN) 34

4. Convolutional Neural Networks (CNN) 37

BAB III PENERAPAN NLP ... 45

A. NLP dalam Industri ... 45

1. Customer Service .. 45

2. Analisis Sentimen ... 46

3. Pencarian Informasi .. 48

4. Fine-tuning Model .. 49

B. NLP dalam Kesehatan ... 51

C. NLP dalam Pendidikan .. 53

1. Evaluasi dan pembelajaran berbasis teks 53

vi

2. Analisis plagiarism ... 55

BAB IV TANTANGAN DAN ISU ETIKA DALAM NLP ... 57

A. Tantangan dalam NLP ... 57

1. Polysemy dan Ambiguitas .. 57

2. Kurangnya data yang berkualitas 58

3. Overfitting dan generalisasi .. 59

B. Isu Etika dalam NLP .. 61

1. Privasi dan keamanan data .. 61

2. Bias dalam data dan model ... 62

BAB V TOPIK MODEL .. 64

A. Topik Model LDA ... 64

B. Ruang Lingkup LDA ... 65

C. Tujuan Implementasi LDA .. 66

D. Konsep Dasar Probabilistik ... 67

E. Contoh Konsep Dasar Probabilistik: 68

F. Aspek Pemodelan distribusi data memiliki 71

G. Contoh Pemodelan Distribusi Data 72

BAB VI LATENT DIRICHLET ALLOCATION (LDA) 77

A. Prinsip Kerja LDA ... 79

B. Pembentukan Model: ... 80

C. Penyesuaian Parameter .. 81

D. Persamaan dalam Model LDA .. 82

E. Perhitungan Distribusi Posterior .. 82

F. Rumus-rumus LDA .. 84

G. Proses Model LDA .. 85

H. Variabel Tersembunyi: .. 85

1. Distribusi Topik Dokumen θ .. 85

2. Distribusi Kata dalam Topik β .. 86

vii

I. Implementasi LDA .. 86

1. Menghapus tanda baca/huruf kecil 96

2. Tokenize words and further clean-up text 98

3. Pemodelan Frase: Model Bigram dan Trigram............... 99

4. Remove Stopwords, Make Bigrams and Lemmatize.... 101

5. Transformasi data: Korpus dan Kamus 102

J. Model Dasar .. 104

K. Penyetelan tuning hyper parameter 110

DAFTAR PUSTAKA ... 120

1

BAB 1

PENDAHULUAN

A. Definisi NLP

Natural Language Processing (NLP) adalah cabang dari

kecerdasan buatan yang berfokus pada interaksi antara komputer

dan bahasa manusia yang alami. NLP memungkinkan komputer

untuk memahami, menganalisis, memanipulasi, dan merespons

bahasa manusia. Tujuannya adalah untuk memfasilitasi

komunikasi yang mulus antara manusia dan mesin dengan

menggunakan bahasa sehari-hari yang kita gunakan.

Definisi NLP mencakup sejumlah teknologi dan algoritma yang

memungkinkan komputer untuk:

• Pemrosesan Teks: Memahami, menganalisis, dan

menghasilkan teks bahasa manusia. Ini melibatkan segala

hal mulai dari tokenisasi (memecah teks menjadi unit-unit

yang lebih kecil), hingga analisis sintaksis dan semantik.

• Pemahaman Bahasa: Memungkinkan komputer untuk

memahami konteks dari suatu teks, termasuk arti dari kata-

kata, frasa, atau kalimat, serta makna yang lebih luas

dalam sebuah konteks.

• Generasi Bahasa: Menghasilkan teks yang terstruktur

secara gramatikal dan bermakna, seperti dalam pembuatan

teks oleh chatbots atau penghasilan konten otomatis.

• Penerjemahan Bahasa: Menerjemahkan teks dari satu

bahasa ke bahasa lain dengan mempertahankan arti dan

konteksnya.

NLP memanfaatkan pendekatan statistik, mesin pembelajaran,

dan pemrosesan bahasa alami untuk mencapai tujuannya. Seiring

dengan perkembangan teknologi, model NLP yang menggunakan

deep learning seperti transformer-based models (misalnya, BERT,

GPT) telah menjadi semakin dominan dalam mengatasi banyak

tugas NLP kompleks.

2

Penerapan NLP sangat luas, mulai dari aplikasi sederhana seperti

koreksi ejaan hingga sistem yang kompleks seperti analisis

sentimen, pengenalan ucapan, dan pembuatan chatbot. Ini juga

memiliki peran yang penting dalam berbagai industri seperti

kesehatan, keuangan, pendidikan, dan lainnya untuk

mengoptimalkan pemrosesan data yang berkaitan dengan bahasa

manusia.

NLP merupakan komponen penting dalam berbagai aplikasi

perangkat lunak yang kita gunakan dalam kehidupan sehari-hari.

Di bagian ini, kami akan memperkenalkan beberapa aplikasi

utama dan juga melihat beberapa tugas umum yang akan Anda

lihat di berbagai aplikasi NLP.

Aplikasi inti:

• Platform email, seperti Gmail, Outlook, dll., menggunakan

NLP secara ekstensif untuk menyediakan serangkaian fitur

produk, seperti klasifikasi spam, kotak masuk prioritas,

ekstraksi acara kalender, pelengkapan otomatis, dll.

• Asisten berbasis suara, seperti Apple Siri, Google

Assistant, Microsoft Cortana, dan Amazon Alexa

mengandalkan serangkaian teknik NLP untuk berinteraksi

dengan pengguna, memahami perintah pengguna, dan

merespons dengan tepat.

• Mesin pencari modern, seperti Google dan Bing, yang

merupakan landasan internet saat ini, banyak

menggunakan NLP untuk berbagai subtugas, seperti

pemahaman kueri, perluasan kueri, menjawab pertanyaan,

pengambilan informasi, serta pemeringkatan dan

pengelompokan hasil, untuk beberapa nama.

• Layanan terjemahan mesin, seperti Google Translate, Bing

Microsoft Translator, dan Amazon Translate semakin

banyak digunakan di dunia saat ini untuk menyelesaikan

berbagai skenario dan kasus penggunaan bisnis.

Natural Language Processing (NLP) adalah cabang dari

kecerdasan buatan yang memfokuskan pada interaksi antara

komputer dan bahasa manusia, memungkinkan komputer untuk

3

memahami, menganalisis, dan merespon bahasa manusia dalam

berbagai bentuknya. NLP mencakup sejumlah teknik dan

algoritma untuk memproses teks dan ucapan, termasuk

pemahaman bahasa, generasi bahasa, dan penerjemahan

antarbahasa. Dalam hal ini, NLP berfungsi sebagai jembatan

komunikasi antara manusia dan mesin, menggunakan bahasa

sehari-hari yang kita gunakan.

Sebagai cabang dari kecerdasan buatan, NLP memungkinkan

komputer untuk memahami, menganalisis, memanipulasi, dan

merespons bahasa manusia, memfasilitasi komunikasi antara

manusia dan mesin menggunakan bahasa alami (Agarwal, 2019).

Teknologi NLP mencakup pemrosesan teks, di mana komputer

diberdayakan untuk memahami dan menghasilkan teks bahasa

manusia, melibatkan proses dari tokenisasi hingga analisis

sintaksis dan semantic (Kjell et al., 2023).

Selain itu, pemahaman bahasa memungkinkan komputer untuk

memahami konteks dari teks, termasuk makna kata, frasa, atau

kalimat, serta makna yang lebih luas dalam konteks tertentu

(Basha et al., 2023). Generasi bahasa merupakan aspek lain dari

NLP, di mana komputer dapat menghasilkan teks yang terstruktur

secara gramatikal dan bermakna, seperti yang digunakan oleh

chatbots dan dalam penghasilan konten otomatis. Penerjemahan

bahasa, sebagai bagian dari NLP, melibatkan menerjemahkan teks

dari satu bahasa ke bahasa lain sambil mempertahankan makna

dan konteksnya (Hirschberg & Manning, 2015)

NLP menggunakan pendekatan statistik, mesin pembelajaran, dan

deep learning, termasuk model berbasis transformer seperti BERT

dan GPT, untuk mengatasi berbagai tugas NLP yang kompleks

(Mishra, 2019). Dengan perkembangan teknologi, model NLP

yang menggunakan deep learning seperti model berbasis

transformer telah menjadi semakin dominan dalam mengatasi

banyak tugas NLP yang kompleks, merevolusi cara komputer

memahami bahasa manusia.

4

Berikut adalah kerangka umum untuk sebuah tulisan yang

membahas tentang Natural Language Processing (NLP):

B. Sejarah singkat NLP

Sejarah Natural Language Processing (NLP) telah melalui

serangkaian perkembangan yang menarik sejak awalnya. Inilah

beberapa titik penting dalam sejarah NLP:

Awal Pengembangan tahun 1950-an dan 1960-an: Awalnya, NLP

muncul sebagai bagian dari kecerdasan buatan. Pada tahun 1950-

an, Alan Turing mengajukan pertanyaan dalam makalahnya yang

terkenal, "Apakah mesin bisa berpikir?" yang membuka jalan bagi

studi tentang kecerdasan buatan dan pemrosesan bahasa alami1.

1954: George Zipf, seorang linguistik, memberikan kontribusi

awal dengan hukum Zipf yang menggambarkan distribusi kata

dalam bahasa alami. 1950-an dan 1960-an: Pada masa ini, NLP

berfokus pada penerjemahan mesin dan pengembangan model

untuk pemahaman dan generasi bahasa.

Perkembangan Awal 1970-an hingga 1980-an: Era ini melihat

peningkatan dalam penerapan aturan dan pendekatan statistik

dalam NLP. Metode-metode seperti penguraian sintaksis berbasis

aturan dan model statistik mulai digunakan. 1980-an: Munculnya

sistem-sistem seperti SHRDLU (dikembangkan oleh Terry

Winograd) yang memungkinkan komunikasi dengan komputer

dalam bahasa alami, memberikan dorongan besar pada

pengembangan NLP2.

Era Statistik dan Mesin Pembelajaran: 1990-an hingga 2000-an:

Perkembangan metode-metode statistik semakin mendominasi.

Teknik-teknik seperti HMM (Hidden Markov Models) dan

algoritma pembelajaran mesin lainnya diperkenalkan untuk tugas-

tugas NLP seperti pemodelan bahasa, penerjemahan, dan

pengenalan ucapan. Akhir 2000-an: Dengan kemajuan komputasi

1 https://www.britannica.com/biography/Alan-Turing
2 https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence

5

dan pendekatan deep learning, NLP mengalami revolusi baru.

Model-model seperti Word Embeddings (Word2Vec, GloVe)

memungkinkan representasi kata yang lebih baik, sementara

neural networks yang lebih dalam meningkatkan kinerja dalam

tugas-tugas NLP (Vajjala et al., 2012).

Era Transformer dan Model Bahasa Besar: 2010-an hingga saat

ini: Transformer, sebuah arsitektur neural network yang

memanfaatkan self-attention mechanism, mengubah lanskap

NLP3. Model-model besar seperti BERT (Bidirectional Encoder

Representations from Transformers) dari Google dan GPT

(Generative Pre-Trained Transformer) dari OpenAI

mendefinisikan tingkat kinerja baru dalam pemahaman bahasa

dan tugas-tugas NLP lainnya (Vaswani et al., 2017).

Seiring dengan perubahan teknologi, dataset yang lebih besar, dan

kemajuan dalam algoritma, NLP terus berkembang pesat.

Kemampuan untuk memahami, menghasilkan, dan berinteraksi

dengan bahasa manusia semakin meningkat, memungkinkan

penerapan NLP yang lebih luas dalam berbagai industri dan

aplikasi sehari-hari.

C. Relevansi dan penerapan NLP dalam kehidupan

relevansi dan penerapan Natural Language Processing (NLP)

dalam kehidupan sehari-hari memiliki dampak yang signifikan

dalam berbagai konteks. Berikut adalah beberapa contoh konkret:

1. Asisten Virtual dan Chatbot: Relevansi: Membantu dalam

interaksi sehari-hari dengan teknologi. Contoh: Asisten

pribadi seperti Siri, Google Assistant, atau Alexa

memanfaatkan NLP untuk memahami perintah suara,

menjadikan penggunaan perangkat teknologi lebih mudah.

Chatbot yang terintegrasi dengan layanan pelanggan

3 https://blog.research.google/2017/08/transformer-novel-neural-
network.html

6

online juga menggunakan NLP untuk merespons

pertanyaan pelanggan.

2. Pencarian Informasi: Relevansi: Mempercepat akses dan

relevansi informasi. Contoh: Mesin pencari seperti Google

menggunakan NLP untuk memahami pertanyaan

pengguna dan menyajikan hasil pencarian yang relevan.

Pemahaman konteks dan arti di balik pertanyaan

memungkinkan hasil pencarian yang lebih akurat.

3. Analisis Sentimen Media Sosial: Relevansi: Memahami

pandangan publik terhadap suatu topik atau merek.

Contoh: Penggunaan NLP dalam analisis sentimen

membantu perusahaan memahami umpan balik pelanggan

di platform media sosial. Misalnya, menganalisis tweet

atau postingan Facebook untuk mengukur reaksi terhadap

produk tertentu.

4. Penerjemahan Bahasa: Relevansi: Memfasilitasi

komunikasi lintas budaya. Contoh: Google Translate

menggunakan teknologi NLP untuk menerjemahkan teks

dari satu bahasa ke bahasa lain secara cepat dan akurat. Ini

sangat membantu dalam komunikasi global di antara

individu yang berbicara bahasa yang berbeda.

5. Otomatisasi Pekerjaan: Relevansi: Meningkatkan efisiensi

pekerjaan dan tugas-tugas rutin. Contoh: Penggunaan NLP

dalam pengelompokan email, pemrosesan formulir, atau

analisis dokumen membantu dalam mengotomatisasi

tugas-tugas yang membutuhkan pemahaman bahasa alami.

6. Sistem Pembelajaran Adaptif: Relevansi: Meningkatkan

pengalaman belajar yang disesuaikan dengan individu.

Contoh: Platform pembelajaran online menggunakan NLP

untuk menyediakan materi yang disesuaikan dengan

kebutuhan belajar masing-masing siswa. Ini

memungkinkan pengalaman belajar yang lebih efektif.

7. Pelayanan Kesehatan yang Lebih Baik: Relevansi:

Meningkatkan diagnosis dan pengelolaan informasi

medis. Contoh: NLP digunakan dalam analisis rekam

medis dan dokumen kesehatan untuk membantu dokter

dalam membuat diagnosis yang lebih cepat dan akurat,

serta memantau perkembangan pasien.

7

8. Keamanan dan Penegakan Hukum: Relevansi: Mendeteksi

ancaman potensial dan kegiatan kriminal. Contoh:

Analisis teks pada platform online untuk mendeteksi

ancaman atau kegiatan yang mencurigakan, membantu

dalam keamanan siber dan penegakan hukum.

Penerapan NLP dalam kehidupan sehari-hari telah mengubah cara

kita berinteraksi dengan teknologi, membawa kemudahan dalam

akses informasi, dan meningkatkan efisiensi dalam banyak aspek

kehidupan (Tunstall et al., 2022).

D. Tujuan

Tujuan penulisan mengenai Natural Language Processing (NLP)

adalah untuk menyampaikan pemahaman yang mendalam tentang

konsep, perkembangan, penerapan, dan relevansi NLP dalam

berbagai bidang kehidupan. Beberapa tujuan spesifiknya meliputi:

1. Pemahaman Konsep NLP: menjelaskan tentang apa itu

NLP, konsep dasar di baliknya, dan bagaimana komputer

dapat memahami, memproses, dan menghasilkan bahasa

manusia dengan bantuan teknologi.

2. Menjelaskan Teknik dan Algoritma NLP: Memberikan

pemahaman tentang teknik-teknik utama dalam NLP

seperti tokenisasi, pengenalan entitas, penerjemahan,

analisis sentimen, dan model-model seperti transformer-

based models. Tujuannya adalah agar pembaca memahami

bagaimana NLP diimplementasikan dalam konteks yang

berbeda.

3. Penerapan dalam Berbagai Bidang: Menjelaskan

penerapan NLP dalam industri, kesehatan, pendidikan,

keamanan, dan bidang lainnya. Menyoroti kontribusi NLP

dalam mengoptimalkan proses, meningkatkan efisiensi,

dan menghadirkan solusi dalam setiap bidang ini.

4. Tantangan dan Isu Etika: Membahas tantangan teknis

dalam pengembangan NLP, seperti ambiguitas bahasa dan

kurangnya data berkualitas, serta menyoroti isu-isu etika

seperti privasi data, bias dalam model, dan tanggung jawab

sosial dalam penggunaan teknologi NLP.

8

5. Edukasi dan Informasi Masyarakat: Memberikan

pemahaman yang lebih luas kepada masyarakat umum

tentang bagaimana NLP memengaruhi kehidupan sehari-

hari mereka, baik dalam penggunaan aplikasi yang dikenal

seperti asisten virtual maupun implikasinya dalam industri

dan pengembangan teknologi masa depan.

6. Mendorong Pengembangan dan Penelitian Lanjutan:

Merangsang minat dan keingintahuan pembaca untuk

terlibat dalam pengembangan lebih lanjut dalam bidang

NLP, serta mendorong penelitian yang lebih mendalam

dalam pengembangan teknologi bahasa.

7. Menggugah Kesadaran akan Potensi dan Tantangan:

Memberikan pemahaman yang utuh tentang potensi luar

biasa NLP dalam merubah cara kita berinteraksi dengan

teknologi, sambil menyadari tantangan teknis dan etika

yang terkait.

Tujuan utama dari penulisan tentang NLP adalah untuk

memberikan pemahaman menyeluruh tentang konsep ini,

memberikan wawasan tentang peran dan pengaruhnya dalam

kehidupan sehari-hari, serta menyampaikan tantangan dan

peluang yang terkait dengan penggunaan teknologi bahasa ini.

9

BAB II

DASAR-DASAR NLP

A. Pengertian dasar tentang bahasa alami

Bahasa alami adalah bahasa yang digunakan oleh manusia untuk

berkomunikasi sehari-hari. Bahasa alami bersifat kompleks dan

fleksibel, dan dapat digunakan untuk berbagai tujuan, seperti

menyampaikan informasi, mengekspresikan emosi, dan

membangun hubungan. Ini adalah cara alami di mana manusia

menyampaikan ide, emosi, informasi, dan instruksi kepada orang

lain menggunakan kata-kata, frasa, kalimat, dan struktur bahasa

yang kompleks(Tunstall et al., 2022).

Bahasa alami terdiri dari berbagai komponen, antara lain:

• Morfologi adalah cabang linguistik yang mempelajari

bentuk kata. Morfologi meliputi pembentukan

kata, seperti proses pengimbuhan, pengulangan, dan

penggabungan.

• Sintaksis adalah cabang linguistik yang mempelajari

struktur kalimat. Sintaksis meliputi aturan-aturan yang

mengatur bagaimana kata-kata dapat digabungkan

menjadi kalimat yang bermakna.

• Semantik adalah cabang linguistik yang mempelajari

makna kata dan kalimat. Semantik meliputi hubungan

antara kata dan dunia nyata.

• Pragmatik adalah cabang linguistik yang mempelajari

penggunaan bahasa dalam konteks tertentu. Pragmatik

meliputi cara penggunaan bahasa untuk menyampaikan

maksud dan tujuan tertentu.

Perbedaan bahasa alami dan bahasa formal: Bahasa alami berbeda

dengan bahasa formal, seperti bahasa pemrograman. Bahasa

formal memiliki aturan yang ketat dan tidak fleksibel, sedangkan

bahasa alami memiliki aturan yang lebih longgar dan fleksibel.

Bahasa formal digunakan untuk tujuan-tujuan tertentu, seperti

menulis program komputer, sedangkan bahasa alami digunakan

10

untuk berbagai tujuan, seperti berkomunikasi, mengekspresikan

emosi, dan membangun hubungan.

Penerapan bahasa alami: Bahasa alami diterapkan dalam berbagai

bidang, antara lain: Bahasa alami digunakan dalam berbagai

produk dan layanan teknologi, seperti mesin penerjemah, asisten

virtual, dan chatbot. Bahasa alami digunakan untuk membuat

konten pembelajaran yang lebih menarik dan interaktif, serta

untuk memberikan umpan balik yang lebih personal kepada siswa.

Bahasa alami digunakan untuk mendiagnosis penyakit, untuk

memberikan layanan kesehatan yang lebih personal, dan untuk

meningkatkan penelitian medis. Bahasa alami digunakan untuk

meningkatkan layanan pelanggan, untuk meningkatkan

pemasaran, dan untuk membuat keputusan bisnis yang lebih baik.

Bahasa alami adalah alat komunikasi yang penting bagi manusia.

Bahasa alami memiliki berbagai komponen dan digunakan dalam

berbagai bidang.

Beberapa aspek penting dalam pengertian dasar tentang bahasa

alami meliputi:

• Kompleksitas dan Struktur: Bahasa alami memiliki

struktur kompleks yang terdiri dari unsur-unsur seperti

fonem (unit bunyi), morfem (unit makna terkecil), kata-

kata, frasa, kalimat, dan aturan sintaksis yang

mempengaruhi arti dari teks atau ucapan.

• Kekayaan dan Produktivitas: Bahasa alami memiliki sifat

kekayaan yang memungkinkan pembicara untuk

menghasilkan kombinasi yang tak terbatas dari kata-kata

dan kalimat untuk menyampaikan pesan yang berbeda

dalam situasi yang berbeda.

• Makna dan Konteks: Makna dalam bahasa alami sangat

bergantung pada konteks penggunaannya. Kata atau frase

dapat memiliki makna yang berbeda-beda tergantung pada

situasi dan bagaimana mereka digunakan dalam kalimat

atau percakapan.

• Ambiguitas: Bahasa alami sering kali mengandung

ambiguitas, di mana satu kata atau frasa dapat memiliki

beberapa makna yang berbeda. Ini dapat menjadi

11

tantangan dalam pemrosesan bahasa alami karena

memerlukan pemahaman yang tepat dari konteksnya.

• Perubahan dan Variasi: Bahasa alami terus berkembang

dan bervariasi dari waktu ke waktu serta antar komunitas

bahasa. Perubahan ini dapat terjadi dalam kosakata, tata

bahasa, atau penggunaan kata-kata yang baru.

Dalam konteks Natural Language Processing (NLP), pemahaman

tentang bahasa alami menjadi dasar utama. Mesin atau komputer

yang memproses bahasa alami harus mampu memahami

kompleksitas struktur bahasa, mengatasi ambiguitas, dan

memperhitungkan konteks dalam rangka melakukan tugas-tugas

seperti pemrosesan teks, analisis sentimen, penerjemahan, dan

lainnya. Menciptakan model dan algoritma yang dapat memahami

dan memanipulasi bahasa alami dengan baik adalah inti dari

pengembangan dalam NLP.

B. Teknik-teknik dasar dalam NLP

Teknik-teknik dasar dalam Natural Language Processing (NLP)

adalah fondasi penting untuk memproses, menganalisis, dan

memahami bahasa manusia. Berikut adalah beberapa teknik dasar

yang sering digunakan dalam NLP(Atkinson-Abutridy, 2022):

• Tokenisasi: Proses memecah teks menjadi unit-unit yang

lebih kecil, seperti kata-kata, frasa, atau kalimat. Contoh:

Mengubah kalimat menjadi kumpulan kata-kata

individual.

• Stopword Removal: Menghapus kata-kata umum yang

tidak memberikan nilai tambah dalam analisis teks, seperti

"dan", "atau", "di", dll. Dalam analisis sentimen, kata-kata

ini sering dihapus karena kurangnya kontribusi terhadap

penilaian keseluruhan.

• Stemming dan Lemmatisasi: Stemming: Proses mengubah

kata-kata menjadi bentuk dasar atau akar kata dengan

menghilangkan imbuhan. Lemmatisasi: Proses mengubah

kata-kata ke bentuk dasarnya (kata baku) berdasarkan

kamus atau aturan linguistik. Contoh: Mengubah kata-kata

12

"berlari", "lari", dan "lari-lari" menjadi bentuk dasarnya

"lari".

• Part-of-Speech (POS) Tagging: Mengidentifikasi dan

menandai jenis kata dalam sebuah kalimat, seperti kata

benda, kata kerja, kata sifat, dan lain-lain. Contoh:

Menandai kata "makan" sebagai kata kerja dan "rumah"

sebagai kata benda.

• Named Entity Recognition (NER): Mendeteksi dan

menandai entitas penting dalam teks seperti nama orang,

tempat, tanggal, organisasi, dll. Contoh: Mengidentifikasi

"Bill Gates" sebagai nama orang atau "Microsoft" sebagai

nama perusahaan.

• Word Embeddings dan Word Vectors: Representasi vektor

yang menyandikan makna kata-kata dalam bentuk

numerik, memungkinkan model untuk memahami

hubungan antar kata. Contoh: Model Word2Vec atau

GloVe menghasilkan vektor yang merepresentasikan kata-

kata dan maknanya dalam ruang vektor.

• Analisis Sintaksis dan Semantik: Sintaksis: Menganalisis

struktur gramatikal dari kalimat, seperti hubungan antara

kata-kata dalam sebuah kalimat. Semantik: Memahami

makna dari kalimat atau teks, termasuk hubungan makna

antara kata-kata.

• Analisis Sentimen: Mengidentifikasi, mengekstrak, atau

menganalisis sentimen dari teks, seperti apakah sebuah

ulasan bersifat positif, negatif, atau netral. Contoh: Menilai

apakah sebuah ulasan produk di platform e-commerce

adalah positif atau negatif. Teknik-teknik ini membentuk

dasar dalam pengolahan bahasa alami. Dalam kombinasi

dengan model-model machine learning atau deep learning,

teknik-teknik ini memungkinkan mesin untuk memahami,

menganalisis, dan menghasilkan teks dalam cara yang

semakin mirip dengan cara manusia.

1. Tokenisasi

Tokenisasi adalah proses memecah teks menjadi unit-unit yang

lebih kecil, seperti kata-kata, frasa, atau kalimat yang disebut

token. Setiap token mewakili bagian terpisah dari teks yang dapat

13

dianggap sebagai unit yang berarti. Proses tokenisasi sangat

penting dalam Natural Language Processing (NLP) karena

membantu dalam analisis, pemrosesan, dan pemahaman teks oleh

mesin.

Konsep Tokenisasi: Unit Token: Token bisa berupa kata, frasa,

kalimat, atau bahkan karakter tergantung pada kebutuhan analisis

atau pemrosesan yang dilakukan. Pemisahan: Teks dapat

dipisahkan menjadi token berdasarkan spasi (untuk kata-kata),

tanda baca, atau aturan tertentu seperti tokenisasi berdasarkan

kata. Pembersihan dan Normalisasi: Tokenisasi dapat melibatkan

pembersihan teks dari karakter khusus, tanda baca, dan

normalisasi huruf menjadi huruf kecil atau huruf besar untuk

konsistensi. Berikut teknik untuk Melakukan Tokenisasi:

Tokenisasi Berdasarkan Spasi:

Pemisahan teks menjadi token berdasarkan spasi antara kata-kata.

Contoh: "Saya sedang belajar NLP." akan menjadi token: ["Saya",

"sedang", "belajar", "NLP", "."]

Tokenisasi Berdasarkan Kata:

Memisahkan teks berdasarkan aturan kata, mengabaikan tanda

baca atau spasi.

Contoh: "Dia tidak suka berjalan-jalan." akan menjadi token:

["Dia", "tidak", "suka", "berjalan-jalan", "."]

Tokenisasi Berdasarkan Frasa atau Kalimat:

Memisahkan teks menjadi token berdasarkan frasa atau kalimat.

Contoh: "Saya belajar NLP. Ini menarik!" akan menjadi token

kalimat: ["Saya belajar NLP.", "Ini menarik!"]

Tokenisasi dengan Penggunaan Algoritma Khusus:

Menggunakan aturan linguistik atau algoritma yang lebih

kompleks untuk memisahkan teks menjadi token.

14

Contoh: Algoritma seperti WordPunctTokenizer dalam Python

yang membagi teks menjadi kata-kata dan tanda baca sebagai

token terpisah. Langkah-langkah dalam Proses Tokenisasi:

a) Pemisahan Teks: Pisahkan teks menjadi unit-unit yang

relevan berdasarkan jenis token yang diinginkan (kata,

frasa, kalimat).

b) Pembersihan: Hilangkan karakter khusus, normalisasikan

huruf, dan lakukan pre-processing lainnya jika diperlukan.

c) Representasi dalam Bentuk Token: Hasil tokenisasi

diwakili dalam bentuk daftar atau struktur data lainnya

yang menyimpan token-token tersebut.

d) Pentingnya Tokenisasi: Memungkinkan mesin untuk

memproses teks dalam format yang dapat dipahami dan

diolah. Dasar untuk langkah-langkah pemrosesan NLP

lainnya seperti analisis sintaksis, pembangunan model,

atau analisis sentimen. Membantu dalam mempersiapkan

data untuk berbagai tugas NLP seperti machine translation,

analisis teks, dan lainnya. Tokenisasi merupakan langkah

penting dalam pemrosesan teks dalam NLP yang

membantu dalam memahami dan memanipulasi bahasa

manusia secara efisien oleh komputer atau mesin.

2. Stopword removal

Stopword removal adalah proses menghilangkan kata-kata umum

yang tidak memberikan kontribusi signifikan terhadap makna

dalam analisis teks. Kata-kata semacam ini, seperti "dan", "atau",

"di", "yang", dan lainnya, sering muncul dalam teks tetapi

cenderung tidak memiliki nilai informasi yang besar dalam

pemrosesan atau analisis teks. Proses penghapusan stopwords

sangat penting dalam tahap pra-pemrosesan dalam NLP untuk

meningkatkan kualitas analisis dan model yang dibangun. Berikut

adalah konsep Stopword Removal:

a) Kata-kata Umum: Stopwords adalah kata-kata umum yang

sering ditemukan dalam bahasa namun jarang membawa

makna khusus atau signifikan dalam analisis teks.

b) Mengurangi Noise: Penghapusan stopwords membantu

mengurangi noise dalam data teks. Ini memungkinkan

15

fokus pada kata-kata yang lebih penting dalam

pemrosesan.

c) Pembersihan Teks: Proses ini melibatkan menghapus

stopwords dari teks, meninggalkan hanya kata-kata yang

dianggap lebih relevan dalam analisis.

3. Stemming dan Lemmatisasi

Stemming dan lemmatisasi adalah dua teknik dalam pemrosesan

bahasa alami yang bertujuan untuk mengubah kata-kata menjadi

bentuk dasar atau kata baku agar lebih mudah dianalisis atau

dipahami oleh mesin.

Stemming:

Konsep: Stemming adalah proses menghilangkan imbuhan atau

akhiran kata untuk mendapatkan bentuk dasar atau stem dari

sebuah kata. Tujuan: Mengurangi kata-kata ke bentuk dasarnya

sehingga kata-kata yang memiliki akar kata yang sama dapat

dianggap sebagai bentuk yang sama. Teknik: Stemming

menggunakan aturan sederhana untuk menghapus imbuhan kata.

Namun, hasil stemming tidak selalu merupakan kata yang benar

dalam bahasa yang sesungguhnya. Contoh: "Berlari", "lari", "lari-

lari" akan diubah menjadi bentuk dasarnya "lar".

Lemmatisasi:

Konsep: Lemmatisasi adalah proses mengubah kata-kata menjadi

bentuk dasar atau kata baku berdasarkan kamus atau aturan

linguistik. Tujuan: Menghasilkan kata yang merupakan bentuk

dasar kata dalam bahasa yang tepat. Teknik: Lemmatisasi

menggunakan kamus kata-kata yang telah didefinisikan dan

aturan linguistik untuk mengubah kata-kata menjadi bentuk dasar.

Contoh: "Berlari", "lari", "lari-lari" akan diubah menjadi bentuk

dasarnya "lari".

Perbandingan Antara Stemming dan Lemmatisasi:

Stemming: Lebih sederhana karena hanya menghapus imbuhan

untuk mendapatkan akar kata yang mungkin tidak selalu benar.

16

Lemmatisasi: Lebih kompleks karena memerlukan pengetahuan

tentang kamus dan struktur bahasa untuk mengubah kata menjadi

bentuk yang benar secara linguistik.

Langkah-langkah dalam Stemming dan Lemmatisasi:

Tokenisasi: Pemecahan teks menjadi token (kata-kata).

Proses Stemming atau Lemmatisasi: Penggunaan algoritma atau

aturan linguistik untuk mengubah kata-kata menjadi bentuk dasar.

Pentingnya Stemming dan Lemmatisasi: Normalisasi Teks:

Membantu dalam normalisasi teks untuk analisis yang lebih

akurat. Reduksi Redundansi: Mengurangi redundansi kata-kata

yang memiliki akar yang sama. Baik stemming maupun

lemmatisasi digunakan untuk menyederhanakan kata-kata

menjadi bentuk dasar atau kata baku untuk memfasilitasi analisis

teks dalam NLP. Meskipun tidak sempurna, keduanya membantu

dalam memproses dan memahami teks dalam analisis bahasa

alami.

4. Part-of-Speech (POS) Tagging

Part-of-Speech (POS) tagging adalah proses yang dilakukan

dalam Natural Language Processing (NLP) untuk

mengidentifikasi jenis kata dalam sebuah kalimat, seperti kata

benda, kata kerja, kata sifat, kata tanya, dan lainnya. Ini penting

dalam pemahaman makna dan struktur kalimat dalam bahasa

alami.

Konsep POS Tagging:

Jenis Kata: Setiap kata dalam sebuah kalimat memiliki peran atau

fungsi tertentu dalam kalimat tersebut, misalnya sebagai subjek,

predikat, atau objek.

Tujuan: POS tagging bertujuan untuk mengidentifikasi peran atau

fungsi setiap kata dalam kalimat untuk memahami struktur dan

makna kalimat.

Teknik untuk Melakukan POS Tagging:

Menggunakan Model Statistik: Memanfaatkan model statistik

seperti Hidden Markov Models (HMM) atau Conditional Random

17

Fields (CRF) untuk memprediksi jenis kata berdasarkan konteks

kalimat.

Pemanfaatan Kamus Kata: Menggunakan kamus kata-kata yang

sudah diberi label jenis kata untuk mengidentifikasi tipe kata.

Penggunaan Algoritma Berbasis Aturan: Penggunaan aturan

linguistik dan struktur bahasa untuk menentukan jenis kata dalam

konteks kalimat.

Langkah-langkah dalam Proses POS Tagging:

Tokenisasi: Pemisahan kata-kata dalam kalimat menjadi token.

Ekstraksi Fitur: Mendapatkan fitur-fitur dari kata-kata yang dapat

membantu dalam prediksi jenis kata, seperti kata sebelumnya atau

kata-kata yang terkait dalam kalimat.

Pemodelan: Menggunakan model (statistik atau berbasis aturan)

untuk memprediksi jenis kata untuk setiap token dalam kalimat.

Labeling: Memberikan label atau tag untuk setiap kata dalam

kalimat berdasarkan jenis kata yang diprediksi.

Contoh POS Tagging:

Dalam kalimat "Ani membaca buku di perpustakaan," hasil POS

taggingnya mungkin seperti:

"Ani" -> Noun (Kata benda)

"membaca" -> Verb (Kata kerja)

"buku" -> Noun (Kata benda)

"di" -> Preposition (Kata depan)

"perpustakaan" -> Noun (Kata benda)

Pentingnya POS Tagging:

Pemahaman Struktur Kalimat: Memahami struktur kalimat dan

hubungan antara kata-kata dalam konteks kalimat.

Pemrosesan Bahasa yang Lebih Lanjut: Membantu dalam

berbagai tugas NLP seperti analisis sintaksis, parsing, dan

terjemahan.

POS Tagging membantu dalam memahami makna dan struktur

kalimat, yang merupakan langkah penting dalam analisis dan

18

pemrosesan teks dalam NLP. Ini memungkinkan mesin untuk

memahami peran dan hubungan antar kata-kata dalam konteks

kalimat.

5. Named Entity Recognition (NER)

Named Entity Recognition (NER) adalah proses dalam Natural

Language Processing (NLP) yang bertujuan untuk

mengidentifikasi dan menandai entitas penting dalam teks seperti

nama orang, tempat, tanggal, organisasi, dan lainnya. Tujuannya

adalah untuk mengenali dan mengekstrak informasi yang relevan

dari teks yang dapat dianggap sebagai entitas (Li et al., 2022).

NER adalah teknik penting dalam NLP karena memungkinkan

pengenalan dan penandaan entitas penting dalam teks, yang

mendukung berbagai tugas pemrosesan bahasa alami dan analisis

teks yang lebih lanjut. Named Entity Recognition (NER)

merupakan salah satu tugas dasar dalam Natural Language

Processing (NLP). NER bertujuan untuk mengidentifikasi dan

mengklasifikasikan entitas bernama dalam teks, seperti nama

orang, nama organisasi, lokasi, tanggal, dan waktu.

Pengenalan entitas dinamis telah berkembang secara signifikan

dalam dekade terakhir, dengan penelitian terbaru yang semakin

banyak mengadopsi pembelajaran mendalam, pembelajaran

transfer, basis pengetahuan, dan metode lainnya. Penelitian NER

untuk bahasa-bahasa sumber daya rendah juga meningkat pesat

(Sun et al., 2018). Salah satu tantangan utama dalam NER adalah

mengatasi entitas bersarang dan tumpang tindih, di mana token

yang sama bisa menjadi bagian dari lebih dari satu kategori entitas.

Strategi baru yang diusulkan melibatkan memformalkan tugas

ekstraksi entitas sebagai tugas pemahaman bacaan berbasis kueri,

di mana tugas mengekstraksi entitas dengan PER diformalkan

sebagai menjawab pertanyaan "orang mana yang disebutkan

dalam teks?" (Meng et al., 2019).

Dalam hal pengembangan model NER, telah diperkenalkan S-

NER, model NER berbasis rentang yang terlebih dahulu membagi

teks mentah menjadi rentang teks dan menganggapnya sebagai

19

kandidat entitas. Ini kemudian langsung memperoleh jenis rentang

dengan melakukan klasifikasi jenis entitas pada representasi

semantik rentang, yang menghilangkan kebutuhan akan

ketergantungan label (Yu et al., 2022). Metode yang diusulkan ini

telah menunjukkan peningkatan signifikan dalam performa NER,

terutama dalam menangani jumlah contoh pendukung yang

rendah, yang menyoroti pentingnya mengadaptasi strategi NER

untuk domain dan tantangan baru (Ziyadi et al., 2020). Dengan

terus berkembangnya metode dan pendekatan baru dalam NER,

penelitian di bidang ini tetap menjadi area yang aktif dan penting

dalam pemrosesan bahasa alami, memberikan kontribusi

signifikan terhadap berbagai aplikasi NLP yang bergantung pada

pemahaman teks yang akurat dan mendalam (Hannon et al., 2024)

Konsep Named Entity Recognition (NER):

Entitas Nama: Dalam sebuah teks, entitas nama adalah segmen

yang merujuk kepada orang, tempat, tanggal, organisasi, dan

entitas penting lainnya yang memiliki makna spesifik dalam

konteks yang diberikan. Tujuannya untuk Mengidentifikasi dan

menandai entitas penting ini dalam teks untuk menggali informasi

yang berguna. Teknik untuk Melakukan Named Entity

Recognition (NER), Pemodelan Berbasis Aturan: Menggunakan

aturan linguistik atau pola tertentu untuk mengidentifikasi entitas

nama dalam teks.

Pemanfaatan Machine Learning: Menerapkan pendekatan

machine learning seperti Conditional Random Fields (CRF) atau

deep learning menggunakan model seperti Recurrent Neural

Networks (RNN) atau Transformer untuk mengidentifikasi

entitas.

Langkah-langkah dalam Proses Named Entity Recognition

(NER):

1. Tokenisasi: Pemisahan teks menjadi token atau kata-kata.

2. POS Tagging: Identifikasi jenis kata-kata dalam teks

menggunakan Part-of-Speech tagging.

3. Feature Extraction: Ekstraksi fitur yang relevan, seperti kata

sebelumnya, jenis kata, atau pola tertentu dalam teks.

20

4. Pemodelan dan Prediksi: Menggunakan model machine

learning atau aturan tertentu untuk memprediksi dan menandai

entitas dalam teks.

Contoh Named Entity Recognition (NER):

Dalam kalimat "Mark Zuckerberg mendirikan Facebook pada

tahun 2004 di Harvard University," hasil NER-nya mungkin

seperti:

"Mark Zuckerberg" -> Nama Orang (Person)

"Facebook" -> Organisasi (Organization)

"2004" -> Tanggal (Date)

"Harvard University" -> Lokasi (Location)

Pentingnya Named Entity Recognition (NER):

Ekstraksi Informasi: Membantu dalam mengekstrak informasi

penting dari teks seperti nama, tempat, atau tanggal.

Analisis Data: Memungkinkan pemrosesan lebih lanjut untuk

analisis data seperti analisis sentimen, klasifikasi teks, dan

lainnya.

Entitas bernama adalah frasa benda (noun phrase) yang memiliki

tipe spesifik. Misalnya, "John Doe" adalah nama orang,

"Microsoft" adalah nama organisasi, "Jakarta" adalah lokasi,

"2023-12-13" adalah tanggal, dan "10:00" adalah waktu. Teknik

untuk melakukan NER. Ada dua pendekatan utama untuk

melakukan NER, yaitu pendekatan berbasis aturan dan

Pendekatan berbasis pembelajaran mesin.

1. Pendekatan berbasis aturan: Pendekatan berbasis aturan

menggunakan serangkaian aturan untuk mengidentifikasi dan

mengklasifikasikan entitas bernama. Aturan-aturan ini

biasanya dibuat oleh ahli bahasa berdasarkan pengetahuan

mereka tentang bahasa.

2. Keuntungan dari pendekatan berbasis aturan: Efektif untuk

kasus-kasus yang sederhana dan terdefinisi dengan baik. Dapat

digunakan untuk bahasa yang tidak memiliki data pelatihan

yang besar

3. Kerugian dari pendekatan berbasis aturan: Sulit untuk

membuat aturan yang lengkap dan akurat untuk semua kasus.

21

Sulit untuk mengadaptasi aturan untuk bahasa yang baru atau

berubah.

Pendekatan berbasis pembelajaran mesin. Pendekatan berbasis

pembelajaran mesin menggunakan model pembelajaran mesin

untuk mengidentifikasi dan mengklasifikasikan entitas bernama.

Model pembelajaran mesin dilatih pada data pelatihan yang berisi

contoh entitas bernama. Keuntungan dari pendekatan berbasis

pembelajaran mesin: Dapat menangani kasus-kasus yang

kompleks dan tidak terdefinisi dengan baik. Dapat beradaptasi

dengan data pelatihan yang baru atau berubah.

Kerugian dari pendekatan berbasis pembelajaran mesin:

Membutuhkan data pelatihan yang besar. Dapat menghasilkan

hasil yang tidak akurat jika data pelatihan tidak representative.

Kombinasi pendekatan berbasis aturan dan pembelajaran mesin.

Pendekatan berbasis aturan dan pembelajaran mesin dapat

dikombinasikan untuk meningkatkan akurasi NER. Misalnya,

pendekatan berbasis aturan dapat digunakan untuk

mengidentifikasi entitas bernama yang umum, dan pendekatan

berbasis pembelajaran mesin dapat digunakan untuk

mengidentifikasi entitas bernama yang tidak umum. Pencarian

informasi. NER dapat digunakan untuk mengidentifikasi entitas

bernama dalam dokumen teks. Misalnya, NER dapat digunakan

untuk mengidentifikasi nama orang, nama organisasi, dan lokasi

dalam dokumen berita. Pemrosesan bahasa alami. NER dapat

digunakan untuk berbagai tugas pemrosesan bahasa alami, seperti:

* **Peringkasan teks**

* **Pertanyaan jawab**

* **Pemahaman bahasa alami**

Aplikasi bisnis: NER dapat digunakan untuk berbagai aplikasi

bisnis, seperti:

* **Analisis sentimen**

* **Pencegahan penipuan**

* **Pemasarkan**

22

Named Entity Recognition (NER) adalah tugas dasar dalam

Natural Language Processing (NLP). NER bertujuan untuk

mengidentifikasi dan mengklasifikasikan entitas bernama dalam

teks. Ada dua pendekatan utama untuk melakukan NER, yaitu:

Pendekatan berbasis aturan dan Pendekatan berbasis pembelajaran

mesin. Pendekatan berbasis aturan efektif untuk kasus-kasus yang

sederhana dan terdefinisi dengan baik, sedangkan pendekatan

berbasis pembelajaran mesin dapat menangani kasus-kasus yang

kompleks dan tidak terdefinisi dengan baik. Pendekatan berbasis

aturan dan pembelajaran mesin dapat dikombinasikan untuk

meningkatkan akurasi NER. NER memiliki berbagai penerapan,

antara lain: Pencarian informasi. Pemrosesan bahasa alami.

Aplikasi bisnis

6. Word Embeddings dan Word Vectors

Word Embeddings dan Word Vectors adalah teknik penting dalam

Natural Language Processing (NLP) yang digunakan untuk

merepresentasikan kata-kata dalam bentuk vektor numerik dalam

ruang dimensi yang lebih rendah. Representasi ini memungkinkan

mesin untuk memahami dan memanipulasi makna kata-kata

dalam pemrosesan bahasa alami.

Word embeddings dan word vectors dalam Natural Language

Processing (NLP) memiliki peran penting karena kemampuan

mereka untuk mengkodekan hubungan antar kata dalam ruang

vektor. Hal ini bermanfaat untuk berbagai tugas pemrosesan

bahasa, dari komponen dalam sistem NLP hingga alat untuk

analisis linguistik dalam studi bahasa dan literatur.

Menginterpretasikan embeddings dan memahami hubungan

gramatikal dan semantik yang dikodekan di dalamnya berguna

namun menantang. Visualisasi dapat membantu dalam interpretasi

embeddings tersebut (Heimerl & Gleicher, 2018).

Word embeddings merupakan teknik pembelajaran fitur yang

memetakan kata-kata dari kosakata ke dalam vektor bilangan riil

dalam ruang berdimensi rendah. Dengan memanfaatkan korpus

teks tanpa label yang besar, representasi ruang kontinu ini dapat

23

dihitung untuk menangkap informasi sintaktis dan semantik

tentang kata-kata. Ketika digunakan sebagai representasi input

dasar, word embeddings telah terbukti menjadi aset besar untuk

berbagai tugas NLP. Teknik-teknik terkini untuk mendapatkan

word embeddings sebagian besar berbasis pada model bahasa

neural network (NNLM), di mana vektor kata diinisialisasi secara

acak dan kemudian dilatih untuk memprediksi konteks di mana

kata-kata yang bersangkutan cenderung muncul (Gavhane et al.,

2022).

Dalam pemrosesan Bahasa Gujarati, yang merupakan bahasa

dengan sumber daya rendah, word2vec dan fastText merupakan

beberapa teknik word embeddings yang paling umum. Sementara

banyak pekerjaan telah dilakukan untuk mendapatkan embeddings

dalam bahasa dengan sumber daya kaya seperti Bahasa Inggris,

masih ada pekerjaan yang harus dilakukan untuk bahasa dengan

sumber daya rendah. Fokus pada pengembangan vektor kata untuk

bahasa Gujarati dan penyiapan dataset tes analogi untuk

mengevaluasi akurasi embeddings yang diperoleh telah dilakukan.

Kinerja model juga dibandingkan dengan model Gujarati pra-latih

yang sudah tersedia (Joshi et al., 2019).

Word embeddings (representasi vektor kata yang didistribusikan)

telah menjadi komponen penting dalam banyak tugas pemrosesan

bahasa alami (NLP) seperti terjemahan mesin, analisis sentimen,

analogi kata, pengenalan entitas bernama, dan kesamaan kata.

Meskipun demikian, pekerjaan terkini hanya menyediakan vektor

kata untuk bahasa Hausa yang dilatih menggunakan fastText,

terdiri dari hanya beberapa vektor kata. Penelitian ini menyajikan

model embeddings kata menggunakan model Continuous Bag of

Words (CBoW) dan Skip Gram dari Word2Vec. Model-model ini,

hauWE (Hausa Words Embedding), lebih besar dan lebih baik dari

model sebelumnya, membuatnya lebih berguna dalam tugas-tugas

NLP. Untuk membandingkan model, mereka digunakan untuk

memprediksi 10 kata yang paling mirip dengan 30 kata Hausa

yang dipilih secara acak. hauWE CBoW dengan akurasi prediksi

88,7% dan hauWE SG dengan 79,3% jauh melampaui performa

model [1] dengan 22,3% (Abdulmumin & Galadanci, 2019).

24

Konsep Word Embeddings dan Word Vectors:

1. Representasi Numerik: Kata-kata dalam teks diubah menjadi

vektor numerik dalam ruang dimensi yang lebih rendah.

2. Makna dan Hubungan: Vektor kata-kata yang serupa atau

terkait secara semantik ditempatkan lebih dekat satu sama lain

dalam ruang vektor.

Teknik untuk Melakukan Word Embeddings:

Word2Vec: Salah satu teknik paling terkenal yang mempelajari

representasi vektor kata-kata dengan memanfaatkan jaringan saraf

tiruan. GloVe (Global Vectors for Word Representation): Teknik

lain yang menggabungkan informasi dari matriks co-occurrence

kata-kata dalam corpus untuk menghasilkan representasi vektor

kata. Langkah-langkah dalam Proses Word Embeddings:

1. Pra-Pemrosesan: Pra-pemrosesan teks seperti tokenisasi,

penghapusan stopwords, stemming, atau lemmatisasi.

2. Pembuatan Model: Pembuatan model Word2Vec atau GloVe

dengan menggunakan data teks yang besar.

3. Pelatihan Model: Melatih model pada teks yang digunakan

untuk membuat representasi vektor kata-kata.

4. Contoh Word Embeddings: Misalkan representasi vektor untuk

kata-kata "king" dan "queen". Dalam ruang vektor, mereka

mungkin memiliki hubungan yang serupa dengan kata "royal"

atau "throne" karena keterkaitan semantiknya.

5. Pentingnya Word Embeddings: Semantik yang Lebih Dalam:

Memungkinkan mesin untuk memahami hubungan dan makna

antara kata-kata dalam konteks.

6. Pemrosesan Bahasa yang Lebih Baik: Meningkatkan kinerja

model dalam berbagai tugas NLP seperti analisis sentimen,

penerjemahan, dan klasifikasi teks.

Word Embeddings menjadi kunci dalam NLP karena

memungkinkan representasi kata-kata dalam ruang vektor

numerik yang memperhitungkan hubungan semantik dan makna.

Representasi ini memperkaya pemahaman mesin terhadap bahasa

manusia dan mendukung kinerja model dalam berbagai tugas

NLP.

25

Ada berbagai teknik yang dapat digunakan untuk melakukan word

embeddings dan word vectors. Beberapa teknik yang umum

digunakan adalah: Skip-gram, Continuous Bag-of-Words

(CBOW), Glove, Word2Vec

Skip-gram adalah teknik yang menggunakan model pembelajaran

mesin untuk memprediksi kata-kata di sekitar kata tertentu.

Misalnya, model skip-gram akan dilatih untuk memprediksi kata

"makan" jika kata "nasi" muncul di sekitarnya. CBOW adalah

teknik yang menggunakan model pembelajaran mesin untuk

memprediksi kata tertentu berdasarkan kata-kata di sekitarnya.

Misalnya, model CBOW akan dilatih untuk memprediksi kata

"nasi" jika kata "makan" dan "ayam" muncul di sekitarnya. Glove

adalah teknik yang menggunakan metode statistik untuk

menghitung representasi vektor dari kata-kata. Metode Glove

menghitung representasi vektor dari kata-kata berdasarkan

frekuensi kemunculan kata-kata dalam dokumen teks.

Word2Vec adalah teknik yang menggabungkan teknik skip-gram

dan CBOW. Teknik Word2Vec dapat menghasilkan representasi

vektor dari kata-kata yang lebih akurat daripada teknik skip-gram

atau CBOW saja. Word embeddings dan word vectors adalah

representasi vektor dari kata-kata dalam bahasa alami. Word

embeddings dan word vectors dapat digunakan untuk berbagai

tugas pemrosesan bahasa alami. Ada berbagai teknik yang dapat

digunakan untuk melakukan word embeddings dan word vectors.

Beberapa teknik yang umum digunakan adalah skip-gram,

CBOW, Glove, dan Word2Vec.

26

C. Algoritma dan Model dalam NLP

Algoritma dan model dalam NLP dapat diklasifikasikan menjadi

dua kategori utama, yaitu: Algoritma berbasis aturan dan

Algoritma berbasis pembelajaran mesin.

Algoritma berbasis aturan

Algoritma berbasis aturan menggunakan serangkaian aturan untuk

menyelesaikan tugas NLP. Aturan-aturan ini biasanya dibuat oleh

ahli bahasa berdasarkan pengetahuan mereka tentang bahasa.

Beberapa contoh algoritma berbasis aturan dalam NLP adalah:

1. Algoritma part-of-speech tagging

2. Algoritma named entity recognition

3. Algoritma sentiment analysis

4. Algoritma berbasis pembelajaran mesin

Algoritma berbasis pembelajaran mesin menggunakan model

pembelajaran mesin untuk menyelesaikan tugas NLP. Model

pembelajaran mesin dilatih pada data pelatihan yang berisi contoh

input dan output. Algoritma machine translation, Algoritma

summarization, Algoritma question answering. Selain itu, ada

beberapa algoritma dan model NLP yang khusus untuk tugas

tertentu, seperti:

Algoritma speech recognition, Algoritma natural language

generation, Algoritma natural language understanding. Berikut

adalah penjelasan lebih rinci tentang beberapa algoritma dan

model NLP yang umum digunakan: Algoritma part-of-speech

tagging, Algoritma part-of-speech tagging (POS tagging) adalah

algoritma yang digunakan untuk menentukan kelas kata (part-of-

speech) dari setiap kata dalam kalimat. Kelas kata menentukan

fungsi kata dalam kalimat. Beberapa contoh kelas kata adalah:

Nama (noun)

Kata kerja (verb)

Kata sifat (adjective)

Kata keterangan (adverb)

Kata ganti (pronoun)

27

Algoritma POS tagging dapat digunakan untuk berbagai tugas

NLP, seperti:

Pencarian informasi, Pemahaman bahasa alami, Pertanyaan

jawab, Algoritma named entity recognition. Algoritma named

entity recognition (NER) adalah algoritma yang digunakan untuk

mengidentifikasi dan mengklasifikasikan entitas bernama dalam

teks. Entitas bernama adalah frasa benda (noun phrase) yang

memiliki tipe spesifik, seperti nama orang, nama organisasi,

lokasi, tanggal, dan waktu. Beberapa contoh entitas bernama

adalah:

John Doe (nama orang)

Microsoft (nama organisasi)

Jakarta (lokasi)

2023-12-13 (tanggal)

10:00 (waktu)

Algoritma NER dapat digunakan untuk berbagai tugas NLP,

seperti: Pencarian informasi, Pemahaman bahasa alami, Aplikasi

bisnis. Algoritma machine translation: Algoritma machine

translation (MT) adalah algoritma yang digunakan untuk

menerjemahkan teks dari satu bahasa ke bahasa lain. Algoritma

MT menggunakan model pembelajaran mesin untuk mempelajari

hubungan antara kata dan frasa dalam dua bahasa. Algoritma MT

dapat digunakan untuk berbagai keperluan, seperti: Penerjemahan

dokumen, Penerjemahan percakapan, Penerjemahan situs web

Algoritma summarization: Algoritma summarization adalah

algoritma yang digunakan untuk membuat ringkasan dari teks.

Algoritma summarization menggunakan model pembelajaran

mesin untuk mengidentifikasi informasi yang penting dalam teks

dan untuk menyusun informasi tersebut menjadi ringkasan yang

ringkas dan informatif. Algoritma summarization dapat digunakan

untuk berbagai keperluan, seperti: Pencarian informasi,

Pemahaman bahasa alami, Layanan pelanggan

28

Algoritma question answering: Algoritma question answering

(QA) adalah algoritma yang digunakan untuk menjawab

pertanyaan tentang teks. Algoritma QA menggunakan model

pembelajaran mesin untuk memahami pertanyaan dan untuk

mencari jawaban yang relevan dalam teks. Algoritma QA dapat

digunakan untuk berbagai keperluan, seperti: Pendidikan,

Pencarian informasi, Layanan pelanggan. Terdapat banyak

algoritma dan model yang digunakan dalam Natural Language

Processing (NLP) untuk berbagai tugas analisis bahasa. Berikut

adalah beberapa di antaranya:

Naive Bayes: Digunakan dalam klasifikasi teks atau analisis

sentimen berdasarkan probabilitas dan teorema Bayes. Support

Vector Machines (SVM): Model pembelajaran yang digunakan

untuk klasifikasi teks dan pembedaan antara kelas-kelas yang

berbeda dalam data teks. Hidden Markov Models (HMM):

Digunakan dalam pemodelan urutan kata-kata atau kata-kata

tersembunyi dalam konteks seperti tugas NER atau POS tagging.

Conditional Random Fields (CRF): Algoritma yang digunakan

dalam tugas NER, POS tagging, atau labeling urutan berdasarkan

ketergantungan kondisional antara elemen dalam urutan.

Model dalam NLP:

Transformer: Model yang revolusioner dalam NLP, seperti

BERT, GPT (Generative Pre-trained Transformer), dan lainnya.

Mereka menggunakan self-attention mechanism untuk

memproses teks dan menghasilkan representasi yang lebih baik.

Recurrent Neural Networks (RNN): Model yang memproses

data urutan seperti teks dan menghasilkan output berdasarkan

pemahaman konteks sebelumnya. Variannya seperti LSTM dan

GRU sering digunakan dalam NLP. Word2Vec: Model yang

menghasilkan representasi vektor kata-kata dalam ruang vektor

berdasarkan kemunculan kata-kata dalam konteks tertentu. GloVe

(Global Vectors for Word Representation): Model yang

menghasilkan representasi vektor kata-kata berdasarkan matriks

co-occurrence kata-kata dalam teks. BERT (Bidirectional

29

Encoder Representations from Transformers): Model yang

menggunakan transformer dan pelatihan unsupervised learning

pada teks besar untuk memahami konteks dan menyediakan

representasi yang lebih baik untuk kata-kata. CNN

(Convolutional Neural Networks): Meskipun awalnya

digunakan dalam pengolahan citra, varian CNN juga digunakan

dalam NLP untuk tugas seperti klasifikasi teks dan analisis

sentiment (Tunstall et al., 2022).

Pendekatan Hybrid:

Beberapa model NLP menggabungkan berbagai elemen dari

model-model yang berbeda atau menggunakan strategi ensemble

untuk meningkatkan kinerja dan kemampuan dalam pemrosesan

bahasa alami. Setiap algoritma dan model memiliki keunggulan

dan kelemahan tertentu, dan pemilihan yang tepat tergantung pada

tugas spesifik dalam NLP yang akan dijalankan serta ketersediaan

data yang tersedia. Kombinasi model dan pendekatan tertentu

sering kali memberikan kinerja yang lebih baik dalam berbagai

konteks pengolahan bahasa alami.

1. Naive Bayes

Naive Bayes merupakan algoritma klasifikasi yang menggunakan

Teorema Bayes untuk menentukan probabilitas kelas suatu sampel

data berdasarkan fitur-fitur yang diamati. Meskipun sering

digunakan dalam konteks klasifikasi teks atau analisis sentimen,

Naive Bayes juga diterapkan dalam berbagai masalah klasifikasi

di bidang Machine Learning.

Konsep Naive Bayes: Teorema Bayes: Mendasarkan diri pada

Teorema Bayes yang menyatakan hubungan antara probabilitas

posterior (kemungkinan kejadian setelah melihat data baru)

dengan probabilitas prior (kejadian sebelum melihat data baru)

dan likelihood (kemungkinan data yang diamati jika kelas

tertentu).

30

Klasifikasi dengan Probabilitas: Naive Bayes memprediksi kelas

suatu sampel data berdasarkan perhitungan probabilitas kelas

tersebut dengan mengasumsikan independensi antara fitur-fitur

yang diamati (yang sering disebut "naive" karena asumsi ini).

Proses Naive Bayes dalam Klasifikasi Teks atau Analisis

Sentimen: Pra-Pemrosesan: Tahap ini melibatkan tokenisasi teks,

penghapusan stopwords, dan representasi fitur-fitur teks dalam

bentuk vektor (misalnya, TF-IDF atau Bag-of-Words).

Penghitungan Probabilitas: Menghitung probabilitas masing-

masing kelas (positif, negatif, atau kelas lainnya) berdasarkan

kemunculan kata-kata atau fitur-fitur yang diamati dalam data

pelatihan. Teorema Bayes: Memanfaatkan Teorema Bayes untuk

menghitung probabilitas posterior dari kelas berdasarkan fitur-

fitur yang diamati dalam data uji. Klasifikasi: Memilih kelas

dengan probabilitas posterior tertinggi sebagai prediksi kelas

untuk sampel data yang diamati.

Keunggulan dan Keterbatasan Naive Bayes: Keunggulan: Cepat

dalam pembelajaran dan prediksi, bahkan dengan dataset yang

besar. Efektif dalam klasifikasi teks dengan fitur yang besar.

Keterbatasan: Asumsi naif tentang independensi fitur bisa tidak

realistis dalam konteks nyata. Kinerjanya dapat terpengaruh jika

ada ketergantungan antara fitur-fitur yang diamati.

Aplikasi Naive Bayes dalam NLP: Analisis Sentimen: Klasifikasi

teks berdasarkan sentimen (positif, negatif, atau netral).

Klasifikasi Teks: Pengelompokan teks ke dalam kategori tertentu

seperti klasifikasi berita, spam detection, dan lainnya. Naive

Bayes, meskipun memiliki asumsi naif tentang independensi fitur,

tetap menjadi salah satu algoritma klasifikasi yang cukup populer

dalam NLP karena kemampuannya dalam menangani klasifikasi

teks dengan baik, terutama ketika dataset besar dan fitur-fitur teks

yang kompleks terlibat.

31

2. Support Vector Machines (SVM)

Support Vector Machines (SVM) merupakan salah satu model

pembelajaran yang umum digunakan dalam klasifikasi, termasuk

dalam konteks analisis teks dalam Natural Language Processing

(NLP). SVM digunakan untuk memisahkan dan

mengklasifikasikan data ke dalam kelas-kelas yang berbeda

dengan mencari hyperplane terbaik yang memisahkan antara

kelas-kelas tersebut di dalam ruang fitur.

Konsep SVM:

Hyperplane: SVM mencari hyperplane (bidang dalam kasus dua

dimensi) yang memisahkan data ke dalam kelas-kelas yang

berbeda. Pemisahan ini dilakukan sedemikian rupa sehingga jarak

(marginal) antara hyperplane dan titik-titik data (yang disebut

support vectors) dari kedua kelas adalah maksimum.

Pemisahan Non-linear: SVM dapat mengatasi masalah

pemisahan yang tidak linier dengan menggunakan fungsi kernel

yang dapat mentransformasi data ke dalam dimensi yang lebih

tinggi, memungkinkan pembuatan hyperplane yang lebih

kompleks untuk pemisahan yang lebih baik.

Proses SVM dalam Klasifikasi Teks:

1. Pra-Pemrosesan: Mirip dengan langkah pra-pemrosesan

untuk model lainnya dalam NLP, seperti tokenisasi,

penghapusan stopwords, dan pembuatan vektor fitur seperti

TF-IDF atau Bag-of-Words.

2. Pemilihan Hyperplane: SVM akan mencari hyperplane

terbaik yang memisahkan antara kelas-kelas dalam ruang fitur

berdasarkan vektor fitur teks.

3. Penentuan Margin Terbesar: SVM berusaha menemukan

hyperplane yang memiliki margin terbesar, yaitu jarak terbesar

antara support vectors dan hyperplane tersebut.

4. Penentuan Kelas: Setelah mendapatkan hyperplane terbaik,

SVM dapat mengklasifikasikan data baru ke dalam kelas yang

sesuai berdasarkan posisi relatifnya terhadap hyperplane.

32

Keunggulan dan Keterbatasan SVM: Keunggulan: Efektif dalam

ruang fitur berdimensi tinggi, mampu menangani dataset yang

kompleks, dan dapat berkinerja baik bahkan dengan jumlah fitur

yang lebih besar. Keterbatasan: Rentan terhadap overfitting jika

hyperparameter tidak disesuaikan dengan baik. Membutuhkan

pemrosesan yang memakan waktu untuk pemilihan parameter

yang tepat.

Aplikasi SVM dalam NLP yaitu Klasifikasi Teks: Klasifikasi

dokumen, analisis sentimen, deteksi spam, kategorisasi teks, dan

lainnya. Pengelompokan Teks: SVM digunakan untuk

mengelompokkan teks-teks dengan karakteristik yang serupa.

SVM merupakan algoritma yang kuat dalam klasifikasi teks dan

telah banyak digunakan dalam berbagai tugas NLP karena

kemampuannya dalam menangani pemisahan antar kelas dalam

ruang fitur dengan baik, bahkan pada dataset dengan dimensi yang

tinggi atau kompleks. SVM (Support Vector Machine) adalah

algoritma klasifikasi yang bertujuan untuk menemukan

hyperplane terbaik yang memisahkan antara kelas-kelas dalam

data dengan margin terbesar. Dalam kasus klasifikasi biner (dua

kelas), rumus untuk SVM dengan hyperplane linier dapat

dijelaskan sebagai berikut:

Hyperplane Linier:

Misalkan kita memiliki data pelatihan dengan vektor fitur xi yang

terdiri dari n fitur, dan label kelasnya adalah yi (dengan yi=1 atau

yi=−1). Fungsi hipotesis untuk SVM dapat ditulis sebagai:

f(x)=wTx+b

di mana:

w adalah vektor bobot normal ke hyperplane,

x adalah vektor fitur,

b adalah bias.

Persamaan untuk Hyperplane:

Hyperplane dipilih untuk memiliki margin terbesar antara kelas

yang dipisahkan. Jarak dari titik data ke hyperplane adalah
1

||𝑤||
.

33

Maksimalkan margin dengan meminimalkan ∥w∥ (norma

Euclidean dari w) yang setara dengan meminimalkan 1/2∥w∥2,

dengan mempertimbangkan pembatasan: yi(wTxi+b)≥1 untuk

semua titik data yang merupakan support vectors. Fungsi Objektif

(Objective Function): Objektif utama dari SVM adalah

meminimalkan fungsi objektif berikut:

minw,b 1/2∥w∥2

dengan pembatasan:

yi(wTxi+b)≥1

Metode Lagrange:

Solusi SVM ditemukan dengan mencari nilai minimum dari fungsi

Lagrange tersebut. Solusi ini menghasilkan hyperplane terbaik

yang memisahkan antara kelas dengan margin terbesar di antara

support vectors.

34

Rumus-rumus ini mencerminkan dasar dari bagaimana SVM

bekerja dalam menemukan hyperplane terbaik untuk pemisahan

kelas dalam data. Dalam prakteknya, untuk kasus-kasus yang

lebih kompleks, seperti SVM non-linier, digunakan kernel untuk

memungkinkan pemisahan yang lebih kompleks dalam ruang fitur

yang lebih tinggi.

3. Recurrent Neural Networks (RNN)

Jaringan Saraf Rekurensial (RNN) adalah jenis arsitektur jaringan

saraf yang dirancang khusus untuk memproses data urutan atau

data yang terstruktur secara sekuensial, seperti teks, audio, atau

data deret waktu. Konsep dasar RNN: Memori Jangka Pendek:

RNN memiliki kemampuan untuk menyimpan informasi dalam

keadaan internal atau "memori jangka pendek". Ini

memungkinkannya untuk mengingat informasi sebelumnya saat

memproses elemen berikutnya dalam urutan. Keterkaitan Antar

Elemen: Setiap elemen dalam urutan diolah secara berurutan, dan

informasi dari elemen sebelumnya digunakan untuk memproses

elemen berikutnya.

Arsitektur RNN: RNN memiliki struktur yang mengizinkan

informasi untuk mengalir mundur melalui jaringan,

memungkinkan koneksi siklus atau rekurensi. Setiap langkah

waktu (time step) dalam urutan diproses oleh lapisan yang sama

dari jaringan. Jenis-jenis RNN: One-to-One: Input tunggal

menghasilkan output tunggal, seperti dalam jaringan saraf biasa

(feedforward). One-to-Many: Satu input menghasilkan

serangkaian output, seperti menghasilkan kalimat dari gambar

tunggal. Many-to-One: Serangkaian input menghasilkan output

tunggal, seperti klasifikasi teks dari urutan kata-kata. Many-to-

Many: Urutan input dihubungkan dengan urutan output, seperti

terjemahan mesin atau POS tagging.

Keunggulan RNN:

Penanganan Data Urutan: Cocok untuk data yang memiliki

struktur sekuensial, seperti teks, audio, atau data deret waktu.

Memori Jangka Pendek: Kemampuan untuk "mengingat"

35

informasi dari langkah-langkah sebelumnya dalam urutan.

Keterbatasan RNN: Masalah Pelatihan: Rentan terhadap masalah

menghilangnya atau meledaknya gradien, yang mempengaruhi

kemampuannya untuk memahami hubungan jarak jauh dalam

urutan panjang. Komputasi yang Lambat: Keterkaitan antar

elemen membuat proses komputasi RNN cenderung lambat dalam

pengolahan data yang panjang.

Penggunaan RNN dalam NLP: RNN sering digunakan dalam NLP

untuk tugas-tugas seperti: Analisis Sentimen: Mengklasifikasikan

sentimen dalam teks. Penerjemahan Mesin: Menerjemahkan teks

dari satu bahasa ke bahasa lain. Generasi Teks: Menghasilkan teks

yang baru, seperti pembuatan cerita atau artikel. RNN adalah alat

yang berguna dalam NLP karena kemampuannya untuk

memproses data teks secara sekuensial dan mempertahankan

memori jangka pendek, yang memungkinkannya untuk

menghadapi tugas-tugas kompleks dalam analisis bahasa alami.

Tahapan dalam Recurrent Neural Networks (RNN) melibatkan

proses yang berurutan dari pengolahan data urutan di setiap

langkah waktu (time step). Berikut adalah tahapan-tahapan utama

dalam RNN:

1. Input Data:

Data Urutan: Seperti teks, data deret waktu, atau data yang

memiliki struktur sekuensial. Misalnya, urutan kata-kata dalam

kalimat.

2. Representasi Data:

Tokenisasi: Pemecahan data urutan menjadi unit-unit terpisah

(token), misalnya, pemecahan kalimat menjadi kata-kata atau

karakter. Pembuatan Vektor Fitur: Representasi data dalam

bentuk vektor fitur seperti Bag-of-Words atau word embeddings

(misalnya, Word2Vec, GloVe).

3. Pembuatan Arsitektur RNN:

Inisialisasi: Pembuatan model RNN dengan menentukan jumlah

neuron, lapisan, dan jenis RNN yang akan digunakan (misalnya,

SimpleRNN, LSTM, atau GRU). Pengaturan Hiperparameter:

36

Penyesuaian hyperparameter seperti jumlah neuron, jumlah

lapisan, learning rate, dan jenis fungsi aktivasi.

4. Pelatihan (Training):

Pengolahan Data Langkah per Langkah: Pengolahan data

langkah per langkah (time step) dalam urutan. Pembelajaran

Bobot: Pembelajaran parameter bobot dalam jaringan dengan

menggunakan algoritma seperti backpropagation melalui waktu

(Backpropagation Through Time - BPTT).

5. Validasi dan Evaluasi:

Validasi Model: Menggunakan data validasi untuk mengevaluasi

performa model dan menyesuaikan hyperparameter jika

diperlukan. Evaluasi Performa: Menggunakan metrik evaluasi

seperti akurasi, F1-score, atau perplexity untuk mengevaluasi

kinerja model.

6. Prediksi dan Penggunaan Model:

Prediksi: Menggunakan model yang telah dilatih untuk membuat

prediksi pada data baru atau untuk tugas yang ditentukan, seperti

klasifikasi, generasi teks, atau penerjemahan.

7. Penyesuaian dan Peningkatan Model:

Optimisasi: Peningkatan model dengan penyesuaian

hyperparameter, pemilihan arsitektur yang lebih kompleks, atau

teknik regularisasi.

Catatan: Backpropagation Through Time (BPTT): Penting

dalam RNN karena memungkinkan propagasi gradien dari

langkah waktu ke langkah waktu, membantu dalam pembelajaran

parameter bobot. Overfitting: RNN rentan terhadap overfitting

pada data urutan yang panjang. Oleh karena itu, pemilihan model

yang tepat dan teknik regularisasi seperti dropout atau batch

normalization dapat membantu mengurangi masalah ini. Tahapan-

tahapan ini membentuk proses umum dalam penggunaan dan

pengolahan data menggunakan Recurrent Neural Networks dalam

berbagai tugas dalam pemrosesan bahasa alami dan pengenalan

pola dalam data sekuensial.

37

4. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) adalah jenis arsitektur

jaringan saraf yang dirancang khusus untuk pemrosesan dan

pengenalan pola dalam data grid, seperti gambar. CNN sangat

efektif dalam mengekstraksi fitur-fitur spasial dari data dan telah

menjadi alat yang kuat dalam pengolahan citra dan pengenalan

pola.

Konsep dasar CNN: Konvolusi: CNN menggunakan operasi

konvolusi untuk mengekstraksi fitur-fitur dari gambar. Ini

melibatkan pergerakan filter (kernel) ke seluruh gambar untuk

mendeteksi pola-pola visual seperti tepi, sudut, atau tekstur.

Pooling: Operasi pooling seperti max pooling digunakan untuk

mereduksi dimensi dari fitur yang diekstraksi, mempertahankan

informasi penting dan mengurangi kompleksitas model.

Struktur CNN:

Convolutional Layer: Lapisan konvolusi terdiri dari filter yang

memindai gambar untuk mengekstraksi fitur-fitur. Pooling Layer:

Lapisan pooling yang mengurangi dimensi spasial dari fitur yang

diekstraksi oleh lapisan konvolusi. Fully Connected Layer:

Lapisan-lapisan terhubung sepenuhnya yang menggabungkan

fitur-fitur yang diekstraksi untuk klasifikasi akhir.

Keunggulan CNN:

Ekstraksi Fitur Otomatis: Kemampuan untuk secara otomatis

mengekstraksi fitur-fitur hierarkis dari data gambar. Invariansi

Spatial: Invariansi terhadap pergeseran dan transformasi kecil

dalam gambar. Aplikasi CNN dalam Computer Vision: Klasifikasi

Gambar: Mengenali objek atau kelas dari gambar. Deteksi Objek:

Menemukan dan menandai lokasi objek dalam gambar.

Segmentasi Gambar: Memisahkan objek dari latar belakang.

Perkembangan Terkini: Transfer Learning: Pemanfaatan model-

model yang sudah dilatih sebelumnya untuk tugas-tugas spesifik

dalam gambar atau domain lain. Architectural Advancements:

Pengembangan arsitektur yang lebih kompleks seperti ResNet,

38

Inception, atau EfficientNet untuk kinerja yang lebih baik dalam

pengenalan gambar.

CNN telah menjadi landasan dalam bidang Computer Vision dan

telah membawa kemajuan signifikan dalam berbagai aplikasi,

mulai dari pengenalan wajah hingga mobil otonom.

Kemampuannya dalam mengekstraksi fitur dari gambar dan

merangkai informasi spasial membuatnya sangat efektif dalam

memahami data visual. Convolutional Neural Networks (CNN)

pada awalnya dikembangkan untuk memproses data grid seperti

gambar. Namun, beberapa penelitian terbaru telah mencoba

menerapkan konsep dasar CNN dalam pemrosesan data teks

dengan perubahan dalam representasi dan pemrosesan.

Penerapan CNN untuk data teks melibatkan transformasi data teks

menjadi matriks atau tensor yang dapat diproses oleh CNN.

Berikut adalah cara umum dalam menggunakan CNN untuk

pemrosesan data teks:

1. Representasi Data Teks:

Word Embeddings: Mengubah kata-kata dalam teks menjadi

vektor numerik, seperti Word2Vec, GloVe, atau FastText. One-

Hot Encoding: Representasi biner dari kata-kata dalam bentuk

matriks yang besar (sering kali digunakan dalam kasus yang lebih

sederhana).

2. Convolutional Layer:

Convolution: Konvolusi diterapkan pada representasi vektor kata

atau matriks berukuran kelompok kata-kata yang disebut filter

(kernel) untuk mengekstraksi fitur-fitur dari urutan kata-kata.

Misalnya, filter 1 akan mendeteksi fitur-fitur seperti kata-kata

yang berdekatan, filter 2 mungkin mendeteksi pola khusus

lainnya.

3. Max Pooling Layer:

Pooling: Operasi pooling (misalnya, max pooling) digunakan

untuk mereduksi dimensi vektor hasil konvolusi,

mempertahankan fitur-fitur penting sambil mengurangi

kompleksitas.

39

4. Fully Connected Layer:

Layer Terhubung Penuh: Fitur-fitur yang diekstraksi oleh CNN

kemudian digabungkan ke dalam lapisan-lapisan terhubung penuh

untuk klasifikasi akhir atau tugas-tugas lainnya seperti analisis

sentimen atau klasifikasi teks.

Keunggulan dan Penggunaan dalam NLP: Ekstraksi Fitur: CNN

dapat mempelajari representasi hierarkis dari teks, mengenali pola

seperti kata-kata yang berdekatan, frasa, atau makna tertentu

dalam teks. Analisis Sentimen: Penerapan CNN pada data teks

untuk analisis sentimen atau klasifikasi teks. Pemrosesan Bahasa:

Meskipun RNN dan Transformer lebih umum dalam NLP, CNN

telah digunakan dalam tugas-tugas seperti pemrosesan bahasa dan

generasi teks. Catatan Penting: Ukuran Jendela (Window Size):

Penting untuk memilih ukuran jendela yang sesuai untuk filter

dalam CNN agar dapat menangkap pola yang relevan dalam teks.

Penggunaan Bersama dengan Model Lain: Pada beberapa kasus,

CNN digunakan bersama dengan arsitektur lain seperti LSTM

atau dilakukan fine-tuning pada model pre-trained untuk kinerja

yang lebih baik. Meskipun awalnya CNN dirancang untuk data

grid seperti gambar, adaptasi terbaru telah memperluas

penggunaannya dalam pemrosesan data teks dengan mengubah

representasi teks menjadi format yang dapat diproses oleh CNN.

Meskipun RNN dan Transformer masih dominan dalam NLP,

CNN tetap menjadi area penelitian yang menarik dalam

pemrosesan bahasa alami. Tahapan Convolutional Neural

Networks (CNN) untuk pengolahan data teks melibatkan

serangkaian langkah yang mirip dengan penggunaan CNN pada

data gambar, namun dengan representasi data teks yang berbeda.

Berikut tahapan-tahapan utama:

1. Preprocessing Data Teks:

Tokenisasi: Pemecahan teks menjadi token, seperti kata-kata atau

karakter. Pembuatan Sequence: Membentuk urutan dari token-

token yang terbagi dalam suatu urutan (kalimat atau teks).

40

2. Representasi Data Teks:

Word Embeddings: Mengonversi token-token teks menjadi vektor

numerik menggunakan Word Embeddings seperti Word2Vec,

GloVe, atau FastText. Ini mengubah kata-kata menjadi

representasi vektor dalam ruang dimensi yang lebih kecil.

One-Hot Encoding: Representasi biner dari kata-kata dalam

bentuk matriks yang besar. Sering kali digunakan dalam

eksperimen awal atau dalam kasus dengan dataset yang lebih

sederhana.

3. Convolutional Layer:

Convolution: Lapisan konvolusi diterapkan pada representasi

vektor kata atau matriks berukuran kelompok kata-kata yang

disebut filter (kernel) untuk mengekstraksi fitur-fitur dari urutan

kata-kata. Filter akan "memindai" sekuens dan menemukan pola

yang relevan.

4. Pooling Layer:

Pooling: Operasi pooling (misalnya, max pooling) digunakan

untuk mereduksi dimensi vektor hasil konvolusi,

mempertahankan fitur-fitur penting sambil mengurangi

kompleksitas dan ukuran data.

5. Fully Connected Layer:

Layer Terhubung Penuh: Fitur-fitur yang diekstraksi oleh CNN

kemudian digabungkan ke dalam lapisan-lapisan terhubung penuh

untuk klasifikasi akhir atau tugas lain seperti analisis sentimen,

klasifikasi teks, atau generasi teks.

6. Output Layer:

Layer Output: Lapisan terakhir yang menghasilkan output yang

cocok dengan tugas spesifik yang dijalankan, seperti klasifikasi

kategori teks atau nilai sentimen.

Catatan Penting: Hyperparameter Tuning: Pemilihan filter size,

jumlah filter, tingkat dropout, dan learning rate adalah kunci untuk

meningkatkan performa CNN pada data teks.

41

Penyesuaian dengan Arsitektur: Beberapa penelitian

menggunakan CNN bersama dengan arsitektur lain seperti LSTM

atau menggunakan fine-tuning pada model pre-trained untuk hasil

yang lebih baik. Dimensi Data: Representasi vektor kata-kata dari

Word Embeddings atau matriks one-hot encoding mempengaruhi

dimensi data masukan dan proses konvolusi. Penerapan CNN

pada data teks mengharuskan pengubahan representasi teks

menjadi format yang dapat diproses oleh CNN, dan meskipun

CNN lebih sering digunakan dalam pengolahan gambar, terdapat

penelitian dan aplikasi yang menarik dalam penggunaannya pada

data teks.

5. Transformer-based models (seperti BERT, GPT, dll.)

Transformer-based models adalah model pembelajaran mesin

yang menggunakan arsitektur Transformer. Transformer adalah

arsitektur jaringan saraf tiruan yang dirancang untuk menangani

data berurutan, seperti teks, audio, dan video. Transformer

memiliki kemampuan untuk memahami hubungan antara input

dan output, sehingga membuatnya lebih cocok untuk tugas-tugas

yang membutuhkan pemahaman kontekstual.

Model berbasis Transformer merupakan pendekatan revolusioner

dalam pemrosesan bahasa alami yang menghilangkan

ketergantungan pada urutan (sequence dependency) dan

menggabungkan mekanisme self-attention untuk memahami

konteks dari kata-kata atau token dalam teks. Ini memungkinkan

model untuk memperoleh pemahaman yang lebih baik tentang

hubungan antara kata-kata dalam teks. Konsep dasar Transformer:

Self-Attention Mechanism: Transformer menggunakan self-

attention untuk menimbang hubungan antara semua token dalam

kalimat secara sekaligus. Ini memungkinkan model untuk

memberikan bobot yang tepat untuk setiap token berdasarkan

hubungannya dengan token lain dalam kalimat tersebut. Multi-

Head Attention: Transformer memiliki beberapa head attention

yang beroperasi secara independen, memungkinkan model untuk

mempelajari hubungan yang lebih kompleks di berbagai sudut

pandang.

42

Encoder-Decoder Architecture: Transformer umumnya terdiri

dari blok encoder untuk memproses input dan blok decoder untuk

menghasilkan output dalam tugas seperti penerjemahan bahasa.

Komponen-komponen Transformer: Positional Encoding: Karena

Transformer tidak mempertahankan urutan token seperti RNN,

positional encoding diperkenalkan untuk memperkenalkan

informasi urutan ke dalam representasi vektor token. Encoder

Layers: Setiap layer dalam blok encoder memiliki modul self-

attention dan modul feed-forward neural network. Decoder

Layers: Mirip dengan encoder, blok decoder memiliki self-

attention, ditambah attention terhadap output dari encoder (untuk

tugas penerjemahan).

Keunggulan Transformer: Paralelisme yang Lebih Baik:

Transformer memungkinkan perhitungan paralel yang lebih

efisien dibandingkan dengan RNN atau LSTM, mempercepat

pelatihan model. Kemampuan untuk Memahami Konteks yang

Lebih Luas: Mekanisme self-attention memungkinkan model

untuk memahami hubungan antara kata-kata yang jauh dalam

teks.

Aplikasi Transformer-based Models: Penerjemahan Bahasa:

Model Transformer seperti GPT (Generative Pre-trained

Transformer) dan BERT telah digunakan untuk penerjemahan

bahasa dan pemahaman teks yang lebih baik. Generasi Teks:

Transformer juga digunakan untuk menghasilkan teks yang lebih

lancar dan realistis dalam tugas generasi teks. Analisis Sentimen:

Penggunaan Transformer dalam tugas analisis sentimen telah

meningkatkan akurasi dan pemahaman konteks sentimen dalam

teks.

Contoh Model Transformer: BERT (Bidirectional Encoder

Representations from Transformers): Model yang dilatih secara

pre-trained untuk pemahaman konteks bahasa. GPT (Generative

Pre-Trained Transformer): Model yang berfokus pada generasi

teks yang lebih baik berdasarkan pemahaman konteks bahasa.

Transformer-based models telah mengubah lanskap dalam

43

pemrosesan bahasa alami dengan meningkatkan kemampuan

memahami konteks dan urutan kata-kata dalam teks, dan mereka

terus menjadi fokus penelitian dan pengembangan dalam NLP.

Arsitektur Transformer: Arsitektur Transformer terdiri dari dua

bagian utama, yaitu encoder dan decoder. Encoder bertanggung

jawab untuk menganalisis input, sedangkan decoder bertanggung

jawab untuk menghasilkan output. Encoder terdiri dari beberapa

layer self-attention. Self-attention adalah teknik yang digunakan

untuk menghitung hubungan antara setiap input. Self-attention

memungkinkan Transformer untuk memahami hubungan antara

input yang berdekatan dan input yang jauh.

Decoder juga terdiri dari beberapa layer self-attention. Selain itu,

decoder juga memiliki layer feedforward. Feedforward adalah

teknik yang digunakan untuk mengubah representasi vektor dari

input.

Keunggulan Transformer-based models. Transformer-based

models memiliki beberapa keunggulan dibandingkan dengan

model-model sebelumnya, seperti RNN dan CNN. Keunggulan-

keunggulan tersebut antara lain:

1. Kemampuan untuk memahami hubungan: Transformer dapat

memahami hubungan antara input dan output, sehingga

membuatnya lebih cocok untuk tugas-tugas yang

membutuhkan pemahaman kontekstual.

2. Efisiensi: Transformer lebih efisien daripada RNN dan

CNN, terutama untuk tugas-tugas yang membutuhkan

pemahaman jangka panjang.

3. Keakuratan: Transformer dapat menghasilkan akurasi yang

lebih tinggi daripada RNN dan CNN untuk berbagai

tugas, seperti terjemahan mesin, pengenalan bahasa alami, dan

klasifikasi teks.

44

4. Aplikasi Transformer-based models Transformer-based

models telah digunakan untuk berbagai tugas pemrosesan data

berurutan, seperti:

5. Terjemahan mesin: Transformer telah menjadi standar de facto

untuk terjemahan mesin. Transformer dapat menghasilkan

terjemahan yang lebih akurat dan alami daripada model-model

sebelumnya.

6. Pemahaman bahasa alami: Transformer telah digunakan untuk

berbagai tugas pemrosesan bahasa alami, seperti pengenalan

entitas, klasifikasi teks, dan sentiment analysis.

7. Pengenalan suara: Transformer telah digunakan untuk

meningkatkan akurasi pengenalan suara.

8. Komposisi musik: Transformer telah digunakan untuk

menghasilkan musik yang mirip dengan musik yang sudah ada.

Transformer-based models adalah model pembelajaran mesin

yang kuat dan serbaguna yang dapat digunakan untuk berbagai

tugas pemrosesan data berurutan. Transformer telah menjadi

standar de facto untuk beberapa tugas, seperti terjemahan mesin.

45

BAB III

PENERAPAN NLP

A. NLP dalam Industri

1. Customer Service

Penerapan Natural Language Processing (NLP) dalam layanan

pelanggan (Customer Service) telah menjadi kunci dalam

meningkatkan pengalaman pelanggan, efisiensi operasional, dan

pemahaman yang lebih baik terhadap kebutuhan pelanggan.

Berikut adalah rincian tentang bagaimana NLP digunakan dalam

layanan pelanggan:

1. Chatbot dan Asisten Virtual: Automatisasi Respon: Chatbot

menggunakan NLP untuk memahami pertanyaan atau masalah

pelanggan dan memberikan respons yang relevan secara

otomatis. Mereka dapat membantu dalam menjawab

pertanyaan umum, memberikan informasi produk, atau

menyelesaikan masalah tertentu. Pemahaman Bahasa Alami:

Melalui NLP, chatbot dapat memahami pertanyaan dalam

bahasa alami, bahkan dengan variasi atau frasa yang berbeda.

2. Analisis Sentimen: Pemantauan Sentimen: NLP digunakan

untuk menganalisis sentimen dari ulasan atau feedback

pelanggan di media sosial, forum, atau platform lainnya. Ini

membantu perusahaan memahami perasaan pelanggan

terhadap produk atau layanan mereka. Deteksi Masalah:

Dengan menganalisis sentimen, perusahaan dapat mendeteksi

masalah atau keluhan yang muncul dari pelanggan secara cepat

dan meresponnya dengan tepat waktu.

3. Analisis Percakapan Pelanggan: Pemrosesan Transkripsi:

NLP digunakan untuk menganalisis percakapan telepon, chat,

atau email dengan pelanggan untuk mengekstrak informasi

penting seperti masalah umum, kebutuhan, atau keluhan.

46

Peningkatan Layanan: Analisis NLP pada percakapan

pelanggan dapat membantu dalam mengidentifikasi area di

mana layanan dapat ditingkatkan atau masalah yang perlu

diselesaikan.

4. Klasifikasi dan Pemrosesan Permintaan Pelanggan: Klasifikasi

Permintaan: NLP digunakan untuk mengklasifikasi

permintaan pelanggan ke dalam kategori yang tepat. Ini

membantu dalam menentukan prioritas dan menanggapi

dengan lebih cepat. Pemrosesan Otomatis: Dengan

pemahaman NLP terhadap permintaan pelanggan, beberapa

tugas dapat diproses secara otomatis, seperti pembuatan tiket

layanan atau pengiriman pesan balasan awal.

5. Personalisasi Layanan: Analisis Riwayat: NLP membantu

menganalisis riwayat interaksi pelanggan untuk memahami

preferensi, kebutuhan, dan pola perilaku. Ini memungkinkan

perusahaan untuk memberikan layanan yang lebih personal dan

relevan.

6. Implementasi NLP di Platform Layanan Pelanggan: Integrasi

dalam CRM: Integrasi NLP dalam perangkat lunak

manajemen hubungan pelanggan (CRM) membantu dalam

pemrosesan dan pengelolaan data pelanggan untuk

memberikan layanan yang lebih baik. Penggunaan API:

Penggunaan API (Application Programming Interface) NLP

dari penyedia layanan dapat memperkaya fungsionalitas

platform layanan pelanggan dengan kemampuan bahasa alami.

Penerapan NLP dalam layanan pelanggan membantu

perusahaan dalam memahami dan merespons kebutuhan

pelanggan dengan lebih efisien, meningkatkan interaksi, dan

memberikan pengalaman pelanggan yang lebih baik secara

keseluruhan.

2. Analisis Sentimen

Penerapan Natural Language Processing (NLP) dalam analisis

sentimen bertujuan untuk memahami dan mengekstrak sentimen,

opini, atau perasaan dari teks yang dihasilkan oleh pengguna,

47

konsumen, atau pemangku kepentingan. Berikut adalah rincian

tentang bagaimana NLP digunakan dalam analisis sentimen:

1. Preprocessing Data Teks: Tokenisasi: Pemecahan teks menjadi

token, seperti kata-kata, frasa, atau karakter. Stopword

Removal: Penghapusan kata-kata umum yang tidak

memberikan makna penting dalam analisis sentimen.

Stemming atau Lemmatisasi: Normalisasi kata-kata menjadi

bentuk dasar mereka untuk mengurangi variasi dalam teks.

2. Representasi Data Teks: Word Embeddings: Mengubah teks

menjadi vektor numerik menggunakan teknik Word

Embeddings seperti Word2Vec, GloVe, atau FastText. TF-IDF

(Term Frequency-Inverse Document Frequency): Menghitung

bobot kata-kata dalam teks berdasarkan frekuensi kemunculan

kata-kata tersebut dalam dokumen dan seberapa umum kata-

kata tersebut dalam korpus keseluruhan.

3. Analisis Sentimen: Pendekatan Supervised Learning:

Menggunakan metode klasifikasi (misalnya, Support Vector

Machines, Naive Bayes, atau Neural Networks) yang dilatih

dengan data yang dilabeli untuk mengklasifikasikan teks ke

dalam kategori sentimen tertentu (positif, negatif, atau netral).

Unsupervised Learning: Menggunakan teknik Clustering atau

analisis topik untuk mengelompokkan teks ke dalam kelompok

sentimen berdasarkan kesamaan topik atau karakteristik.

4. Emotion Analysis: Deteksi Emosi: Menerapkan NLP untuk

mengidentifikasi emosi atau perasaan tertentu dalam teks

seperti kegembiraan, kemarahan, atau kecemasan.

5. Aspect-Based Sentiment Analysis: Analisis Berbasis Aspek:

Memahami sentimen terkait dengan aspek-aspek tertentu

dalam teks, seperti produk dalam ulasan, fitur spesifik, atau

layanan yang disediakan.

6. Pengembangan Model Sentiment Analysis: Fine-tuning Model

Pre-trained: Menggunakan model yang telah dilatih

sebelumnya dalam bahasa alami (seperti BERT, GPT, atau

Transformer) dan menyesuaikannya dengan tugas analisis

sentimen tertentu.

48

7. Evaluasi Model: Menggunakan Metrics: Menggunakan metrik

evaluasi seperti akurasi, F1-score, atau Confusion Matrix untuk

mengukur kinerja model dalam memprediksi sentimen dengan

benar.

Penerapan NLP dalam analisis sentimen memungkinkan

perusahaan untuk memahami perasaan pelanggan, umpan balik

produk, atau sentimen pasar secara luas. Hal ini membantu dalam

pengambilan keputusan yang lebih baik, penyesuaian strategi

bisnis, dan meningkatkan interaksi dengan pelanggan berdasarkan

pemahaman yang lebih baik tentang sentimen yang terkandung

dalam teks.

3. Pencarian Informasi

Penerapan Natural Language Processing (NLP) dalam pencarian

informasi membantu dalam pemrosesan, pemahaman, dan

relevansi pencarian terhadap teks yang dimasukkan pengguna.

Berikut adalah rincian tentang bagaimana NLP digunakan dalam

pencarian informasi:

1. Query Understanding: Analisis Pencarian: NLP digunakan

untuk memahami query atau pertanyaan pengguna yang

dimasukkan ke dalam mesin pencarian, memecahnya menjadi

token dan mengidentifikasi kata kunci penting. Pemrosesan

Bahasa Alami: Memahami makna atau intent di balik query,

termasuk penanganan variasi frasa atau pertanyaan yang mirip

namun memiliki struktur yang berbeda.

2. Pengindeksan Informasi: Tokenisasi dan Representasi:

Dokumen-dokumen atau konten yang akan diindeks dianalisis

menggunakan NLP untuk tokenisasi, mengubah teks menjadi

representasi vektor, dan menghitung bobot kata-kata (TF-IDF)

untuk membangun indeks yang mempercepat proses pencarian.

Entity Recognition: Mengidentifikasi entitas seperti nama

orang, tempat, atau organisasi dalam teks untuk meningkatkan

akurasi pencarian.

3. Relevansi Pencarian: Matching dan Ranking: NLP digunakan

untuk mencocokkan query pengguna dengan dokumen yang

49

relevan dan memberi peringkat pada hasil pencarian

berdasarkan relevansi. Pemahaman Konteks:

Memperhitungkan konteks dalam pencarian, memastikan hasil

yang diberikan sesuai dengan kebutuhan pengguna.

4. Pencarian Semantik: Analisis Semantik: Menggunakan NLP

untuk memahami arti sebenarnya dari query atau dokumen,

bukan hanya kata-kata yang digunakan, melainkan juga konsep

yang terkandung dalam teks. Pemrosesan Teks yang Lebih

Lanjut: Penggunaan teknik seperti Word Embeddings atau

Transformer untuk pemahaman yang lebih dalam tentang

hubungan antar kata-kata atau makna di balik teks.

5. Personalisasi Pencarian: Pemahaman User Intent: NLP

membantu dalam memahami intent atau tujuan pengguna yang

berbeda, memungkinkan sistem untuk memberikan hasil yang

lebih relevan berdasarkan histori pencarian atau profil

pengguna.

6. Evaluasi dan Peningkatan Sistem: Analisis Feedback:

Menggunakan NLP untuk menganalisis umpan balik pengguna

terhadap hasil pencarian untuk meningkatkan relevansi dan

kualitas hasil.

4. Fine-tuning Model

Meningkatkan model pencarian berbasis pada informasi dari

evaluasi dan umpan balik untuk meningkatkan performa dan

akurasi. Penerapan NLP dalam pencarian informasi membantu

dalam meningkatkan akurasi, relevansi, dan kecepatan pencarian,

memastikan bahwa pengguna mendapatkan informasi yang

mereka cari dengan lebih efisien dan sesuai dengan kebutuhan

mereka.

1. Chatbots dan Virtual Assistants: Penerapan Natural Language

Processing (NLP) dalam Chatbots dan Virtual Assistants

memungkinkan sistem untuk memahami, memproses, dan

merespons bahasa manusia secara efektif. Berikut adalah

rincian tentang bagaimana NLP digunakan dalam Chatbots dan

Virtual Assistants:

2. Pengenalan dan Pemahaman Bahasa Manusia: Pemrosesan

Bahasa Alami: NLP digunakan untuk memahami perintah,

50

pertanyaan, atau masukan pengguna dalam bahasa alami. Ini

melibatkan pemecahan kalimat, tokenisasi, dan pemahaman

intent di balik permintaan. Entity Recognition: Identifikasi

entitas seperti nama orang, lokasi, tanggal, atau objek tertentu

dalam teks untuk memberikan respon yang lebih tepat.

3. Pembangunan Chatbots yang Responsif: Generasi Respon:

NLP membantu dalam menghasilkan respon yang relevan dan

kontekstual berdasarkan pemahaman terhadap permintaan

pengguna. Ini melibatkan pembuatan respon yang sesuai

dengan konteks, bahasa yang ramah, dan pilihan kata yang

tepat. Personalisasi Respon: Sistem dapat menyesuaikan

respon berdasarkan informasi pengguna atau sejarah interaksi

sebelumnya.

4. Pengelolaan Dialog dan Konteks: Memahami Konteks: NLP

membantu dalam mempertahankan konteks percakapan dan

memastikan Chatbot atau Virtual Assistant dapat mengingat

percakapan sebelumnya untuk memberikan respon yang lebih

baik. Dialog State Management: Manajemen status

percakapan yang memungkinkan sistem untuk menanggapi

permintaan yang berurutan atau berkelanjutan.

5. Integrasi dengan Pengetahuan dan Informasi Tambahan: Akses

ke Informasi: NLP memungkinkan Chatbot untuk mengakses

basis pengetahuan, database, atau sumber informasi lainnya

untuk memberikan jawaban yang lebih lengkap dan akurat.

6. Evaluasi dan Peningkatan Kualitas Respon: Analisis

Sentimen: Menggunakan NLP untuk memahami sentimen

pengguna terhadap respon yang diberikan oleh Chatbot dan

mengadaptasi respons berdasarkan umpan balik. Peningkatan

Model: Penggunaan umpan balik pengguna dan analisis

performa untuk meningkatkan model Chatbot, termasuk fine-

tuning model berbasis NLP.

7. Pengembangan Multilingual Chatbots: Penerapan Bahasa

Lain: NLP digunakan untuk mendukung chatbot dalam bahasa

yang berbeda, memungkinkan sistem untuk beroperasi dalam

lingkungan multilingual. Penerapan NLP dalam Chatbots dan

Virtual Assistants membantu dalam memberikan pengalaman

interaktif yang lebih manusiawi, efisien, dan responsif bagi

pengguna. Kemampuan sistem untuk memahami bahasa

51

manusia secara alami merupakan inti dari efektivitas Chatbot

dalam memberikan layanan yang berguna dan informatif

kepada pengguna.

B. NLP dalam Kesehatan

1. Analisis data medis: Penerapan Natural Language Processing

(NLP) dalam analisis data medis bertujuan untuk memahami,

mengekstrak, dan mengelola informasi dari catatan medis,

laporan laboratorium, dokumen kesehatan, atau literatur medis.

Berikut adalah rincian tentang bagaimana NLP digunakan

dalam analisis data medis:

2. Pemrosesan Catatan Medis: Ekstraksi Informasi: NLP

digunakan untuk mengekstrak informasi klinis seperti

diagnosis, tindakan medis, gejala, atau riwayat penyakit dari

catatan medis yang sering kali terstruktur atau tidak terstruktur.

Named Entity Recognition (NER): Mengidentifikasi entitas

medis seperti nama pasien, dokter, obat-obatan, atau prosedur

medis dalam catatan medis.

3. Klasifikasi dan Analisis Teks Medis: Diagnosis Otomatis:

Penggunaan NLP dalam klasifikasi teks medis untuk

mendukung diagnosa otomatis berdasarkan informasi yang

terkandung dalam catatan medis. Analisis Sentimen

Kesehatan: Menganalisis catatan medis untuk mengevaluasi

sentimen pasien terhadap pengalaman perawatan atau prosedur

medis tertentu.

4. Penelitian dan Literatur Medis: Literature Review: NLP

digunakan untuk memproses dan menganalisis literatur medis

yang luas, membantu peneliti untuk mendapatkan wawasan

dari artikel dan penelitian terbaru dalam bidang kesehatan.

Pengelompokan Tema: Mengelompokkan artikel atau

makalah medis berdasarkan tema tertentu menggunakan teknik

pengelompokan topik.

5. Pemahaman Bahasa Kesehatan: Terminologi Medis:

Memahami istilah medis yang kompleks dan terminologi

khusus yang digunakan dalam catatan medis atau literatur

medis. Analisis Percakapan Medis: Memahami percakapan

52

antara dokter dan pasien dalam rekaman medis untuk

meningkatkan pemahaman terhadap situasi kesehatan pasien.

6. Prediksi Penyakit dan Perawatan: Prediksi Risiko:

Menggunakan NLP untuk mengidentifikasi faktor risiko atau

prediksi perjalanan penyakit berdasarkan informasi yang

terdapat dalam catatan medis.

7. Privasi dan Keamanan Data: Anonimisasi Data: Penggunaan

NLP dalam menghapus atau mengaburkan informasi identitas

pribadi dari catatan medis untuk menjaga keamanan dan privasi

data.

8. Pengembangan Sistem Berbasis NLP: Sistem Dukungan

Keputusan: Membangun sistem NLP yang mendukung

pengambilan keputusan klinis atau memberikan saran terhadap

perawatan medis.

Penerapan NLP dalam analisis data medis membuka potensi besar

untuk meningkatkan pengelolaan data kesehatan, penelitian

medis, pelayanan kesehatan, dan pengembangan sistem yang

mendukung pengambilan keputusan klinis yang lebih baik. Ini

juga memainkan peran penting dalam meningkatkan efisiensi,

akurasi, dan pemahaman terhadap informasi kesehatan yang

terkandung dalam dokumen medis.

Penerapan Natural Language Processing (NLP) dalam pengenalan

entitas medis (NER - Named Entity Recognition) adalah tentang

mengidentifikasi dan mengekstrak entitas spesifik dalam teks

medis seperti nama pasien, nama dokter, jenis penyakit, obat-

obatan, prosedur medis, tanggal, dan informasi penting lainnya.

Berikut adalah rincian tentang penerapan NLP dalam NER untuk

pengenalan entitas medis:

1. Pemrosesan Teks Medis: Tokenisasi: Memecah teks medis

menjadi token (kata-kata, frasa, atau bagian-bagian lain) untuk

analisis lebih lanjut. Stopword Removal: Penghapusan kata-

kata umum yang tidak relevan dalam teks medis.

2. Penggunaan Model NLP untuk Pengenalan Entitas Medis:

Model Berbasis Aturan (Rule-Based): Menerapkan aturan

linguistik atau peraturan manual untuk mengidentifikasi entitas

medis. Contohnya, pengenalan nama orang berdasarkan pola

penulisan nama manusia. Machine Learning-Based Models:

53

Penggunaan algoritma pembelajaran mesin seperti Conditional

Random Fields (CRFs), Support Vector Machines (SVM), atau

Deep Learning (misalnya, LSTM atau Transformer) yang telah

dilatih pada data yang dilabeli untuk mengenali entitas medis.

3. Pengembangan Anotasi dan Dataset: Anotasi Manual:

Menandai atau memberi label entitas medis dalam teks medis

oleh ahli manusia untuk membuat dataset pelatihan yang

dilabeli.

4. Feature Engineering: Penggunaan Fitur: Pemilihan fitur yang

relevan seperti kata-kata sekitar, morfologi kata, atau konteks

untuk membantu model dalam mengenali entitas medis dengan

lebih akurat.

5. Evaluasi dan Peningkatan Model: Cross-Validation:

Menggunakan teknik cross-validation untuk mengukur kinerja

model dalam mengenali entitas medis dan menghindari

overfitting. Fine-Tuning Model: Memperbarui atau

menyesuaikan model NER berdasarkan umpan balik dari

evaluasi hasil model untuk meningkatkan akurasi.

6. Penerapan dalam Aplikasi Kesehatan: Sistem Manajemen

Kesehatan Elektronik: Menggunakan NER untuk

mengekstrak dan mengelola informasi penting dalam catatan

medis elektronik untuk memfasilitasi pencarian, analisis, dan

perawatan pasien. Penelitian Klinis: Penerapan NER dalam

analisis literatur medis untuk mengidentifikasi informasi

penting dalam artikel penelitian atau makalah medis.

Penerapan NLP dalam NER untuk pengenalan entitas medis

merupakan langkah penting dalam pengelolaan data kesehatan,

penelitian medis, dan perawatan pasien yang memungkinkan

pengambilan informasi yang lebih cepat dan akurat dari teks

medis yang besar dan kompleks.

C. NLP dalam Pendidikan

1. Evaluasi dan pembelajaran berbasis teks

Penerapan Natural Language Processing (NLP) dalam evaluasi

dan pembelajaran berbasis teks melibatkan analisis teks untuk

mengukur kinerja, meningkatkan pemahaman, dan

54

mengembangkan sistem yang mendukung pendidikan dan

evaluasi. Berikut adalah rincian tentang bagaimana NLP

digunakan dalam konteks ini:

1. Penilaian Otomatis: Analisis Jawaban Siswa: Penggunaan

NLP dalam mengevaluasi jawaban siswa dalam bentuk teks,

mengidentifikasi kesalahan atau kekurangan dalam jawaban

mereka, serta memberikan umpan balik yang sesuai. Penilaian

Tugas: NLP digunakan untuk memberikan penilaian otomatis

terhadap tugas yang mencakup teks, seperti esai, tugas menulis,

atau penugasan proyek.

2. Analisis Sentimen dan Partisipasi: Pemantauan Sentimen:

Menganalisis sentimen dari diskusi kelas, tanggapan siswa,

atau umpan balik untuk memahami perasaan dan tingkat

partisipasi.

3. Pemahaman Konten: Ringkasan Otomatis: Menggunakan

NLP untuk merangkum teks panjang, seperti materi pelajaran

atau artikel, agar lebih mudah dipahami oleh siswa.

Pemahaman Materi Pelajaran: Penerapan NLP untuk

memahami pertanyaan siswa, memberikan informasi

tambahan, atau menjelaskan konsep yang rumit dalam teks.

4. Peningkatan Pengalaman Belajar: Personalisasi

Pembelajaran: Memanfaatkan NLP untuk mempersonalisasi

pengalaman belajar siswa berdasarkan kemajuan mereka,

preferensi, dan kebutuhan individu. Rekomendasi Konten:

Menyediakan rekomendasi materi pembelajaran berdasarkan

minat dan kemajuan siswa.

5. Analisis Diskusi Kelas dan Forum: Analisis Diskusi:

Menggunakan NLP untuk menganalisis percakapan atau

diskusi dalam forum online atau kelas virtual guna

mengidentifikasi topik populer, pola partisipasi, atau

pemahaman umum.

6. Pengembangan Sistem Pendidikan: Sistem Tutor Cerdas:

Membangun sistem tutor yang menggunakan NLP untuk

memahami kebutuhan siswa, memberikan bantuan, dan

menyesuaikan pembelajaran. Pengembangan Platform

Pembelajaran: Integrasi NLP dalam platform pembelajaran

daring untuk meningkatkan interaksi, pembelajaran adaptif,

dan evaluasi.

55

Penerapan NLP dalam evaluasi dan pembelajaran berbasis teks

memberikan peluang untuk meningkatkan efisiensi dalam

penilaian, personalisasi pembelajaran, dan pemahaman konten

secara lebih baik. Hal ini juga mendukung perkembangan sistem

pendidikan yang lebih adaptif, interaktif, dan responsif terhadap

kebutuhan individual siswa.

2. Analisis plagiarism

Penerapan Natural Language Processing (NLP) dalam analisis

plagiarisme adalah tentang penggunaan teknologi bahasa alami

untuk mendeteksi dan menganalisis kesamaan atau plagiarisme

antara dokumen atau teks. Berikut adalah rincian tentang

bagaimana NLP diterapkan dalam konteks ini:

1. Preprocessing Teks: Tokenisasi dan Representasi: Mengubah

teks ke dalam representasi numerik atau token untuk analisis

lebih lanjut. Pembersihan Teks: Membersihkan teks dari

informasi yang tidak relevan, seperti tanda baca, karakter

khusus, atau formatting.

2. Penggunaan Model NLP: Model Berbasis Aturan (Rule-

Based): Menerapkan aturan linguistik atau logika untuk

mendeteksi kesamaan teks, terutama dalam dokumen panjang

atau struktur kompleks. Machine Learning-Based Models:

Penggunaan algoritma pembelajaran mesin (misalnya,

Decision Trees, Support Vector Machines, atau Neural

Networks) yang dilatih dengan data yang dilabeli untuk

mengidentifikasi pola plagiarisme.

3. Analisis Struktural Teks: Alignment dan Similarity

Detection: Menggunakan NLP untuk menemukan kesamaan

atau kemiripan antara teks, baik dalam frasa, kalimat, paragraf,

atau struktur keseluruhan. Deteksi Plagiarisme Paragraf atau

Dokumen: Menggunakan teknik seperti cosine similarity atau

Levenshtein distance untuk mendeteksi plagiarisme pada

tingkat dokumen atau paragraf.

4. Analisis Konten dan Semantik: Kesamaan Makna:

Menggunakan NLP untuk memahami makna di balik kata-kata

atau frasa, bukan hanya kesamaan kata. Analisis Semantik:

56

Mengidentifikasi makna dan inti dari teks untuk

membandingkan konten secara lebih mendalam.

5. Pengembangan Algoritma Khusus: Fine-Tuning Model:

Meningkatkan model NLP untuk deteksi plagiarisme,

memastikan sensitivitas yang tinggi dan akurasi dalam

mengidentifikasi kesamaan teks.

6. Evaluasi Hasil: Pengukuran Similaritas: Mengukur tingkat

kesamaan atau plagiarisme antara teks berdasarkan hasil

analisis NLP. Umpan Balik dan Peningkatan: Menggunakan

umpan balik untuk meningkatkan algoritma deteksi

plagiarisme dan meningkatkan ketepatan serta ketelitian hasil.

Penerapan NLP dalam analisis plagiarisme memiliki peran

penting dalam memastikan keaslian dan integritas karya tulis. Ini

membantu institusi pendidikan, editor, peneliti, atau penerbit

untuk mengidentifikasi plagiarisme dengan lebih efisien dan

akurat, serta menjaga kejujuran dalam publikasi karya.

57

BAB IV

TANTANGAN DAN ISU ETIKA DALAM

NLP

A. Tantangan dalam NLP

1. Polysemy dan Ambiguitas

Dalam Natural Language Processing (NLP), terdapat sejumlah

tantangan dan isu etika yang berkaitan dengan polisemi

(polysemy) dan ambiguitas dalam bahasa:

1. Polisemi dan Ambiguitas: Arti Ganda: Polisemi merujuk pada

kata-kata atau frasa yang memiliki lebih dari satu arti yang sah.

Ambiguitas mencakup situasi di mana kalimat atau teks

memiliki arti yang tidak jelas atau lebih dari satu arti yang

memungkinkan.

2. Kesulitan dalam Pemahaman Konteks: Konteks yang

Membingungkan: Penafsiran kata-kata atau frasa terkadang

tergantung pada konteksnya. Meskipun NLP mungkin mampu

mengenali variasi kata, memahami makna sebenarnya dalam

konteks yang tepat bisa menjadi sulit.

3. Tantangan dalam Pemrosesan Bahasa Alami: Disambiguasi:

NLP harus mampu untuk mengatasi polisemi dan ambiguitas,

memutuskan makna yang benar berdasarkan konteks yang

diberikan. Ini sering kali menantang karena bahasa manusia

penuh dengan kompleksitas dan nuansa.

4. Isu Etika dalam Penggunaan Teknologi: Bias dan Penafsiran

yang Salah: Ketika NLP menghadapi polisemi dan ambiguitas,

ada risiko penafsiran yang salah atau bias dalam analisis, yang

dapat memengaruhi hasil dan keputusan yang dibuat oleh

sistem berbasis NLP.

5. Dampak pada Aplikasi NLP: Ketepatan dalam Pemrosesan

Teks: Polisemi dan ambiguitas dapat mengganggu ketepatan

hasil analisis NLP, misalnya dalam kasus klasifikasi teks atau

pemahaman konten.

58

6. Perlunya Penanganan yang Lebih Cermat: Peningkatan

Algoritma: Diperlukan pengembangan algoritma NLP yang

lebih canggih untuk menangani polisemi dan ambiguitas secara

lebih efektif.

Isu Etika Terkait: Transparansi dan Akuntabilitas: Penerapan

NLP yang tidak mempertimbangkan polisemi atau ambiguitas

bisa mengakibatkan kesalahan atau interpretasi yang salah, yang

bisa menjadi isu etika jika hal itu memengaruhi keputusan penting

atau menimbulkan bias.

Privasi dan Keamanan: Ketika NLP digunakan dalam aplikasi

yang melibatkan data sensitif, risiko salah tafsir atau manipulasi

akibat polisemi atau ambiguitas bisa memengaruhi privasi atau

keamanan data. Penanganan polisemi dan ambiguitas dalam NLP

adalah tantangan penting karena memengaruhi tingkat akurasi,

keandalan, dan interpretasi yang tepat dari teks dalam konteks

yang berbeda. Isu etika terkait juga harus dipertimbangkan secara

cermat untuk memastikan penggunaan NLP yang bertanggung

jawab dan tepat.

2. Kurangnya data yang berkualitas

Salah satu tantangan utama dalam Natural Language Processing

(NLP) adalah kurangnya data yang berkualitas. Hal ini bisa

menjadi hambatan serius dalam mengembangkan model NLP

yang baik. Berikut adalah penjelasan lebih rinci:

1. Keterbatasan Dataset: Kurangnya Volume Data: Dalam

beberapa kasus, dataset yang tersedia untuk pelatihan model

NLP bisa sangat terbatas, terutama untuk bahasa yang kurang

umum atau domain tertentu seperti medis atau hukum.

Kualitas Data yang Buruk: Data yang tidak terstruktur, tidak

terlabeli dengan baik, atau tidak terkumpul dengan baik dapat

menghambat kemampuan model untuk belajar dengan baik.

2. Tantangan Variasi Bahasa: Variasi Dialek dan Gaya Bahasa:

Bahasa manusia sangat bervariasi, termasuk penggunaan

dialek, slang, atau variasi dalam gaya penulisan. Ini

membutuhkan data yang representatif untuk melatih model

59

agar mampu memahami variasi bahasa tersebut. Bahasa yang

Kurang Dikenal: Bahasa-bahasa yang kurang umum atau

kuno sering kali memiliki keterbatasan dalam data, membuat

pengembangan model NLP yang akurat menjadi sulit.

3. Biaya dan Waktu Pengumpsulan Data: Biaya Pengumpulan

Data: Mengumpulkan dataset yang besar dan berkualitas

memerlukan sumber daya yang signifikan, baik itu biaya

maupun waktu. Keterbatasan Waktu: Dalam beberapa kasus,

pembangunan model NLP yang baik membutuhkan waktu

yang lama karena proses pengumpulan, pembersihan, dan

anotasi data yang memadai.

4. Ketergantungan pada Data Label: Ketergantungan pada Data

yang Dilabeli: Model pembelajaran mesin sering kali

memerlukan data yang sudah dilabeli dengan benar untuk

melatih dan memvalidasi kinerja. Kurangnya data yang dilabeli

bisa menjadi kendala. Cara Mengatasinya: Augmentasi Data:

Menciptakan data tambahan dari data yang ada dengan teknik

seperti penggandaan, translasi, atau penggabungan untuk

meningkatkan jumlah dan variasi data. Transfer Learning:

Memanfaatkan model yang sudah dilatih pada data yang besar

(pre-trained models) dan menyesuaikannya dengan data yang

tersedia dalam domain atau bahasa tertentu. Collaborative

Efforts: Kerja sama dan pertukaran dataset antara lembaga,

peneliti, atau komunitas dapat membantu mengatasi

keterbatasan data.

Kurangnya data yang berkualitas bisa menjadi tantangan utama

dalam pengembangan model NLP yang akurat dan andal. Strategi

pengumpulan data yang cerdas, teknik augmentasi data, dan

pemanfaatan model yang sudah dilatih dapat membantu mengatasi

sebagian dari kendala ini dalam mengembangkan model NLP

yang lebih baik.

3. Overfitting dan generalisasi

Dalam konteks Natural Language Processing (NLP), overfitting

dan generalisasi adalah dua konsep penting yang memengaruhi

60

kualitas dan performa model yang dikembangkan untuk

pemrosesan bahasa alami.

1. Overfitting: Definisi Overfitting: Overfitting terjadi ketika

model terlalu "memorize" data pelatihan dan tidak mampu

melakukan generalisasi dengan baik pada data baru atau data

yang belum pernah dilihat sebelumnya. Penyebab Overfitting:

Overfitting seringkali terjadi ketika model terlalu kompleks

atau memiliki kapasitas yang berlebihan untuk mempelajari

detail-detail kecil yang sebenarnya bersifat acak atau tidak

relevan dalam data. Indikasi Overfitting: Biasanya, tanda-tanda

overfitting termasuk performa model yang sangat baik pada

data pelatihan tetapi performa yang buruk pada data validasi

atau data uji. Strategi Penanggulangan: Menggunakan teknik

regularisasi seperti dropout, pengurangan kompleksitas model,

atau menggunakan teknik validasi silang untuk memvalidasi

performa model.

2. Generalisasi: Definisi Generalisasi: Generalisasi adalah

kemampuan model untuk mengadopsi pola yang ditemukan

dari data pelatihan dan menerapkannya dengan baik pada data

baru atau data yang belum dilihat sebelumnya. Penyebab

Generalisasi: Model yang mampu menangkap pola yang umum

dan relevan dari data pelatihan tanpa terlalu fokus pada detail

yang mungkin bersifat acak. Indikasi Generalisasi: Model yang

baik dalam generalisasi akan menunjukkan performa yang

konsisten pada data yang tidak pernah dilihat selama pelatihan.

Strategi Peningkatan Generalisasi: Menggunakan teknik

penambahan data, pengaturan yang tepat terkait kompleksitas

model, dan menggunakan metode regularisasi yang tepat untuk

mencegah overfitting.

Relevansi dalam NLP: Dalam NLP, overfitting bisa terjadi saat

model NLP terlalu "memorize" teks pelatihan dengan sangat baik,

tetapi tidak bisa menerapkan pemahaman yang diperolehnya pada

teks baru yang berbeda. Generalisasi yang baik dalam NLP

menunjukkan kemampuan model untuk memahami bahasa secara

umum tanpa terlalu terkait dengan detail-detail yang mungkin

tidak relevan atau acak dalam teks. Tantangan dalam NLP adalah

membangun model yang memiliki tingkat generalisasi yang tinggi

61

sehingga dapat memproses dan memahami beragam jenis teks

dengan akurat, bahkan teks yang belum pernah dilihat

sebelumnya. Memahami konsep overfitting dan generalisasi

penting dalam mengembangkan model NLP yang handal dan

efektif dalam memahami, memproses, dan menghasilkan hasil

yang akurat dari teks dalam berbagai konteks dan jenis data.

B. Isu Etika dalam NLP

1. Privasi dan keamanan data

Isu etika privasi dan keamanan data dalam Natural Language

Processing (NLP) menjadi sangat penting karena penggunaan data

teks yang melibatkan informasi pribadi atau sensitif dari individu

atau kelompok. Berikut adalah beberapa poin terkait isu etika ini:

1. Privasi Data: Penggunaan Informasi Pribadi: Penggunaan data

teks yang mengandung informasi pribadi seperti riwayat medis,

percakapan pribadi, atau informasi identitas individu

menimbulkan kekhawatiran privasi. Risiko Identifikasi: Proses

analisis NLP yang tidak memadai bisa mengungkap informasi

sensitif yang dapat mengidentifikasi individu, bahkan jika

nama tidak disebutkan.

2. Keamanan Data: Kekhawatiran Keamanan: Data teks yang

disimpan, diproses, atau ditransmisikan dalam sistem NLP

rentan terhadap ancaman keamanan seperti peretasan atau

akses tidak sah. Risiko Penyalahgunaan Informasi: Data teks

yang tidak terlindungi dapat disalahgunakan untuk tujuan jahat

seperti penipuan, pencurian identitas, atau penargetan individu.

3. Isu Etika Terkait: Transparansi Penggunaan Data: Pentingnya

memberikan informasi kepada pengguna terkait bagaimana

data mereka digunakan dalam sistem NLP dan untuk tujuan

apa. Konsentuasi dan Izin: Menghargai hak privasi dan

mendapatkan izin atau persetujuan dari individu sebelum

menggunakan atau memproses data teks mereka. Pemulihan

dan Hapus Data: Menciptakan mekanisme untuk menghapus

atau memulihkan data teks secara efektif jika diminta oleh

individu terkait hak privasi mereka.

62

4. Penerapan Etika dalam Pengembangan Model NLP:

Pengembangan Model yang Bertanggung Jawab: Pentingnya

membangun model NLP dengan mempertimbangkan prinsip-

prinsip privasi dan keamanan, serta memastikan bahwa data

sensitif diperlakukan dengan hati-hati.

Enkripsi dan Perlindungan Data: Menggunakan teknologi enkripsi

dan pengamanan data yang tepat untuk melindungi informasi yang

disimpan dan diproses oleh sistem NLP. Kerangka Regulasi:

Perlunya kerangka regulasi yang kuat untuk mengatur

penggunaan data teks dalam NLP, memastikan perlindungan yang

tepat terhadap privasi dan keamanan. Menyadari dan

mempertimbangkan isu privasi dan keamanan data dalam

pengembangan dan penerapan teknologi NLP sangat penting

untuk memastikan penggunaan yang etis, aman, dan bertanggung

jawab dari informasi teks yang sensitif atau pribadi.

2. Bias dalam data dan model

Isu etika tentang bias dalam data dan model dalam Natural

Language Processing (NLP) mengacu pada ketidakseimbangan

atau distorsi dalam data serta model yang dapat menyebabkan

hasil yang tidak adil atau tidak representatif. Berikut adalah

beberapa poin terkait isu etika ini:

1. Bias dalam Data: Ketidakseimbangan Representasi: Data yang

digunakan untuk melatih model NLP mungkin tidak

mencerminkan keberagaman masyarakat, menyebabkan

kurangnya representasi yang merata dari berbagai kelompok

atau perspektif. Replikasi Bias Manusia: Data teks bisa

mencerminkan bias yang ada dalam masyarakat, seperti

gender, ras, atau kecenderungan budaya, yang dapat tercermin

dalam model NLP.

2. Bias dalam Model: Pengambilan Keputusan Tidak Adil: Model

NLP yang dikenai bias dalam data latihnya dapat menghasilkan

keputusan atau penilaian yang tidak adil atau diskriminatif.

Perpetuasi Bias: Model NLP yang belajar dari data yang sudah

terbias cenderung memperkuat atau memperpanjang bias

tersebut dalam hasilnya.

63

3. Isu Etika Terkait: Keadilan dan Kesetaraan: Model NLP yang

bias dapat memberikan keputusan atau prediksi yang tidak adil,

memengaruhi kesetaraan akses atau perlakuan yang adil.

Transparansi dan Akuntabilitas: Perlunya transparansi dalam

proses pembangunan model dan pengambilan keputusan untuk

memahami dan memeriksa bias yang ada. Keragaman dan

Representasi: Pentingnya memastikan keberagaman dan

representasi yang adil dari berbagai perspektif dalam data dan

model NLP.

4. Penanganan Bias dalam NLP: Pembersihan Data: Identifikasi,

analisis, dan pembersihan data yang memiliki bias yang tidak

diinginkan. Pengaturan Model: Menerapkan teknik seperti

debiasing atau fine-tuning untuk mengurangi atau

menghilangkan bias yang ditemukan dalam model. Monitoring

dan Evaluasi Berkelanjutan: Melakukan evaluasi berkelanjutan

terhadap model untuk mengidentifikasi dan mengatasi bias

yang baru muncul. Pendekatan yang Berbasis Etika:

Menggunakan pendekatan yang berbasis etika dalam

pengembangan model untuk memastikan keadilan,

transparansi, dan kesetaraan. Mengatasi isu bias dalam data dan

model NLP sangat penting untuk memastikan bahwa teknologi

ini diterapkan secara adil, transparan, dan menghormati

keberagaman serta hak asasi manusia. Hal ini membantu

mencegah model NLP menyebarkan atau memperkuat

ketidaksetaraan yang ada dalam masyarakat.

64

BAB V

TOPIK MODEL

A. Topik Model LDA

Dalam dunia yang dipenuhi dengan ledakan informasi,

pengelolaan dan pemahaman terhadap teks telah menjadi

tantangan besar. Bagaimana kita bisa mengurai ratusan, bahkan

ribuan dokumen, untuk menemukan pola dan tema yang

tersembunyi di dalamnya? Inilah di mana Model Latent Dirichlet

Allocation (LDA) memasuki panggung sebagai alat penting dalam

pemrosesan teks dan analisis topik.

LDA, yang merupakan singkatan dari Latent Dirichlet Allocation,

adalah sebuah model probabilistik yang memungkinkan kita untuk

mengidentifikasi topik-topik yang tersembunyi di dalam sebuah

koleksi besar dokumen. Konsep utama di balik LDA adalah ide

bahwa setiap dokumen dalam koleksi tersebut merupakan

kombinasi dari beberapa topik, sementara setiap topik sendiri

adalah distribusi probabilitas atas sekelompok kata-kata.

Mengapa LDA penting? Alat ini memungkinkan kita untuk

menjelajahi teks dengan cara yang tidak terlalu langsung, dengan

mengidentifikasi hubungan dan tema yang ada di antara kumpulan

kata-kata yang mungkin tidak terlihat pada pandangan pertama.

Dengan kemampuannya untuk menemukan pola tersembunyi,

LDA telah diterapkan dalam berbagai bidang mulai dari analisis

sentimen hingga klasifikasi dokumen, serta pemahaman yang

lebih dalam terhadap tren dan opini dalam teks yang besar.

Namun, seperti halnya alat analisis lainnya, LDA memiliki

kelebihan dan batasannya sendiri. Penggunaannya yang efektif

membutuhkan pemahaman yang baik akan parameter, proses

preprocessing data yang teliti, serta interpretasi hasil yang tepat.

Meskipun memberikan wawasan yang kuat, model ini juga

65

memerlukan penggunaan yang bijaksana dan penyesuaian yang

cermat sesuai dengan konteks aplikasinya.

Dalam buku ini, kami akan membawa Anda melalui perjalanan

mendalam dari dasar-dasar probabilitas hingga implementasi

praktis dari Model LDA. Kami akan membahas teori di balik

model ini, langkah-langkah untuk menerapkannya secara efektif,

strategi evaluasi, dan juga memperlihatkan berbagai studi kasus

yang memperlihatkan aplikasi nyata dari model ini. Semoga buku

ini membantu Anda memahami, menerapkan, dan mengambil

manfaat dari kekuatan analisis teks yang ditawarkan oleh Model

Latent Dirichlet Allocation. Selamat menikmati perjalanan Anda

dalam mempelajari model yang luar biasa ini. Ruang lingkup dan

tujuan dalam penggunaan Model Latent Dirichlet Allocation

(LDA) sangat penting untuk memberikan pemahaman yang jelas

kepada pembaca tentang apa yang dapat dicapai dengan model ini

dan bagaimana mereka bisa menerapkannya secara praktis.

Berikut penjelasan mengenai ruang lingkup dan tujuan LDA:

B. Ruang Lingkup LDA

Ruang lingkup LDA meliputi pemahaman tentang bagaimana

model ini digunakan untuk menganalisis teks secara probabilistik.

Dalam penggunaannya, LDA membantu dalam:

1. Penemuan Topik Tersembunyi: LDA membantu

mengidentifikasi pola dan topik yang tersembunyi di dalam

kumpulan dokumen, memungkinkan kita untuk mengetahui

topik apa saja yang sedang dibahas.

2. Representasi Dokumen: Model ini memungkinkan dokumen

direpresentasikan sebagai distribusi topik, memberikan cara

yang kuat untuk melihat bagaimana dokumen terkait dengan

topik-topik tertentu.

3. Analisis Sentimen dan Klasifikasi Dokumen: Dengan

memahami topik utama dalam dokumen, LDA dapat

digunakan untuk menganalisis sentimen, mengelompokkan

dokumen ke dalam kategori tertentu, atau bahkan membantu

dalam pemrosesan pencarian.

66

C. Tujuan Implementasi LDA

Pemahaman Teori Probabilistik di Balik LDA: Tujuan pertama

adalah memberikan pemahaman yang kuat tentang dasar-dasar

probabilistik yang mendasari model LDA sehingga pembaca

dapat mengerti alasan di balik proses dan hasilnya. Implementasi

Praktis dengan Alat yang Tersedia: Buku ini bertujuan untuk

membantu pembaca dalam mengimplementasikan LDA dengan

alat dan bahasa pemrograman yang umum digunakan seperti

Python, R, atau bahasa lainnya yang mendukung analisis teks.

Strategi Preprocessing dan Evaluasi yang Efektif: Penting bagi

pembaca untuk memahami langkah-langkah pra-pemrosesan data

yang diperlukan sebelum menerapkan LDA, serta cara melakukan

evaluasi yang tepat terhadap model yang telah dibangun. Studi

Kasus dan Contoh yang Nyata: Buku ini akan memaparkan studi

kasus yang bervariasi dan contoh penggunaan nyata LDA di

berbagai bidang agar pembaca mendapatkan gambaran yang jelas

tentang cara praktis dalam menerapkan model ini. Dengan

memahami ruang lingkup dan tujuan penggunaan LDA,

diharapkan pembaca dapat merencanakan,

mengimplementasikan, dan mengevaluasi model ini secara efektif

untuk kebutuhan analisis teks mereka.

Dalam dunia pembelajaran mesin, model probabilistik menjadi

fondasi yang kuat untuk pemahaman dan analisis data. Dasar-

dasar model probabilistik mengacu pada representasi matematis

dari ketidakpastian dalam suatu sistem. Konsep ini melibatkan

probabilitas sebagai alat utama untuk menggambarkan

ketidakpastian dalam data. Dalam konteks model probabilistik,

variabel yang diamati diasumsikan memiliki distribusi

probabilitas tertentu yang menentukan kemungkinan nilai-nilai

yang mungkin mereka miliki.

Model probabilistik menawarkan pendekatan kuat untuk

memahami dan memodelkan data yang kompleks. Dengan

memperhitungkan distribusi probabilitas dari berbagai variabel

dan parameter, model-model ini memungkinkan penanganan

67

ketidakpastian dengan cara yang sistematis. Penggunaannya yang

luas meliputi pembelajaran mesin, di mana model probabilistik

digunakan untuk membuat prediksi yang bergantung pada

distribusi probabilitas, bukan hanya untuk memberikan hasil biner

atau deterministik.

Dasar-dasar model probabilistik melibatkan konsep teoritis seperti

distribusi probabilitas, fungsi likelihood, teori keputusan, dan

inferensi statistik. Melalui representasi matematis yang rumit

namun sistematis, model probabilistik memungkinkan kita untuk

mengeksplorasi dan menganalisis data secara lebih mendalam.

Dalam konteks pembelajaran mesin, ini memungkinkan

pengembangan model yang mampu mengidentifikasi pola,

menarik kesimpulan, dan membuat keputusan berdasarkan

analisis statistik yang kuat. Dengan demikian, pemahaman yang

kuat tentang dasar-dasar model probabilistik menjadi krusial

dalam menjelajahi dan menerapkan teknik-teknik analisis data

yang lebih canggih.

D. Konsep Dasar Probabilistik

Konsep Dasar Probabilistik merujuk pada teori dan prinsip yang

mendasari penggunaan probabilitas dalam pemodelan fenomena

yang tidak pasti. Probabilitas adalah ukuran untuk mengukur

seberapa mungkin suatu peristiwa akan terjadi, dan konsep dasar

probabilistik digunakan untuk menggambarkan ketidakpastian

dalam berbagai situasi.

Di dalamnya terdapat beberapa konsep utama, salah satunya

adalah Distribusi Probabilitas. Ini merujuk pada cara peristiwa

acak atau variabel acak tersebar di berbagai nilai dengan berbagai

kemungkinan. Distribusi probabilitas memungkinkan kita untuk

menggambarkan peluang masing-masing nilai yang mungkin

diambil oleh variabel acak.

Selain itu, konsep dasar probabilistik juga mencakup Fungsi

Likelihood. Ini menggambarkan seberapa baik suatu model

statistik cocok dengan data yang diamati. Fungsi Likelihood

68

menjadi dasar bagi banyak metode estimasi parameter dalam

statistika, dan digunakan untuk mengukur seberapa mungkin

parameter model yang diestimasi memproduksi data yang diamati.

Konsep dasar ini juga mencakup Teori Keputusan, yang berkaitan

dengan cara kita membuat keputusan dalam kondisi

ketidakpastian. Teori Keputusan berusaha untuk menggabungkan

aspek keuntungan (reward) dan risiko dalam pengambilan

keputusan dengan mempertimbangkan probabilitas dan dampak

dari pilihan yang dibuat.

Inferensi Statistik juga merupakan bagian penting dari konsep

dasar probabilistik. Ini berkaitan dengan proses membuat

kesimpulan atau generalisasi tentang populasi atau fenomena

berdasarkan data yang hanya diambil dari sampel. Dengan

menggunakan prinsip-proprinsi dasar probabilitas, inferensi

statistik memungkinkan kita untuk melakukan generalisasi yang

masuk akal dari data sampel ke populasi yang lebih besar.

Keseluruhan, Konsep Dasar Probabilistik menyediakan kerangka

kerja matematis dan konseptual yang penting dalam memahami

dan menerapkan teori probabilitas. Ini membantu kita untuk

memodelkan dan memahami fenomena kompleks dengan

menggambarkan ketidakpastian, membuat keputusan dalam

kondisi tidak pasti, serta membuat inferensi yang dapat dipercaya

berdasarkan data yang terbatas.

E. Contoh Konsep Dasar Probabilistik:

Berikut adalah beberapa contoh Konsep Dasar Probabilistik:

1. Distribusi Probabilitas: Misalkan Anda melempar koin.

Kemungkinan hasilnya adalah gambar (heads) atau angka

(tails), di mana masing-masing hasil memiliki probabilitas 0.5

(asumsi koin yang adil). Distribusi probabilitas ini membantu

menggambarkan kemungkinan hasil yang mungkin dari

eksperimen acak ini.

2. Fungsi Likelihood: Bayangkan Anda memiliki data

pengamatan tentang tinggi badan orang-orang di suatu

populasi. Dengan menggunakan model statistik, Anda ingin

69

menemukan distribusi tinggi badan yang paling mungkin

mewakili data yang diamati. Dalam konteks ini, fungsi

likelihood membantu mengukur seberapa baik model distribusi

tinggi badan ini cocok dengan data yang ada.

3. Teori Keputusan: Anda berada di supermarket dan ingin

memilih antara dua merek produk dengan harga yang berbeda.

Anda tidak yakin kualitas produk mana yang lebih baik.

Melalui teori keputusan, Anda mempertimbangkan

kemungkinan manfaat dari masing-masing pilihan berdasarkan

harga dan probabilitas bahwa salah satu merek produk lebih

baik daripada yang lain.

4. Inferensi Statistik: Anda ingin mengetahui rata-rata waktu

yang dibutuhkan seseorang untuk menyelesaikan tes tertentu.

Anda hanya memiliki data waktu yang diperlukan oleh

sekelompok sampel orang. Dengan menggunakan inferensi

statistik, Anda dapat membuat perkiraan rata-rata waktu yang

diperlukan oleh seluruh populasi berdasarkan data sampel ini.

Semua contoh di atas menunjukkan penerapan Konsep Dasar

Probabilistik dalam berbagai konteks, mulai dari eksperimen acak

hingga pengambilan keputusan dan estimasi parameter dari data

terbatas. Konsep-konsep ini membantu dalam menggambarkan,

memahami, dan membuat prediksi dalam situasi di mana terdapat

ketidakpastian atau variasi dalam hasil yang mungkin terjadi.

Model Probabilistik dalam Pembelajaran Mesin mengacu pada

pendekatan di mana model statistik menggunakan konsep

probabilitas untuk memodelkan dan mengevaluasi data. Ini adalah

salah satu pendekatan yang sangat berguna dalam membuat

estimasi, klasifikasi, dan prediksi berdasarkan data yang tidak

pasti.

Dalam pembelajaran mesin, model-model ini memungkinkan kita

untuk menggabungkan informasi dari data yang diberikan dengan

ketidakpastian yang melekat pada proses pengambilan keputusan.

Beberapa konsep utama dalam model probabilistik pembelajaran

mesin termasuk:

70

1. Probabilitas sebagai Landasan Utama: Model probabilistik

menggunakan probabilitas sebagai dasar untuk memahami dan

memodelkan ketidakpastian dalam data. Mereka

mengekspresikan hubungan antara input dan output dengan

distribusi probabilitas, yang membantu dalam mengukur

ketidakpastian dalam prediksi.

2. Pemodelan Distribusi Data: Model probabilistik mampu

memodelkan distribusi data yang kompleks, memberikan cara

yang lebih fleksibel untuk menggambarkan keragaman dan

kompleksitas data dalam pembelajaran mesin.

3. Estimasi Parameter dengan Maksimum Likelihood atau

Metode Bayesian: Model ini sering kali menggunakan metode

maksimum likelihood atau pendekatan Bayesian untuk

mengestimasi parameter dari data yang diamati. Dengan cara

ini, mereka dapat menyesuaikan model mereka dengan data

yang ada dan menghasilkan prediksi yang lebih akurat.

4. Penggunaan dalam Klasifikasi dan Regresi: Model-model

ini digunakan untuk klasifikasi, regresi, atau tugas-tugas

pembelajaran mesin lainnya. Mereka mampu memberikan

prediksi dengan menghasilkan distribusi probabilitas atas

output yang mungkin, bukan hanya memberikan label atau nilai

tunggal.

5. Interpretasi yang Lebih Mudah: Dalam beberapa kasus,

model probabilistik dapat memberikan interpretasi yang lebih

intuitif atas hasilnya. Mereka memungkinkan kita untuk

memahami seberapa yakin model terhadap prediksi yang

dibuatnya.

6. Dalam keseluruhan, Model Probabilistik dalam

Pembelajaran Mesin membantu dalam mengatasi

ketidakpastian yang melekat dalam data, memungkinkan

model untuk membuat prediksi yang lebih cermat, dan

memberikan cara yang lebih terstruktur untuk memahami

distribusi data yang kompleks. Ini adalah pendekatan yang kuat

dalam konteks di mana informasi probabilistik diperlukan

untuk membuat keputusan yang cerdas dan akurat.

7. Pemodelan Distribusi Data merujuk pada upaya untuk

menggambarkan atau memahami bagaimana data yang diamati

tersebar atau didistribusikan di dalam ruang sampel. Ini adalah

71

konsep yang penting dalam statistika dan pembelajaran mesin

karena membantu dalam memahami sifat-sifat data dan

mencari model yang cocok untuk menjelaskan data tersebut.

Dalam pemodelan distribusi data, kita mencari fungsi matematis

yang paling sesuai untuk menggambarkan sebaran atau distribusi

data yang diamati. Fungsi ini sering kali didasarkan pada sejumlah

parameter yang kemudian akan diestimasi dari data yang tersedia.

Beberapa distribusi probabilitas yang sering digunakan untuk

memodelkan data meliputi distribusi normal (Gaussian), distribusi

binomial, distribusi Poisson, distribusi eksponensial, dan banyak

lagi.

F. Aspek Pemodelan distribusi data memiliki

1. Deskripsi Distribusi Data: Melalui pemodelan distribusi, kita

bisa mendapatkan gambaran yang jelas tentang sebaran data.

Misalnya, jika data terdistribusi normal, kita dapat

menggunakan parameter rata-rata dan deviasi standar untuk

mendeskripsikan distribusi tersebut.

2. Prediksi dan Estimasi: Dengan mengetahui distribusi data,

kita dapat membuat prediksi atau estimasi terkait nilai-nilai

yang mungkin dari data yang baru. Misalnya, dalam prediksi,

jika kita mengetahui distribusi data yang ada, kita dapat

membuat perkiraan tentang nilai yang paling mungkin terjadi.

3. Pemilihan Model yang Sesuai: Pemodelan distribusi

membantu kita memilih model yang paling cocok untuk data

yang kita hadapi. Ini membantu dalam pembuatan model yang

lebih akurat dan representatif terhadap data yang sebenarnya.

4. Analisis Statistik Lanjutan: Distribusi data juga menjadi

dasar untuk banyak analisis statistik lanjutan. Misalnya, dalam

inferensi statistik, pemodelan distribusi menjadi kunci dalam

membuat asumsi tentang distribusi data sampel terhadap

populasi yang lebih besar.

Dengan kata lain, pemodelan distribusi data adalah usaha untuk

menemukan atau menyesuaikan model matematika yang paling

cocok untuk menjelaskan cara data tersebar, sehingga membantu

72

dalam analisis, prediksi, dan pengambilan keputusan yang

berkaitan dengan data tersebut.

G. Contoh Pemodelan Distribusi Data

Berikut adalah beberapa contoh Pemodelan Distribusi Data:

Distribusi Normal (Gaussian): Contoh: Misalkan Anda memiliki

ketinggian orang-orang dalam sebuah populasi. Jika data

ketinggian tersebut terdistribusi secara mendekati kurva normal

(bell curve) dengan rata-rata 170 cm dan deviasi standar 10 cm,

Anda dapat menggunakan distribusi normal untuk memodelkan

sebaran ketinggian tersebut. Dengan model ini, Anda dapat

memprediksi seberapa mungkin orang memiliki ketinggian

tertentu di dalam populasi berdasarkan karakteristik distribusi

tersebut.

Distribusi Binomial: Contoh: Bayangkan Anda melakukan

serangkaian uji coba di mana setiap uji coba memiliki dua hasil

mungkin: sukses atau gagal. Misalnya, Anda melempar koin 10

kali dan mencatat berapa kali hasilnya adalah gambar (heads). Jika

Anda ingin memodelkan distribusi jumlah gambar yang mungkin

muncul dari 10 lemparan tersebut, Anda bisa menggunakan

distribusi binomial. Dengan ini, Anda bisa memprediksi

probabilitas munculnya sejumlah gambar tertentu dalam

serangkaian lemparan koin.

Distribusi Poisson: Contoh: Anda mengamati jumlah kendaraan

yang melewati suatu titik dalam satu jam di suatu jalan raya yang

jarang dilewati. Anda mencatat rata-rata lima kendaraan per jam.

Distribusi Poisson bisa digunakan untuk memodelkan sebaran

jumlah kendaraan yang melewati titik tersebut dalam interval

waktu tertentu. Dengan model ini, Anda dapat memperkirakan

probabilitas munculnya sejumlah kendaraan dalam interval waktu

yang telah ditentukan.

Distribusi Eksponensial: Contoh: Bayangkan Anda ingin

memodelkan waktu antara kedatangan pelanggan ke suatu layanan

perbankan. Jika waktu antara kedatangan pelanggan terdistribusi

73

eksponensial dengan rata-rata 5 menit, Anda dapat menggunakan

distribusi eksponensial untuk memodelkan interval waktu antara

kedatangan pelanggan ke lokasi tersebut. Dengan ini, Anda dapat

membuat perkiraan tentang waktu yang diharapkan untuk

kedatangan pelanggan berikutnya.

Contoh-contoh di atas mengilustrasikan cara pemodelan distribusi

data digunakan dalam berbagai konteks untuk menggambarkan

cara data tersebar, memberikan prediksi, serta membantu dalam

pengambilan keputusan berdasarkan karakteristik distribusi

tersebut. Berikut adalah contoh matematis dari beberapa distribusi

data yang umum digunakan dalam pemodelan statistik:

Distribusi Normal (Gaussian): Distribusi Normal didefinisikan

oleh fungsi densitas probabilitas (probability density function,

PDF)45:

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
. 𝑒

−
(𝑥−𝜇)2

2𝜎2

Di sini, μ adalah nilai rata-rata, σ adalah deviasi standar, dan x

adalah variabel acak yang diukur.

Distribusi Binomial: Distribusi Binomial menggambarkan

probabilitas p sukses atau 1−p gagal dalam n uji coba independen.

Fungsi mass probabilitas (probability mass function, PMF) untuk

distribusi binomial diberikan oleh:

𝑃(𝑋 = 𝑘) = (
𝑛

𝑘
) . 𝑝𝑘 . (1 − 𝑝)𝑛−𝑘

Di sini, k adalah jumlah sukses yang diharapkan dalam n uji coba,

p adalah probabilitas sukses dalam satu uji coba, dan X adalah

variabel acak yang menggambarkan jumlah sukses.

4 https://en.wikipedia.org/wiki/Normal_distribution
5 https://itl.nist.gov/div898/handbook/eda/section3/eda3661.htm

74

Distribusi Poisson: Distribusi Poisson menggambarkan jumlah

peristiwa yang terjadi dalam Distribusi Poisson adalah distribusi

probabilitas diskrit yang menggambarkan jumlah peristiwa yang

terjadi dalam suatu interval waktu atau ruang tertentu, ketika

peristiwa-peristiwa tersebut terjadi dengan tingkat kejadian yang

konstan dan secara independen dari waktu sebelumnya. Distribusi

ini sering digunakan dalam berbagai bidang seperti ilmu statistik,

matematika, ilmu sosial, dan lainnya untuk memodelkan peristiwa

yang jarang terjadi namun memiliki tingkat kejadian yang stabil.

Rumus Distribusi Poisson adalah:

𝑃(𝑋 = 𝑘) =
𝑒−𝜆 −𝜆𝑘

𝑘!

P(X=k) adalah probabilitas bahwa terjadi

k peristiwa dalam interval waktu atau ruang yang diberikan.

e adalah konstanta Euler (sekitar 2.71828).

λ adalah tingkat kejadian rata-rata per interval waktu atau ruang.

Ini bisa dianggap sebagai rata-rata jumlah peristiwa yang terjadi.

k adalah jumlah peristiwa yang ingin dihitung probabilitasnya. k!

adalah faktorial dari k (produk dari semua bilangan bulat positif

kurang dari atau sama dengan k).

Misalnya, jika kita memiliki situasi di mana rata-rata jumlah mobil

yang melewati suatu jalan dalam satu jam adalah 5, kita dapat

menggunakan distribusi Poisson untuk menghitung probabilitas

bahwa tepat 3 mobil akan melewati jalan dalam waktu satu jam:

𝑃(𝑋 = 3) =
𝑒−5 −53

3!

Ini akan memberikan probabilitas bahwa tepat 3 mobil akan

melewati jalan dalam interval waktu satu jam, berdasarkan asumsi

tingkat kejadian rata-rata sebanyak 5 mobil per jam.

75

Distribusi Poisson berguna dalam memodelkan peristiwa-

peristiwa yang jarang terjadi namun memiliki distribusi kejadian

yang terukur.

Distribusi Eksponensial:

Distribusi Eksponensial menggambarkan waktu antara peristiwa-

peristiwa yang terjadi secara acak. Distribusi Eksponensial adalah

distribusi probabilitas yang digunakan untuk memodelkan waktu

antara peristiwa-peristiwa yang terjadi secara acak dan

independen dalam suatu proses yang memiliki tingkat kejadian

konstan. Ini sering digunakan dalam analisis waktu tunggu di

berbagai bidang seperti ilmu statistik, ilmu komputer, sistem

antrian, dan lainnya. Rumus Distribusi Eksponensial adalah

sebagai berikut:

𝑓(𝑥; 𝜆) = 𝜆𝑒−𝜆𝑥

f(x;λ) adalah fungsi kepadatan probabilitas (PDF) dari variabel

acak

x dengan parameter

λ, yang menyatakan tingkat kejadian.

λ adalah tingkat kejadian yang merupakan invers dari rata-rata

peristiwa yang terjadi per unit waktu. Semakin besar nilai

λ, semakin cepat peristiwa-peristiwa terjadi.

e adalah konstanta Euler (sekitar 2.71828).

x adalah waktu tunggu atau interval waktu antara peristiwa-

peristiwa.

Misalnya, jika kita ingin menghitung probabilitas bahwa waktu

antara dua kejadian (misalnya, kedatangan dua kendaraan pada

suatu titik dalam sistem transportasi) berada pada interval waktu

tertentu, kita dapat menggunakan distribusi Eksponensial. Jika

tingkat kedatangan rata-rata kendaraan adalah 4 per jam (λ=4),

maka probabilitas bahwa waktu antara kedatangan dua kendaraan

adalah lebih dari 15 menit (𝑥 >
15

60
 jam) adalah:

𝑃 (𝑥,
15

60
) = ∫ 𝜆𝑒−𝜆𝑥𝑑𝑥

∞

15
60

76

Distribusi Eksponensial juga sering digunakan dalam model

antrian untuk memprediksi waktu tunggu dalam antrian atau

interval antara kedatangan pelanggan dalam sistem layanan. Ini

membantu dalam analisis kinerja sistem di mana waktu antara

peristiwa memegang peranan penting.

77

BAB VI

LATENT DIRICHLET ALLOCATION

(LDA)

Dalam dunia yang semakin dipenuhi oleh volume besar informasi

teks, pengelolaan dan pemahaman terhadap konten tersebut telah

menjadi tantangan yang semakin kompleks. Salah satu alat yang

paling penting dalam menganalisis data teks secara menyeluruh

adalah Model Latent Dirichlet Allocation (LDA)(Blei et al.,

2003). Konsep ini, yang diadaptasi dari bidang statistik dan

pembelajaran mesin, memungkinkan kita untuk mengurai struktur

tersembunyi dari dokumen-dokumen yang kompleks,

mengidentifikasi pola-pola yang tak terlihat pada pandangan

pertama. Sejarah dan latar belakang Model Latent Dirichlet

Allocation (LDA) berasal dari dunia ilmu komputer, statistik, dan

pengolahan bahasa alami. Model ini diperkenalkan pertama kali

oleh David Blei, Andrew Ng, dan Michael Jordan pada tahun 2003

melalui makalah penelitian yang diterbitkan dalam jurnal ilmiah

"Journal of Machine Learning Research".

Latar belakang LDA berakar dari upaya untuk menemukan cara

efektif untuk mengatasi kompleksitas dalam analisis teks.

Sebelum LDA, memahami dan mengelompokkan dokumen-

dokumen berdasarkan topik atau pola yang tersembunyi dalam

jumlah yang besar merupakan tantangan besar. LDA diciptakan

sebagai jawaban untuk mengatasi masalah ini, dengan tujuan

memberikan metode yang lebih sistematis dan terstruktur untuk

mengekstraksi topik tersembunyi dari kumpulan dokumen yang

besar.

Pada dasarnya, LDA diilhami oleh konsep tentang bagaimana

dokumen-dokumen terbentuk. Model ini mengasumsikan bahwa

dokumen-dokumen dibangun dari sejumlah topik yang

tersembunyi, dan setiap kata dalam dokumen tersebut berasal dari

salah satu dari topik-topik ini. LDA menggunakan pendekatan

probabilistik untuk mengekstraksi distribusi topik dari kumpulan

dokumen dan mengidentifikasi pola yang mendasarinya.

78

Sejak diperkenalkan, LDA telah menjadi salah satu alat yang

sangat populer dalam analisis teks, pengelompokan dokumen,

sistem rekomendasi, dan pemrosesan bahasa alami.

Penggunaannya telah meluas di berbagai bidang seperti ilmu

sosial, ekonomi, biomedis, dan lainnya, karena kemampuannya

dalam mengurai dan memahami konten teks yang kompleks

menjadi topik-topik yang lebih terdefinisi.

Latent Dirichlet Allocation (LDA) adalah model topik

probabilistik yang sangat digunakan dalam pemrosesan bahasa

alami (NLP) karena kemampuannya untuk mengidentifikasi

struktur semantik dalam kumpulan teks besar. LDA beroperasi

dengan mengasumsikan bahwa setiap dokumen adalah campuran

dari sejumlah topik, dan setiap topik diwakili sebagai distribusi

atas kata-kata. Hal ini memungkinkan LDA untuk mengekstraksi

dan memahami topik-topik yang mendasari dalam kumpulan data

teks tanpa perlu label atau anotasi manual, membuatnya sangat

berguna untuk berbagai aplikasi analisis teks.

Pentingnya LDA dalam NLP sangat signifikan karena

kemampuannya untuk menangani masalah skala besar, seperti

yang ditemukan dalam analisis Big Data. Model ini membantu

'membuka' dan membuat koneksi percakapan laten yang

sebelumnya tidak terlihat dalam korpus teks yang luas, seperti

profil, thread diskusi, forum, dan media sosial lainnya. LDA

membantu dalam mengidentifikasi hubungan yang belum

diketahui sebelumnya dan menyediakan wawasan yang lebih

dalam tentang struktur semantik data teks (Gross & Murthy,

2014).

Dalam konteks NLP, LDA sering digunakan untuk meningkatkan

aplikasi seperti klasifikasi dokumen, pengelompokan teks, dan

sistem rekomendasi. Model ini menawarkan kerangka kerja yang

kuat untuk memahami dan mengelola variabilitas semantik dan

sintaktik dalam teks. Dengan memetakan dokumen ke dalam

ruang topik, LDA memfasilitasi pengurangan dimensi yang efektif

dan interpretasi semantik yang kaya, yang sangat penting dalam

tugas pemahaman teks dan pengambilan informasi (Wang et al.,

79

2012). Selain itu, variasi LDA, seperti LDA semi-supervised,

telah dikembangkan untuk menggabungkan pengetahuan yang

diawasi ke dalam prosedur pembelajaran, memungkinkan

penggunaan label terawasi untuk memandu pemodelan topik dan

meningkatkan akurasi klasifikasi dokumen. Ini menunjukkan

fleksibilitas dan kemampuan adaptasi LDA untuk memenuhi

kebutuhan spesifik dari berbagai tugas NLP (Wang et al., 2012).

Secara keseluruhan, LDA merupakan alat yang sangat berharga

dalam kotak alat NLP, memberikan wawasan mendalam tentang

struktur semantik yang kompleks dari teks dan memfasilitasi

pengembangan aplikasi pemrosesan teks yang canggih.

A. Prinsip Kerja LDA

Model Latent Dirichlet Allocation (LDA) bekerja dengan cara

mengasumsikan bahwa setiap dokumen dalam kumpulan

dokumen dibentuk oleh kombinasi dari beberapa topik, dan setiap

kata dalam dokumen berasal dari salah satu dari topik-topik

tersebut. Prinsip kerja LDA secara rinci dapat dijabarkan sebagai

berikut:

Inisialisasi Awal: LDA dimulai dengan tahap inisialisasi di mana

setiap kata dalam setiap dokumen ditugaskan secara acak ke salah

satu dari sejumlah topik yang telah ditentukan. Awalnya,

distribusi kata dalam dokumen ditetapkan secara acak.

Iterasi Estimasi: Model melakukan iterasi untuk menyesuaikan

distribusi topik di setiap dokumen dan distribusi kata di setiap

topik. Dalam setiap iterasi, LDA mencoba untuk memperbaiki

penugasan kata-kata ke topik-topik berdasarkan dua hal utama:

1. Perhitungan Proporsi Topik dalam Dokumen: Model

memperkirakan seberapa banyak setiap topik mempengaruhi

setiap dokumen. Ini dilakukan dengan menghitung proporsi

atau distribusi probabilitas dari setiap topik dalam setiap

dokumen.

2. Perhitungan Proporsi Kata dalam Topik: LDA juga

memperkirakan seberapa banyak setiap kata terkait dengan

setiap topik. Ini dilakukan dengan menghitung proporsi atau

distribusi probabilitas dari setiap kata dalam setiap topik.

80

Update Parameter: Setelah iterasi yang berulang, model

memperbarui parameter-parameternya untuk memperbaiki

estimasi proporsi kata dalam topik dan proporsi topik dalam

dokumen.

Penentuan Topik: Setelah proses iterasi selesai, LDA

menghasilkan distribusi topik yang diperkirakan untuk setiap

dokumen dan distribusi kata yang diperkirakan untuk setiap topik.

Dengan hasil ini, kita dapat melihat topik-topik yang

mendominasi setiap dokumen dan kata-kata yang paling terkait

dengan masing-masing topik.

Prinsip utama di balik LDA adalah bagaimana model mencoba

untuk memperbaiki estimasi awal terkait dengan bagaimana kata-

kata terdistribusi di antara topik-topik dan bagaimana topik-topik

didistribusikan di antara dokumen-dokumen. Tujuannya adalah

untuk menemukan pola yang tersembunyi dalam dokumen-

dokumen dan menghasilkan representasi yang lebih terstruktur

dan informatif tentang topik-topik yang ada dalam kumpulan

dokumen tersebut. Implementasi matematis dari Model Latent

Dirichlet Allocation (LDA) melibatkan langkah-langkah yang

kompleks dalam memodelkan distribusi kata-kata di dalam

dokumen dan distribusi topik di dalam kumpulan dokumen. Di

bawah ini adalah detail langkah-langkah implementasi matematis

LDA:

B. Pembentukan Model:

Variabel Laten: LDA melibatkan variabel laten (tersembunyi),

termasuk variabel topik dan variabel distribusi topik pada

dokumen-dokumen.

Parameter Model: Parameter yang diperlukan meliputi jumlah

topik yang diinginkan (K), distribusi Dirichlet untuk topik dalam

dokumen (α), dan distribusi Dirichlet untuk kata dalam topik (β).

Representasi Dokumen: Dokumen direpresentasikan dalam

bentuk matriks di mana setiap baris mewakili sebuah dokumen,

dan setiap kolom mewakili jumlah kata dalam kosa kata yang

81

digunakan. Nilai di dalam matriks ini mewakili frekuensi

kemunculan kata dalam dokumen tersebut.

Proses Estimasi dan Iterasi: Iterasi dimulai dengan

menginisialisasi secara acak nilai-nilai awal untuk variabel

tersembunyi (topik dari kata-kata dalam dokumen).

Proses perhitungan dilakukan berulang kali untuk memperbaiki

estimasi variabel laten. Langkah-langkah ini melibatkan

perhitungan proporsi topik dalam dokumen dan proporsi kata

dalam topik.

Metode Variational Inference atau Gibbs Sampling: Metode ini

sering digunakan dalam LDA untuk mendekati distribusi posterior

dari variabel tersembunyi. Dalam variational inference, tujuannya

adalah untuk mendekati distribusi posterior dengan memilih

distribusi yang paling dekat secara matematis. Gibbs sampling,

metode lain yang digunakan, melibatkan pengambilan sampel

acak dari distribusi probabilitas yang diinginkan.

C. Penyesuaian Parameter

Selama iterasi, nilai-nilai parameter model (seperti α dan β)

disesuaikan untuk memperbaiki estimasi distribusi topik dan kata-

kata di dalam dokumen.

Evaluasi dan Output: Setelah iterasi yang cukup banyak, model

LDA menghasilkan distribusi topik untuk setiap dokumen dan

distribusi kata untuk setiap topik. Hasil ini memberikan

representasi yang lebih baik tentang topik-topik yang

mendominasi dokumen dan kata-kata yang paling terkait dengan

masing-masing topik.

Implementasi matematis LDA melibatkan perhitungan

probabilistik yang kompleks, termasuk penggunaan distribusi

Dirichlet dan perhitungan untuk memperbaiki estimasi variabel

tersembunyi. Langkah-langkah ini memungkinkan model untuk

mengekstraksi informasi tersembunyi dari kumpulan dokumen

secara efisien.

82

D. Persamaan dalam Model LDA

Rumus Umum LDA: LDA dapat direpresentasikan sebagai model

generatif probabilitas yang mencakup beberapa variabel laten.

Untuk setiap kata dalam dokumen, ada dua variabel laten utama

yang penting dalam LDA, yaitu variabel topik z dan variabel

distribusi topik ϕ.

θ: Distribusi topik dalam dokumen.

z: Topik yang dipilih untuk setiap kata dalam dokumen.

β: Distribusi kata dalam topik.

w: Kata yang diamati dalam dokumen.

Model LDA direpresentasikan dengan rumus umum sebagai

berikut:

𝑃(𝜃, 𝑧, 𝛽|𝑤)

= 𝑃(𝜃) . ∏ 𝑃(𝜃𝑑) . ∏ (𝑍𝑑,𝑛|𝜃𝑑 . 𝑃(𝑊𝑤𝑑,𝑛 | 𝛽𝑧𝑑,𝑛

𝑁

𝑛=1
)

𝐷

𝑑=1

Dengan D adalah jumlah dokumen dalam kumpulan dokumen, N

adalah jumlah kata dalam dokumen, dan P(θ) serta P(β) adalah

distribusi prior dari variabel θ dan β, masing-masing.

E. Perhitungan Distribusi Posterior

Untuk mengestimasi distribusi posterior dari variabel laten (θ dan

β) dalam LDA, diperlukan metode seperti variational inference

atau Gibbs sampling. Metode-metode ini digunakan untuk

mendekati distribusi posterior dari variabel laten, yang tidak dapat

dihitung secara langsung. Rumus umum LDA memberikan

kerangka kerja untuk memahami bagaimana dokumen dibangun

dari kombinasi topik dan bagaimana kata-kata dalam dokumen

berasal dari topik-topik tertentu. Langkah-langkah selanjutnya

dalam implementasi LDA melibatkan perhitungan untuk

mendekati distribusi posterior dari variabel laten ini.

83

Tentu, berikut adalah rumus matematis yang mendasari Model

Latent Dirichlet Allocation (LDA):

Representasi Dokumen:

D: Jumlah dokumen dalam kumpulan dokumen.

Nd: Jumlah kata dalam dokumen d.

V: Jumlah kata unik dalam kosa kata.

wd,n: Kata ke-n dalam dokumen d.

Parameter Model:

K: Jumlah topik yang diinginkan.

α: Parameter distribusi Dirichlet untuk distribusi topik

dalam dokumen.

β: Parameter distribusi Dirichlet untuk distribusi kata

dalam topik.

Variabel Tersembunyi:

zd,n: Topik yang diatribusikan untuk kata ke-n dalam

dokumen d.

Rumus Estimasi LDA:

a. Distribusi topik dalam dokumen:

𝑃(𝜃𝑑 | 𝛼 = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜃𝑑 |𝛼)

𝑃(𝜃𝑑) =
Γ(∑ 𝛼𝑖)𝐾

𝑖=1

∏ Γ α𝑖
𝐾
𝑖=1

 ∏ 𝜃𝑑,𝑖
𝛼𝑖−1

𝐾

𝑖=1

b. Distribusi kata dalam topik

𝑃(𝜙𝑘 | 𝛽 = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜙𝑘 | 𝛽)

𝑃(𝜙𝑘) =
Γ(∑ 𝛽𝑖)

𝐾
𝑖=1

∏ Γ β𝑖
𝐾
𝑖=1

 ∏ 𝜙𝑘,𝑖
𝛽𝑖−1

𝑉

𝑖=1

c. Probabilitas word assignment

𝑃(𝑤𝑑,𝑛 | 𝜃𝑑 , 𝜙𝑧𝑑,𝑛
) = 𝜃𝑑,𝑧𝑑,𝑛

𝑥 𝜙𝑧𝑑,𝑛,𝑤𝑑,𝑛

Rumus-rumus di atas menggambarkan cara LDA memodelkan

distribusi topik dalam dokumen, distribusi kata dalam topik, dan

probabilitas penugasan kata ke topik dalam dokumen. Metode

variational inference atau Gibbs sampling sering digunakan untuk

mendekati atau menemukan solusi numerik dari model LDA ini.

Tentu, berikut adalah rumus matematis dari Model Latent

Dirichlet Allocation (LDA):

84

Notasi dan Variabel yang Digunakan:

D = Jumlah dokumen dalam kumpulan dokumen

N = Jumlah kata dalam dokumen d

K = Jumlah topik yang diinginkan

V = Jumlah kata dalam kosa kata

wd,n = Kata ke-n dalam dokumen ke-d

zd,n = Topik yang ditugaskan kepada kata ke-n dalam

dokumen ke-d

α = Parameter distribusi Dirichlet untuk distribusi topik

dalam dokumen

β = Parameter distribusi Dirichlet untuk distribusi kata

dalam topik

F. Rumus-rumus LDA

Representasi Distribusi Topik dalam Dokumen: θd,k∼Dirichlet(α)

Representasi Distribusi Kata dalam Topik: ϕk,v∼Dirichlet(β)

Pembentukan Variabel Laten: wd,n∼Multinomial(ϕzd,n)

Distribusi Posterior untuk θ dan ϕ:

𝑝(𝜃𝑑 |𝑤, 𝛼) =
𝑝(𝜃𝑑 𝑥 𝑝(𝑤|𝜃𝑑 , 𝜙)𝑥 𝑝(𝜙|𝛽)

𝑝(𝑤|𝛼, 𝛽)

Estimasi Distribusi Posterior:

𝑝(𝜃𝑑 |𝑤, 𝛼) =
𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 + ∑ 𝐶𝑜𝑢𝑛𝑡(𝑤𝑑,𝑛)𝑁

𝑛=1)

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) + 𝑁

𝑝(𝜙𝑘 |𝑤, 𝛽) =
𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽+ ∑𝐷

𝑑=1 ∑ 𝐶𝑜𝑢𝑛𝑡(𝑤𝑑,𝑛)𝑁
𝑛=1 𝑥(𝑧𝑑,𝑛=𝑘))

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽)+∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑤𝑑,𝑛
𝑁
𝑛=1

𝐷
𝑑=1)

rumus xx

Persamaan xx menunjukkan adalah rumus posterior dari distribusi

probabilitas suatu topik (ϕ_k) dalam model Latent Dirichlet

Allocation (LDA). Dalam persamaan ini:

p(ϕ_k | w, β) adalah probabilitas posterior dari topik ϕ_k, dengan

diberikan dokumen-dokumen (w) dalam korpus dan parameter

hyperparameter β.

85

Dirichlet (β+∑_(d=1)^D ∑_(n=1)^N Count(w_(d,n))

x(z_(d,n)=k)) adalah distribusi Dirichlet dengan parameter β yang

diubah dengan jumlah kata dalam dokumen yang terasosiasi

dengan topik k (ϕ_k).

Dirichlet(β) adalah distribusi Dirichlet dengan parameter β.

∑_(d=1)^D ∑_(n=1)^N Count(w_(d,n)) x(z_(d,n)=k) mewakili

jumlah kemunculan kata dalam dokumen yang dikaitkan dengan

topik k. ∑_(d=1)^D ∑_(n=1)^N Count(w_(d,n)) mewakili jumlah

total kata dalam semua dokumen.

Secara intuitif, rumus tersebut menggambarkan bagaimana

probabilitas distribusi topik tertentu dihitung berdasarkan jumlah

kemunculan kata dalam dokumen yang terkait dengan topik

tersebut, dibandingkan dengan jumlah total kata dalam semua

dokumen, dan diperbarui dengan parameter β yang merupakan

prior distribusi topik. Dalam LDA, tujuannya adalah untuk

mengetahui distribusi topik kata (ϕ_k) dan distribusi topik

dokumen (θ_d), dan rumus ini membantu dalam memperbarui

estimasi distribusi topik kata berdasarkan dokumen yang diamati

dalam korpus yang diberikan.

G. Proses Model LDA

Secara singkat dapat dijelaskan sebagai berikut:

Model Latent Dirichlet Allocation (LDA) adalah model generatif

yang menggunakan konsep probabilitas untuk menggambarkan

hubungan antara variabel tersembunyi (topik) dan variabel

pengamatan (kata-kata dalam dokumen). Berikut adalah

representasi matematis dari Model LDA:

H. Variabel Tersembunyi:

1. Distribusi Topik Dokumen θ

p(θi∣α)=Dir(θi∣α)

86

θi adalah distribusi dari topik-topik dalam dokumen i, diambil dari

distribusi Dirichlet dengan parameter α.

2. Distribusi Kata dalam Topik β

p(βk∣η)=Dir(βk∣η)

βk adalah distribusi dari kata-kata dalam topik k, diambil dari

distribusi Dirichlet dengan parameter η.

Proses Generatif:

• Untuk setiap dokumen i:

o θi∼Dir(α)

• Untuk setiap kata ke-j dalam dokumen i:

o ∼zij∼Multinomial(θi)

o ∼wij∼Multinomial(βzij)

• Penjelasan:

• α adalah parameter prior untuk distribusi topik dokumen.

• η adalah parameter prior untuk distribusi kata dalam topik.

• θi adalah distribusi dari topik-topik dalam dokumen i.

• βk adalah distribusi dari kata-kata dalam topik k.

• zij adalah variabel tersembunyi yang menunjukkan topik

yang diatribusikan ke kata ke- j dalam dokumen i.

• wij adalah kata yang diamati ke-j dalam dokumen i.

Model LDA melakukan proses generatif untuk menghasilkan

dokumen-dokumen dengan cara mengambil distribusi topik dari

distribusi Dirichlet untuk setiap dokumen, kemudian memilih

topik dari distribusi topik dokumen untuk setiap kata dalam

dokumen tersebut, dan akhirnya memilih kata dari distribusi kata

dalam topik yang terkait dengan topik yang telah dipilih

sebelumnya.

I. Implementasi LDA

import zipfile

import pandas as pd

import os

87

import zipfile: Ini mengimpor modul zipfile, yang memungkinkan

Anda untuk bekerja dengan file zip di Python. Dengan

menggunakan modul ini, Anda dapat mengekstrak file dari arsip

zip, membuat file zip, dan melakukan operasi terkait file zip

lainnya. import pandas as pd: Ini mengimpor modul pandas

dengan alias pd. Pandas adalah pustaka yang sangat populer dalam

Python untuk analisis data. Dengan menggunakan pd sebagai

alias, Anda bisa mengakses fungsi-fungsi dan objek-objek dari

pustaka pandas dengan menggunakan pd sebagai awalan. import

os: Ini mengimpor modul os, yang memberikan fungsionalitas

sistem operasi, seperti interaksi dengan sistem file, mengelola

variabel lingkungan, dan melakukan operasi terkait sistem operasi

lainnya di dalam program Python Anda.

from google.colab import drive

drive.mount ('/content/drive')

Perintah from google.colab import drive digunakan dalam

lingkungan Google Colab, yang merupakan lingkungan

pengembangan berbasis cloud dari Google yang memungkinkan

Anda untuk menulis dan mengeksekusi kode Python di browser.

Perintah ini mengimpor fungsi drive dari modul google.colab.

Fungsi drive ini digunakan untuk melakukan mount atau

menghubungkan Google Drive ke sesi Colab Anda. Dengan cara

ini, Anda bisa mengakses file yang ada di Google Drive dari

lingkungan Colab untuk membaca, menulis, atau melakukan

operasi lainnya pada file tersebut melalui kode Python.

Pada perintah drive.mount('/content/drive'), drive.mount() adalah

panggilan fungsi yang memicu proses mount Google Drive ke sesi

Colab. Argument '/content/drive' adalah path atau lokasi di mana

Google Drive akan di-mount di dalam lingkungan Colab. Setelah

menjalankan perintah ini, Colab akan meminta autentikasi dengan

akun Google Anda dan memberikan kode untuk autentikasi, yang

perlu di-copy-paste untuk mengotorisasi akses ke Google Drive

Anda. Setelah otorisasi berhasil, Google Drive akan di-mount ke

path yang telah ditentukan, dalam contoh ini ke '/content/drive'.

88

#papers = pd.read_csv('drive/My

Drive/dataset/fintechP2P/2023/16ribu.csv') #lokasi file

papers = pd.read_csv('drive/My

Drive/dataset/fintechP2P/2023/dataset/12-feb-2023masterurut-

p2p.csv') #lokasi file

Perintah ini adalah contoh penggunaan dari pustaka pandas di

Python untuk membaca sebuah file CSV ke dalam variabel papers.

Dalam kode yang Anda berikan:

pd.read_csv() adalah fungsi dari pustaka pandas yang digunakan

untuk membaca file CSV. 'drive/My

Drive/dataset/fintechP2P/2023/dataset/12-feb-2023masterurut-

p2p.csv' adalah path atau lokasi dari file CSV yang akan dibaca.

Jadi, perintah membaca file CSV yang terletak pada path tersebut

dan menyimpannya ke dalam variabel papers. Setelah eksekusi

perintah ini, data dari file CSV tersebut akan dimuat ke dalam

variabel papers, yang kemudian bisa digunakan untuk analisis

lebih lanjut atau manipulasi data menggunakan pustaka pandas.

papers

Papers adalah sebuah variabel yang digunakan untuk menyimpan

data yang dibaca dari file CSV dengan menggunakan pustaka

pandas di Python. Dalam konteks ini, papers mungkin berisi

kumpulan data yang terdapat dalam file CSV yang telah dibaca

menggunakan fungsi pd.read csv().

Variabel ini bisa berupa DataFrame, struktur data yang sangat

berguna dari pustaka pandas. DataFrame memungkinkan untuk

menyimpan data dalam bentuk tabel dengan baris dan kolom,

mirip dengan spreadsheet. Setiap kolom dalam DataFrame

mungkin merepresentasikan jenis data atau atribut tertentu,

sedangkan setiap baris mungkin merepresentasikan entri atau

contoh dari data tersebut.

89

Dengan menggunakan variabel papers, Anda bisa melakukan

berbagai operasi analisis data, seperti manipulasi data, pengolahan

statistik, visualisasi, dan banyak lagi, karena papers sekarang

berisi data dari file CSV yang telah dimuat menggunakan pustaka

pandas.

Variabel papers merupakan sebuah DataFrame yang berisi data

teks atau komentar-komentar terkait dengan informasi tertentu.

DataFrame ini memiliki satu kolom dengan nama 'content' yang

berisi teks komentar.

Dari potongan data yang Anda tunjukkan, terdapat 37143 baris (0

sampai 37142) dan 1 kolom ('content'). Isi dari kolom 'content' ini

tampaknya berupa komentar-komentar atau teks yang berkaitan

dengan suatu topik, mungkin terkait dengan pendapat atau ulasan

terhadap suatu layanan atau produk.

90

Contoh beberapa baris dari data yang tersimpan dalam variabel

papers:

Baris ke-0: "nama fet sroyer tolong hapus data banyak omon..."

Baris ke-1: "uninstallkarenakan meminjam uang tolak mo..."

Baris ke-2: "zonk data tolong dihapus"

Baris ke-3: "zonk persyaratan hanya ktp pengajuan tolak m..."

Baris ke-4: "zonk penipu mudah curi data doank"

Setiap baris berisi komentar atau informasi yang mungkin dapat

dianalisis lebih lanjut, misalnya, untuk mengidentifikasi sentimen

atau pola-pola tertentu dalam teks tersebut menggunakan teknik

pemrosesan bahasa alami atau untuk melakukan analisis sentimen

terhadap pendapat-pendapat tersebut.

papers['word_count'] = papers['content'].str.split().map(len)

Perintah ini menambahkan kolom baru ke dalam DataFrame

papers dengan nama 'word_count'.

Mari kita bahas lebih rinci: papers['content']: Merujuk pada kolom

'content' dalam DataFrame papers. Ini adalah kolom yang berisi

teks atau komentar-komentar.

str.split(): Ini adalah metode dari objek Series di pandas yang

digunakan untuk membagi setiap teks dalam kolom 'content'

menjadi kata-kata (dengan menggunakan spasi sebagai pemisah).

Hasilnya adalah daftar kata-kata untuk setiap teks. .map(len):

Setelah kata-kata dipisahkan untuk setiap teks dalam kolom

'content', map(len) diaplikasikan pada setiap daftar kata-kata.

Fungsinya adalah untuk menghitung panjang dari setiap daftar

kata-kata, yang pada dasarnya adalah jumlah kata dalam setiap

teks. Dengan menggunakan map(len), dihitunglah panjang setiap

daftar kata-kata, yang sebenarnya adalah jumlah kata dalam setiap

baris.

91

papers['word_count']: Ini menugaskan hasil dari perhitungan

jumlah kata ke dalam kolom baru yang bernama 'word_count' di

dalam DataFrame papers. Dengan demikian, setelah eksekusi

perintah ini, papers akan memiliki kolom tambahan yang

menampilkan jumlah kata dalam setiap teks yang ada di dalam

kolom 'content'.

Tabel ini menunjukkan hasil dari penghitungan jumlah kata dalam

setiap teks yang terdapat dalam kolom 'content' dari DataFrame

papers. Kolom baru yang diberi nama 'word_count' menampilkan

jumlah kata dalam setiap baris teks yang sesuai.

Contohnya, untuk beberapa baris tertentu:

1. Baris pertama ('nama fet sroyer tolong hapus data banyak

omon...'): Memiliki 9 kata.

2. Baris kedua ('uninstallkarenakan meminjam uang tolak mo...'):

Memiliki 11 kata.

3. Baris ketiga ('zonk data tolong dihapus'): Memiliki 4 kata.

4. Baris keempat ('zonk persyaratan hanya ktp pengajuan tolak

m...'): Memiliki 18 kata.

92

5. Baris kelima ('zonk penipu mudah curi data doank'): Memiliki

6 kata.

6. Baris terakhir ('a suka banget proses gampang bgtsukses plus'):

Memiliki 7 kata.

Jadi, kolom 'word_count' ini memberikan informasi tentang

jumlah kata yang ada dalam setiap baris teks yang ada di dalam

kolom 'content' DataFrame papers. Informasi ini bisa berguna

untuk analisis statistik atau pemahaman lebih lanjut tentang

panjang atau kompleksitas teks dalam dataset tersebut.

papers = papers[papers['word_count'] > 4]

Perintah papers = papers[papers['word_count'] > 4] adalah contoh

dari penggunaan filter di dalam Python dengan menggunakan

pustaka pandas untuk DataFrame papers. Mari kita bahas langkah-

langkahnya:

1. papers['word_count'] > 4: Ini adalah sebuah kondisi yang

diterapkan pada kolom 'word_count' di dalam DataFrame

papers. Kondisi ini mengevaluasi setiap baris dalam kolom

'word_count' dan menghasilkan nilai True jika nilai dalam baris

tersebut lebih besar dari 4, dan False jika tidak.

2. papers[papers['word_count'] > 4]: Ini adalah teknik filter

DataFrame di dalam pandas. Menggunakan kondisi di atas,

perintah ini memilih hanya baris-baris dari DataFrame papers

di mana kondisi papers['word_count'] > 4 bernilai True.

Dengan kata lain, hanya baris-baris yang memiliki jumlah kata

lebih dari 4 yang akan tetap ada dalam DataFrame yang baru.

DataFrame yang dihasilkan akan berisi hanya baris-baris

tersebut.

Dengan menggunakan perintah ini, DataFrame papers diubah

sedemikian rupa sehingga hanya menyertakan baris-baris di mana

jumlah kata dalam teks (diwakili oleh kolom 'word_count') lebih

dari 4. Ini memungkinkan untuk memfilter data berdasarkan

kriteria tersebut, membuang baris-baris yang tidak memenuhi

syarat tersebut.

93

#menghapus duplikasi data

papers.drop_duplicates(subset ="content",keep = False, inplace =

True)

Perintah papers.drop_duplicates(subset="content", keep=False,

inplace=True) digunakan untuk menghapus baris-baris duplikat

dari DataFrame papers berdasarkan kolom 'content'.

Mari kita bahas detailnya:

1. papers: Merujuk pada DataFrame yang sedang dioperasikan.

2. .drop_duplicates(): Ini adalah metode dari pandas yang

digunakan untuk menghapus baris-baris yang merupakan

duplikat dari DataFrame.

3. subset="content": Parameter subset menentukan kolom mana

yang akan diperiksa untuk mendeteksi duplikat. Di sini, kita

menggunakan kolom 'content', yang berisi teks atau komentar-

komentar.

4. keep=False: Parameter keep menentukan bagaimana

mempertahankan hasil penghapusan. Nilai False berarti semua

baris yang memiliki nilai yang sama di kolom yang ditentukan

akan dihapus, termasuk baris pertama dan yang kedua (semua

duplikat).

5. inplace=True: Parameter inplace menentukan apakah

perubahan akan diterapkan pada DataFrame itu sendiri atau

apakah hasilnya akan disimpan dalam DataFrame baru.

Dengan nilai True, perubahan akan diterapkan pada papers

tanpa membuat DataFrame baru.

Jadi, setelah eksekusi perintah ini, baris-baris yang memiliki nilai

yang sama dalam kolom 'content' akan dihapus dari DataFrame

papers. Hal ini membantu memastikan bahwa setiap baris dalam

DataFrame tersebut memiliki nilai yang unik dalam kolom

'content'. Dari proses menghapus data yang duplikasi dan data

yang digunakan yang lebih dari 4 hata maka dihasilkan data

sebagai berikut:

Tabel yang Anda sertakan menunjukkan DataFrame setelah

operasi penghapusan duplikat dan setelah melakukan filter untuk

baris-baris di mana jumlah kata (kolom 'word_count') lebih besar

94

dari 4. Kolom 'content' berisi teks atau komentar-komentar,

sementara kolom 'word_count' berisi jumlah kata dalam teks

tersebut.

Contohnya:

1. Baris pertama ('nama fet sroyer tolong hapus data banyak

omon...') memiliki 9 kata.

2. Baris kedua ('uninstallkarenakan meminjam uang tolak mo...')

memiliki 11 kata.

3. Baris ketiga ('zonk persyaratan hanya ktp pengajuan tolak m...')

memiliki 18 kata.

4. Baris keempat ('zonk penipu mudah curi data doank') memiliki

6 kata.

5. Baris kelima ('zonk kali repot membayar tanggal mei jatuh ...')

memiliki 39 kata.

6. Baris terakhir ('a suka banget proses gampang bgtsukses plus')

memiliki 7 kata.

Tabel tersebut menampilkan baris-baris unik (tanpa duplikat), di

mana setiap baris memiliki jumlah kata lebih besar dari 4, seperti

yang telah dijelaskan sebelumnya. Jumlah total baris dalam

DataFrame yang ditampilkan setelah operasi filter tersebut adalah

29505.

papers.to_csv('./drive/My

Drive/dataset/fintechP2P/2023/20februari-bersih.csv',

index=False)

Perintah diatas merupakan sebuah perintah dalam Python

menggunakan pustaka pandas untuk menyimpan DataFrame

papers ke dalam format file CSV.

1. papers: Merujuk pada DataFrame yang ingin disimpan.

2. .to_csv(): Ini adalah metode dari pustaka pandas yang

digunakan untuk menyimpan DataFrame ke dalam format

file CSV.

3. './drive/My Drive/dataset/fintechP2P/2023/20februari-

bersih.csv': Ini adalah path atau lokasi file di mana

DataFrame papers akan disimpan sebagai file CSV. Dalam

95

kasus ini, file tersebut akan disimpan di lokasi yang

ditentukan dengan nama file '20februari-bersih.csv'.

4. index=False: Parameter index digunakan untuk

menentukan apakah indeks dari DataFrame juga akan

disimpan sebagai kolom dalam file CSV. Dengan nilai

False, indeks tidak akan disertakan dalam file CSV yang

dihasilkan.

Jadi, perintah ini akan menyimpan DataFrame papers ke dalam

file CSV dengan nama '20februari-bersih.csv' di lokasi yang

ditentukan. File CSV yang dihasilkan akan berisi data dari

DataFrame papers, dan indeks DataFrame tidak akan disertakan

dalam file CSV tersebut.

Tahap 2: Data Cleaning

papers = papers.sample(10000)

Perintah papers = papers.sample(10000) adalah perintah yang

digunakan pada DataFrame dalam pustaka pandas di Python untuk

mengambil sampel acak sejumlah 10.000 baris dari DataFrame

papers.

papers: Merujuk pada DataFrame yang sedang dioperasikan.

.sample(): Ini adalah metode dari pustaka pandas yang digunakan

untuk mengambil sampel acak dari DataFrame. 10000: Argumen

ini menunjukkan jumlah baris yang ingin diambil sebagai sampel

dari DataFrame. Dalam hal ini, dipilih untuk mengambil 10.000

baris sebagai sampel acak dari DataFrame papers.

Ketika perintah ini dieksekusi, DataFrame papers akan berisi

10.000 baris yang diambil secara acak dari data aslinya. Sampel

tersebut dapat digunakan untuk analisis yang lebih cepat atau

untuk mengurangi ukuran data yang digunakan tanpa kehilangan

representasi signifikan dari keseluruhan data.

papers['paper_text'] = papers['content'].str.lower()

96

1. Perintah papers['paper_text'] = papers['content'].str.lower()

digunakan untuk membuat kolom baru dalam DataFrame

papers dengan nama 'paper_text', yang berisi teks dari kolom

'content' yang telah diubah menjadi huruf kecil (lowercase).

2. papers['content']: Merujuk pada kolom 'content' dalam

DataFrame papers. Kolom ini berisi teks atau komentar-

komentar.

3. .str.lower(): Ini adalah metode dari objek Series di pandas yang

digunakan untuk mengonversi setiap teks dalam kolom

'content' menjadi huruf kecil atau lowercase.

4. papers['paper_text']: Ini adalah penugasan hasil dari konversi

teks menjadi huruf kecil ke dalam kolom baru dengan nama

'paper_text' di dalam DataFrame papers.

Jadi, setelah perintah ini dieksekusi, DataFrame papers akan

memiliki kolom baru 'paper_text' yang berisi teks dari kolom

'content' dengan semua huruf diubah menjadi huruf kecil. Hal ini

sering digunakan untuk mempermudah pemrosesan dan analisis

teks, karena mengubah teks menjadi lowercase membantu untuk

konsistensi dalam pencarian dan pengelompokan teks dalam

analisis data.

1. Menghapus tanda baca/huruf kecil

Selanjutnya, mari kita lakukan prapemrosesan pada konten kolom

paper_text agar lebih mudah dianalisis dan hasilnya dapat

diandalkan. Untuk melakukannya, kami akan menggunakan

ekspresi reguler untuk menghapus tanda baca apa pun, lalu huruf

kecil pada teksnya

Load the regular expression library

import re

Remove punctuation

papers['paper_text_processed'] =

papers['paper_text'].map(lambda x: re.sub('[,\.!?]', '', x))

97

Convert the titles to lowercase

papers['paper_text_processed'] =

papers['paper_text_processed'].map(lambda x: x.lower())

Print out the first rows of papers

papers['paper_text_processed'].head()

Perintah ini adalah bagian dari proses pra-pemrosesan teks di

dalam DataFrame papers menggunakan modul re (regular

expression) dan pustaka pandas di Python. import re: Ini adalah

perintah untuk memuat modul regular expression (re) yang

memungkinkan penggunaan ekspresi reguler untuk manipulasi

teks.

papers['paper_text_processed'] =papers['paper_text'].map(lambda

x: re.sub('[,\.!?]', '', x)): Perintah ini menghapus tanda baca dari

teks di dalam kolom 'paper_text' di DataFrame papers. Ini

dilakukan dengan menggunakan ekspresi reguler untuk mengganti

(substitusi) tanda baca seperti koma, titik, tanda seru, dan tanda

tanya dengan string kosong (''). Fungsi lambda digunakan di sini

untuk menerapkan perubahan ini ke setiap baris di kolom

'paper_text'.

papers['paper_text_processed']= papers['paper_text_processed']

.map(lambda x: x.lower()): Setelah menghapus tanda baca,

perintah ini mengonversi teks di dalam kolom

'paper_text_processed' menjadi huruf kecil (lowercase). Ini

dilakukan menggunakan fungsi lambda untuk menerapkan operasi

lowercase ke setiap baris teks di kolom 'paper_text_processed'.

papers['paper_text_processed'].head(): Perintah ini mencetak

beberapa baris pertama dari kolom 'paper_text_processed' dari

DataFrame papers, menampilkan teks yang telah melalui proses

penghapusan tanda baca dan konversi ke huruf kecil.

Dengan demikian, proses ini adalah bagian dari tahap pra-

pemrosesan teks yang umum dilakukan sebelum melakukan

analisis teks lebih lanjut, seperti pemodelan atau pemrosesan

98

lanjutan untuk tujuan tertentu seperti analisis sentimen atau

pemodelan bahasa alami.

2. Tokenize words and further clean-up text

Let’s tokenize each sentence into a list of words, removing

punctuations and unnecessary characters altogether.

import gensim

from gensim.utils import simple_preprocess

def sent_to_words(sentences):

 for sentence in sentences:

 yield(gensim.utils.simple_preprocess(str(sentence),

deacc=True)) # deacc=True removes punctuations

data = papers.paper_text_processed.values.tolist()

data_words = list(sent_to_words(data))

print(data_words[:1][0][:30])

Kode menggunakan pustaka gensim dalam Python, yang

umumnya digunakan untuk pemodelan teks dan pemrosesan

bahasa alami. import gensim: Ini adalah perintah untuk memuat

pustaka gensim, yang memiliki alat dan fungsi untuk pemodelan

teks dan pemrosesan bahasa alami.

from gensim.utils import simple_preprocess: Ini mengimpor

fungsi simple_preprocess dari gensim.utils. Fungsi ini berguna

untuk memproses teks secara sederhana, seperti membagi teks

menjadi kata-kata kecil (lowercase) dan menghapus aksara.

def sent_to_words(sentences): ...: Ini adalah definisi dari sebuah

fungsi bernama sent_to_words. Fungsi ini menerima daftar

kalimat atau teks (sentences) dan memprosesnya menjadi kata-

kata kecil tanpa aksara (punctuation) menggunakan

simple_preprocess. Fungsi ini menggunakan generator (yield)

99

untuk menghasilkan kata-kata dari setiap kalimat yang diberikan

ke fungsi.

3. Pemodelan Frase: Model Bigram dan Trigram

Bigram adalah dua kata yang sering muncul bersamaan dalam

dokumen. Trigram adalah 3 kata yang sering muncul. Beberapa

contoh dalam contoh kita adalah: 'back_bumper', 'oil_leakage',

'maryland_college_park' dll. Model Frase Gensim dapat

membangun dan mengimplementasikan bigram, trigram,

quadgram, dan lainnya. Dua argumen penting pada Frase adalah

min_count dan ambang batas. Semakin tinggi nilai param ini,

semakin sulit kata-kata untuk digabungkan.

data = papers.paper_text_processed.values.tolist(): Ini mengambil

kolom 'paper_text_processed' dari DataFrame papers dan

mengonversinya ke dalam bentuk daftar (list). Kolom ini berisi

teks yang telah diolah sebelumnya.

data_words = list(sent_to_words(data)): Fungsi sent_to_words

yang telah didefinisikan sebelumnya diterapkan ke data (kolom

'paper_text_processed') untuk memproses teks menjadi daftar

kata-kata kecil tanpa aksara. Hasilnya disimpan dalam variabel

data_words.

print(data_words[:1][0][:30]):

Perintah ini mencetak 30 kata pertama dari hasil pemrosesan teks

(data_words) untuk satu baris teks pertama yang telah diproses

sebelumnya. Jadi, keseluruhan kode ini digunakan untuk

mengubah teks yang terdapat dalam kolom 'paper_text_processed'

dari DataFrame papers menjadi daftar kata-kata kecil tanpa aksara

(punctuation) menggunakan pustaka gensim dan fungsi

simple_preprocess untuk analisis teks lebih lanjut.

Kode ini menggunakan pustaka gensim untuk mengidentifikasi

dan membentuk bigram (pasangan dua kata) dan trigram

(pasangan tiga kata) dari daftar kata-kata yang telah diproses

100

sebelumnya dalam variabel data_words. Mari kita bahas langkah-

langkahnya:

bigram = gensim.models.Phrases(data_words, min_count=5,

threshold=100):

Di sini, gensim.models.Phrases digunakan untuk membentuk

bigram dari data_words. Parameter min_count mengontrol jumlah

minimum kemunculan kata dalam teks agar menjadi bigram,

sedangkan threshold adalah nilai yang menentukan seberapa

sering pasangan kata harus muncul agar dianggap sebagai bigram.

Semakin tinggi nilai threshold, semakin sedikit bigram yang

dihasilkan.

trigram = gensim.models.Phrases(bigram[data_words],

threshold=100):

Langkah ini menggunakan bigram yang telah dibuat sebelumnya

sebagai dasar untuk membentuk trigram. Dengan menggunakan

bigram[data_words], kita menggunakan bigram yang telah

dihitung sebelumnya sebagai acuan untuk menemukan trigram. Ini

membantu dalam pembentukan trigram berdasarkan bigram yang

telah dibentuk sebelumnya.

bigram_mod = gensim.models.phrases.Phraser(bigram): Untuk

mempercepat proses pembentukan bigram,

gensim.models.phrases.Phraser digunakan untuk membuat objek

bigram_mod dari bigram yang telah dibuat sebelumnya. Objek

bigram_mod ini dapat digunakan untuk menerapkan bigram ke

teks.

trigram_mod = gensim.models.phrases.Phraser(trigram): Sama

seperti langkah sebelumnya, trigram yang telah dihitung

sebelumnya dikonversi menjadi objek trigram_mod menggunakan

gensim.models.phrases.Phraser. Ini memungkinkan penggunaan

trigram dalam pemrosesan teks.

Dengan menggunakan langkah-langkah ini, bigram dan trigram

diidentifikasi dari daftar kata-kata, dan objek bigram_mod dan

101

trigram_mod dapat digunakan untuk menerapkan bigram dan

trigram tersebut pada teks dengan cepat dan efisien. Ini berguna

dalam pemodelan teks atau analisis berikutnya yang memerlukan

penggunaan bigram dan trigram.

4. Remove Stopwords, Make Bigrams and Lemmatize

The phrase models are ready. Let’s define the functions to remove

the stopwords, make trigrams and lemmatization and call them

sequentially.

NLTK Stop words

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

#stop_words = stopwords.words('english')

stop_words = stopwords.words('indonesian')

#stop_words.extend(['from', 'subject', 're

stop_words.extend(["yg", "dg", "rt", "dgn", "ny", "d", 'klo',

'sy','saya','kalo', 'amp', 'biar', 'bikin',

 'pen', 'u', 'nan', 'loh', 'rt', '&', 'yah'])

Kode ini menggunakan pustaka Natural Language Toolkit

(NLTK) di Python untuk mengunduh dan menggunakan kata-kata

stop (stop words) dalam bahasa Indonesia untuk pemrosesan teks

lebih lanjut.

import nltk: Ini mengimpor pustaka NLTK, pustaka yang sering

digunakan dalam pemrosesan bahasa alami di Python.

nltk.download('stopwords'): Ini adalah perintah untuk mengunduh

dataset kata-kata stop dari NLTK. Dataset ini berisi daftar kata-

kata yang umumnya dianggap tidak memiliki makna penting

dalam analisis teks karena mereka sangat umum dan sering

muncul dalam bahasa tertentu.

102

from nltk.corpus import stopwords: Setelah dataset stop words

diunduh, kita mengimpor modul stopwords dari corpus NLTK.

Modul ini berisi daftar kata-kata stop dalam berbagai bahasa.

stop_words = stopwords.words('indonesian'): Di sini, kita

menggunakan daftar kata-kata stop dalam bahasa Indonesia yang

telah diunduh dari NLTK. Variabel stop_words akan berisi daftar

kata-kata tersebut, yang akan digunakan untuk menghapus kata-

kata ini dari teks dalam proses pra-pemrosesan.

stop_words.extend([...]): Baris ini digunakan untuk

menambahkan kata-kata tambahan ke dalam daftar stop words.

Dalam contoh ini, terdapat beberapa kata tambahan yang

ditambahkan ke dalam daftar stop words bahasa Indonesia seperti

"yg", "dg", "rt", dan lain-lain. Ini bisa dilakukan untuk

menyesuaikan daftar kata-kata stop sesuai dengan kebutuhan

analisis atau pemrosesan teks yang sedang dilakukan.

Jadi, kode ini membantu untuk memuat daftar kata-kata stop

dalam bahasa Indonesia dan menambahkan beberapa kata

tambahan ke dalam daftar tersebut agar dapat digunakan dalam

proses pra-pemrosesan teks. Hal ini berguna untuk menghilangkan

kata-kata yang tidak relevan atau yang biasanya tidak memberikan

informasi penting dalam analisis teks.

5. Transformasi data: Korpus dan Kamus

Dua masukan utama pada model topik LDA adalah kamus

(id2word) dan korpus. Mari kita buat.

import gensim.corpora as corpora

Create Dictionary

#id2word = corpora.Dictionary(data_lemmatized)

id2word = corpora.Dictionary(data_words)

Create Corpus

texts = data_words

103

Term Document Frequency

corpus = [id2word.doc2bow(text) for text in texts]

View

print(corpus[:1][0][:30])

Kode ini menggunakan pustaka Gensim di Python untuk

membangun representasi numerik dari teks yang disebut "Bag-of-

Words" (BoW). BoW mengubah teks ke dalam representasi vektor

di mana setiap kata diwakili sebagai fitur, dan nilai di setiap fitur

menunjukkan jumlah kemunculan kata tersebut dalam teks.

import gensim.corpora as corpora: Ini mengimpor modul corpora

dari pustaka Gensim, yang berguna untuk membangun model-

madel teks.

id2word = corpora.Dictionary(data_words): Di sini, sebuah

kamus (dictionary) dibuat menggunakan Dictionary dari modul

corpora. Dictionary ini memetakan kata-kata dalam data_words ke

indeks numerik. Setiap kata dalam data_words akan diberikan

sebuah ID numerik yang unik.

texts = data_words: Data yang telah di-preprocess (data_words)

disimpan dalam variabel texts.

corpus = [id2word.doc2bow(text) for text in texts]: Langkah ini

membangun representasi BoW dari teks yang telah dipreprocess

(texts). Metode doc2bow dari objek id2word digunakan untuk

mengonversi setiap dokumen (teks) dalam texts menjadi

representasi BoW. BoW ini terdiri dari tupel (word_id,

word_frequency), yang menunjukkan ID kata dan frekuensi kata

dalam teks.

print(corpus[:1][0][:30]): Perintah ini mencetak 30 elemen

pertama dari representasi BoW dari teks pertama yang telah

dihasilkan sebelumnya.

Jadi, keseluruhan kode ini bertujuan untuk membuat representasi

BoW dari teks yang telah dipreprocess dan membangun corpus

104

BoW yang siap digunakan untuk model-topik atau analisis

lanjutan lainnya menggunakan pustaka Gensim.

J. Model Dasar

Kami memiliki semua yang diperlukan untuk melatih model LDA

dasar. Selain korpus dan kamus, Anda juga perlu menyediakan

jumlah topik. Selain itu, alpha dan eta merupakan hyperparameter

yang mempengaruhi ketersebaran topik. Menurut dokumen

Gensim, keduanya default ke 1.0/num_topics sebelumnya (kami

akan menggunakan default untuk model dasar).

chunksize mengontrol berapa banyak dokumen yang diproses

sekaligus dalam algoritma pelatihan. Meningkatkan ukuran

potongan akan mempercepat pelatihan, setidaknya selama

potongan dokumen tersebut mudah masuk ke dalam memori.

pass mengontrol seberapa sering kita melatih model di seluruh

korpus (disetel ke 10). Kata lain untuk pass mungkin adalah

"zaman". iterasi agak bersifat teknis, namun pada dasarnya ini

mengontrol seberapa sering kita mengulangi perulangan tertentu

pada setiap dokumen. Penting untuk menetapkan jumlah "pass"

dan "iterasi" yang cukup tinggi.

Build LDA model

lda_model = gensim.models.LdaMulticore(corpus=corpus,

 id2word=id2word,

 num_topics=10,

 random_state=100,

 chunksize=100,

 passes=10,

 per_word_topics=True)

Perintah ini menggunakan pustaka Gensim di Python untuk

membangun model LDA (Latent Dirichlet Allocation) yang

merupakan metode untuk menemukan topik-topik tersembunyi

dalam koleksi dokumen.

105

lda_model = gensim.models.LdaMulticore(corpus=corpus,

id2word=id2word, num_topics=10, random_state=100,

chunksize=100, passes=10, per_word_topics=True)

gensim.models.LdaMulticore: Ini adalah metode untuk membuat

model LDA dengan implementasi multicore yang memungkinkan

penggunaan beberapa core CPU untuk pelatihan yang lebih cepat.

corpus=corpus: Parameter ini adalah representasi BoW dari

dokumen yang telah disiapkan sebelumnya dengan menggunakan

fungsi corpora.Dictionary dan id2word.doc2bow.

id2word=id2word: Parameter ini adalah kamus (dictionary) yang

telah dibuat untuk memetakan kata-kata ke indeks numerik.

num_topics=10: Ini adalah jumlah topik yang ingin diidentifikasi

dalam model LDA. Dalam contoh ini, model diatur untuk mencari

10 topik tersembunyi dalam koleksi dokumen.

random_state=100: Parameter ini mengatur nilai awal untuk

pengacakan yang memastikan hasil yang konsisten saat model

dilatih ulang.

chunksize=100: Ukuran blok untuk pemrosesan paralel dalam

model multicore.

passes=10: Jumlah iterasi untuk melatih model pada seluruh

corpus.

per_word_topics=True: Parameter ini mengatur untuk

menghasilkan informasi topik untuk setiap kata dalam dokumen,

bukan hanya topik utama dari dokumen itu sendiri.

Perintah ini akan membuat sebuah model LDA yang akan

mencoba mengidentifikasi 10 topik tersembunyi dalam koleksi

dokumen berdasarkan representasi BoW yang telah dibuat

sebelumnya. Model ini kemudian dapat digunakan untuk

mengeksplorasi dan menganalisis topik dalam dokumen-dokumen

tersebut.

106

Model LDA di atas dibangun dengan 10 topik berbeda dimana

setiap topik merupakan kombinasi kata kunci dan setiap kata

kunci memberikan kontribusi bobot tertentu pada topik.

Anda dapat melihat kata kunci untuk setiap topik dan bobot

(pentingnya) setiap kata kunci menggunakan

lda_model.print_topics()

from pprint import pprint

Print the Keyword in the 10 topics

pprint(lda_model.print_topics())

doc_lda = lda_model[corpus]

Perintah ini menggunakan pustaka pprint untuk mencetak topik-

topik yang telah ditemukan oleh model LDA (Latent Dirichlet

Allocation) yang telah dilatih sebelumnya.

from pprint import pprint: Ini mengimpor fungsi pprint dari

pustaka pprint. pprint (pretty-print) digunakan untuk mencetak

output dengan tata letak yang lebih baik dan lebih mudah dibaca

daripada fungsi print biasa.

pprint(lda_model.print_topics()): Perintah ini mencetak topik-

topik yang telah ditemukan oleh model LDA yang telah dilatih

sebelumnya. Fungsi print_topics() pada objek model LDA

mengembalikan daftar topik dengan kata-kata kunci yang paling

berkaitan dengan setiap topik.

doc_lda = lda_model[corpus]: Ini adalah cara untuk menerapkan

model LDA yang telah dilatih pada seluruh dataset (corpus) yang

telah digunakan sebelumnya untuk melatih model. Hasilnya

disimpan dalam variabel doc_lda. Ini akan memberikan distribusi

topik untuk setiap dokumen dalam corpus, yaitu, seberapa kuat

setiap dokumen terhubung dengan setiap topik.

Dengan menggunakan pprint(lda_model.print_topics()), kita

mendapatkan tampilan yang terstruktur dan mudah dibaca tentang

kata-kata kunci yang paling berkaitan dengan setiap topik yang

107

ditemukan oleh model LDA. Ini membantu dalam memahami

topik-topik yang mungkin ada dalam koleksi dokumen yang telah

diproses menggunakan model LDA tersebut.

Hasilnya sebagai berikut:

[(0,

 '0.075*"bayar" + 0.048*"udah" + 0.034*"tempo" +

0.031*"pinjam" + '

 '0.031*"limit" + 0.027*"jatuh" + 0.024*"kecewa" +

0.023*"telat" + '

 '0.023*"pengajuan" + 0.022*"pembayaran"'),

 (1,

 '0.134*"data" + 0.061*"tolong" + 0.047*"hapus" +

0.039*"mohon" + '

 '0.038*"nama" + 0.032*"pengajuan" + 0.031*"pinjaman" +

0.030*"tolak" + '

 '0.022*"uninstall" + 0.021*"saya"'),

 (2,

 '0.050*"sistem" + 0.048*"lunas" + 0.031*"ngajuin" +

0.020*"perbaikan" + '

 '0.019*"kaya" + 0.019*"telepon" + 0.019*"pundi" +

0.018*"skor" + '

 '0.018*"kirim" + 0.017*"chat"'),

 (3,

 '0.055*"pinjaman" + 0.035*"semoga" + 0.035*"cepat" +

0.033*"acc" + '

 '0.033*"kredit" + 0.031*"membantu" + 0.024*"mudah" +

0.022*"pengajuan" + '

 '0.022*"dana" + 0.022*"proses"'),

 (4,

 '0.048*"bank" + 0.047*"bunganya" + 0.030*"cicilan" +

0.029*"tenor" + '

 '0.026*"bunga" + 0.024*"sulit" + 0.023*"kebutuhan" +

0.022*"tunggu" + '

 '0.022*"selesai" + 0.016*"kridit"'),

 (5,

 '0.031*"ajukan" + 0.028*"tanggal" + 0.027*"pakai" +

0.024*"aman" + '

108

 '0.019*"suruh" + 0.019*"melunasi" + 0.018*"menit" +

0.018*"sekarang" + '

 '0.018*"knp" + 0.016*"upgrade"'),

 (6,

 '0.038*"susah" + 0.028*"tolong" + 0.027*"bukti" +

0.025*"meng" + 0.021*"wa" '

 '+ 0.021*"nomor" + 0.021*"masukan" + 0.021*"nomer" +

0.017*"hp" + '

 '0.016*"kembalikan"'),

 (7,

 '0.125*"bintang" + 0.057*"acc" + 0.033*"download" +

0.020*"ngajuin" + '

 '0.019*"coba" + 0.016*"parah" + 0.013*"di" + 0.013*"dr" +

0.012*"sudah" + '

 '0.012*"menunggu"'),

 (8,

 '0.034*"disetujui" + 0.032*"rb" + 0.029*"dah" + 0.027*"trus" +

0.020*"gitu" '

 '+ 0.019*"topup" + 0.018*"limitnya" + 0.018*"sehari" +

0.015*"ngisi" + '

 '0.014*"eror"'),

 (9,

 '0.053*"masuk" + 0.033*"gagal" + 0.026*"email" +

0.025*"uang" + 0.023*"akun" '

 '+ 0.021*"pake" + 0.021*"rekening" + 0.018*"saldo" +

0.017*"cs" + '

 '0.017*"maret"')]

Compute Model Perplexity and Coherence Score

from gensim.models import CoherenceModel

Compute Coherence Score

coherence_model_lda = CoherenceModel(model=lda_model,

texts=data_words, dictionary=id2word, coherence='c_v')

coherence_lda = coherence_model_lda.get_coherence()

print('Coherence Score: ', coherence_lda)

109

Perintah ini digunakan untuk menghitung skor koherensi

(coherence score) dari model Latent Dirichlet Allocation (LDA)

yang telah dilatih sebelumnya. Skor koherensi memberikan

gambaran tentang seberapa koheren atau terkait topik-topik yang

dihasilkan oleh model.

from gensim.models import CoherenceModel: Ini mengimpor

CoherenceModel dari pustaka Gensim. CoherenceModel

digunakan untuk menghitung koherensi dari model topic

modeling.

coherence_model_lda = CoherenceModel(model=lda_model,

texts=data_words, dictionary=id2word, coherence='c_v'): Ini

membuat objek coherence_model_lda menggunakan

CoherenceModel. Parameter-parameter yang digunakan adalah:

model=lda_model: Merujuk pada model LDA yang telah dilatih

sebelumnya.

texts=data_words: Merupakan teks yang telah diproses

sebelumnya, dalam bentuk daftar kata-kata.

dictionary=id2word: Kamus yang memetakan kata-kata ke indeks

numerik.

coherence='c_v': Jenis koherensi yang digunakan. Dalam hal ini,

'c_v' adalah metode koherensi yang dikenal sebagai Coherence

'c_v'.

coherence_lda = coherence_model_lda.get_coherence(): Langkah

ini menghitung skor koherensi dengan menggunakan metode

get_coherence() dari objek coherence_model_lda. Skor koherensi

akan memberikan gambaran tentang seberapa baik topik-topik

yang dihasilkan oleh model LDA.

print('Coherence Score: ', coherence_lda): Perintah ini mencetak

skor koherensi yang telah dihitung sebelumnya.

110

Dengan menggunakan skor koherensi, kita mendapatkan ukuran

kualitas dari topik-topik yang dihasilkan oleh model. Semakin

tinggi skor koherensi, semakin baik atau lebih terkait topik-topik

yang dihasilkan oleh model tersebut.

K. Penyetelan tuning hyper parameter

Pertama, mari kita bedakan antara hyperparameter model dan

parameter model:

Hyperparameter model dapat dianggap sebagai pengaturan untuk

algoritma pembelajaran mesin yang disetel oleh data scientist

sebelum pelatihan. Contohnya adalah jumlah pohon di hutan acak,

atau dalam kasus kami, jumlah topik K. Parameter model dapat

dianggap sebagai apa yang dipelajari model selama pelatihan,

seperti bobot setiap kata dalam topik tertentu. Sekarang kita

memiliki skor koherensi dasar untuk model LDA default, mari kita

lakukan serangkaian uji sensitivitas untuk membantu menentukan

hyperparameter model berikut:

Jumlah Topik (K), Dirichlet hyperparameter alpha: Kepadatan

Topik Dokumen, Hyperparameter beta Dirichlet: Kepadatan

Topik Kata

Kami akan melakukan pengujian ini secara berurutan, satu

parameter pada satu waktu dengan menjaga parameter lainnya

tetap konstan dan menjalankannya pada dua set korpus validasi

perbedaan. Kami akan menggunakan C_v sebagai metrik pilihan

kami untuk perbandingan kinerja

supporting function

def compute_coherence_values(corpus, dictionary, k, a, b):

 lda_model = gensim.models.LdaMulticore(corpus=corpus,

 id2word=dictionary,

 num_topics=k,

 random_state=100,

 chunksize=100,

111

 passes=10,

 alpha=a,

 eta=b)

 coherence_model_lda = CoherenceModel(model=lda_model,

texts=data_words, dictionary=id2word, coherence='c_v')

 return coherence_model_lda.get_coherence()

Fungsi ini digunakan untuk menghitung skor koherensi

(coherence score) dari model LDA (Latent Dirichlet Allocation)

yang dibangun dengan berbagai nilai alpha dan eta. Fungsi ini

membantu dalam mengevaluasi bagaimana nilai-nilai parameter

ini mempengaruhi kualitas topik-topik yang dihasilkan oleh

model.

Argumen-argumen dalam fungsi compute_coherence_values:

corpus: Representasi Bag-of-Words (BoW) dari dokumen yang

akan digunakan untuk melatih model.

dictionary: Kamus yang memetakan kata-kata ke indeks numerik.

k: Jumlah topik yang diuji.

1. Parameter alpha yang digunakan dalam model LDA. Ini

mengontrol distribusi topik dalam dokumen. Nilai alpha yang

lebih tinggi menyebabkan dokumen memiliki distribusi topik

yang lebih merata.

2. Parameter eta yang digunakan dalam model LDA. Ini

mengontrol distribusi kata dalam topik. Nilai eta yang lebih

tinggi menyebabkan topik memiliki distribusi kata yang lebih

merata.

Langkah-langkahnya adalah sebagai berikut:

lda_model = gensim.models.LdaMulticore(...): Fungsi ini

menggunakan model LDA multicore dari Gensim untuk melatih

model LDA dengan parameter yang diberikan (corpus, dictionary,

num_topics=k, alpha=a, eta=b, dst).

112

coherence_model_lda = CoherenceModel(...): Langkah ini

membuat objek coherence_model_lda menggunakan

CoherenceModel dari Gensim dengan menggunakan model LDA

yang telah dilatih sebelumnya.

return coherence_model_lda.get_coherence(): Fungsi

mengembalikan skor koherensi yang dihitung menggunakan

metode get_coherence() dari objek coherence_model_lda. Ini

memberikan informasi tentang seberapa koheren topik-topik yang

dihasilkan oleh model dengan kombinasi parameter alpha dan eta

tertentu.

Dengan menggunakan fungsi ini, Anda dapat menguji dan

membandingkan berbagai nilai alpha dan eta untuk mengevaluasi

bagaimana hal itu mempengaruhi kualitas topik yang dihasilkan

oleh model LDA. memanggil fungsinya, dan ulangi pada rentang

nilai parameter topik, alfa, dan beta

#bagian 1

import numpy as np

import tqdm

grid = {}

grid['Validation_Set'] = {}

Topics range

min_topics = 2

max_topics = 11

step_size = 1

topics_range = range(min_topics, max_topics, step_size)

Alpha parameter

alpha = list(np.arange(0.01, 1, 0.3))

alpha.append('symmetric')

alpha.append('asymmetric')

Beta parameter

beta = list(np.arange(0.01, 1, 0.3))

113

beta.append('symmetric')

Validation sets

num_of_docs = len(corpus)

corpus_sets = [gensim.utils.ClippedCorpus(corpus,

int(num_of_docs*0.75)),

 corpus]

corpus_title = ['75% Corpus', '100% Corpus']

model_results = {'Validation_Set': [],

 'Topics': [],

 'Alpha': [],

 'Beta': [],

 'Coherence': []

 }

#Bagian 2

if 1 == 1:

 pbar =

tqdm.tqdm(total=(len(beta)*len(alpha)*len(topics_range)*len(co

rpus_title)))

 # iterate through validation corpuses

 for i in range(len(corpus_sets)):

 # iterate through number of topics

 for k in topics_range:

 # iterate through alpha values

 for a in alpha:

 # iterare through beta values

 for b in beta:

 # get the coherence score for the given parameters

 cv =

compute_coherence_values(corpus=corpus_sets[i],

dictionary=id2word,

 k=k, a=a, b=b)

 # Save the model results

114

 model_results['Validation_Set'].append(corpus_title[

i])

 model_results['Topics'].append(k)

 model_results['Alpha'].append(a)

 model_results['Beta'].append(b)

 model_results['Coherence'].append(cv)

 pbar.update(1)

 pd.DataFrame(model_results).to_csv('./drive/My

Drive/dataset/fintechP2P/2023/13feb_tuning_results.csv',

index=False)

 pbar.close()

Bagian 1 Ini adalah kode untuk menyiapkan berbagai parameter

yang akan digunakan dalam eksplorasi model LDA (Latent

Dirichlet Allocation) dengan menggunakan teknik grid search.

Import Numpy dan tqdm: Baris pertama mengimpor modul

NumPy untuk operasi numerik dan tqdm, sebuah modul yang

membantu membuat bar progres saat iterasi yang lama.

Variabel grid: Ini adalah wadah (dictionary) yang akan digunakan

untuk menyimpan hasil eksperimen.

Range Topik: Variabel min_topics, max_topics, dan step_size

digunakan untuk menentukan rentang nilai topik yang akan

dieksplorasi dalam pencarian model LDA yang optimal.

Parameter Alpha dan Beta: alpha dan beta adalah daftar yang

berisi rentang nilai untuk parameter alpha dan beta yang akan

dieksplorasi dalam pencarian model LDA.

Validation Sets: Variabel num_of_docs, corpus_sets, dan

corpus_title digunakan untuk menyiapkan data corpus yang akan

digunakan untuk validasi. num_of_docs adalah jumlah dokumen

dalam corpus, corpus_sets adalah persentase corpus yang akan

digunakan (75% dan 100%), dan corpus_title adalah label yang

sesuai dengan corpus yang digunakan.

115

Model Results: Ini adalah wadah untuk menyimpan hasil evaluasi

berbagai parameter LDA, seperti nilai koherensi.

Kode ini adalah langkah pertama dalam proses eksperimen yang

melibatkan iterasi berbagai kombinasi parameter LDA untuk

menentukan parameter mana yang memberikan hasil terbaik

dalam hal koherensi topik pada model. Setelah parameter dan data

disiapkan seperti ini, dilakukan iterasi dalam eksperimen grid

search untuk mengevaluasi kombinasi parameter yang berbeda

terhadap kualitas model yang dihasilkan.

Bagian 2 ini adalah bagian yang melakukan iterasi melalui

kombinasi parameter LDA yang telah ditentukan sebelumnya

untuk mengevaluasi dan menyimpan skor koherensi untuk setiap

kombinasi tersebut.

if 1 == 1:: Ini adalah pernyataan yang selalu benar. Ini

menunjukkan bahwa iterasi yang dilakukan di bawahnya akan

dieksekusi.

pbar =

tqdm.tqdm(total=(len(beta)*len(alpha)*len(topics_range)*len(co

rpus_title))): Membuat progress bar menggunakan tqdm untuk

mengukur kemajuan dalam iterasi. Total jumlah iterasi yang

diharapkan dihitung berdasarkan jumlah kombinasi yang akan

dieksekusi.

Iterasi Loop Bersarang:

1. Loop pertama (for i in range(len(corpus_sets))): Melakukan

iterasi melalui berbagai dataset validasi.

2. Loop kedua (for k in topics_range): Melakukan iterasi melalui

rentang nilai topik.

3. Loop ketiga (for a in alpha): Melakukan iterasi melalui nilai

alpha yang telah ditentukan sebelumnya.

4. Loop keempat (for b in beta): Melakukan iterasi melalui nilai

beta yang telah ditentukan sebelumnya.

Dalam setiap iterasi kombinasi parameter yang berbeda (corpus,

dictionary, k, a, dan b), fungsi compute_coherence_values

dipanggil untuk menghitung skor koherensi (cv) dari model LDA

116

yang dibuat berdasarkan parameter-parameter tersebut. Hasil skor

koherensi kemudian disimpan dalam model_results sesuai dengan

kombinasi parameter yang digunakan. Setelah semua iterasi

selesai, hasil dari model_results disimpan sebagai file CSV di

direktori yang ditentukan menggunakan

pd.DataFrame(model_results).to_csv('./drive/My

Drive/dataset/fintechP2P/2023/13feb_tuning_results.csv',

index=False).

pbar.close(): Setelah proses iterasi selesai, progress bar ditutup.

Ini adalah langkah yang memakan waktu untuk mengevaluasi dan

mencari parameter terbaik yang memberikan skor koherensi yang

paling optimal untuk model LDA. Proses ini melibatkan berbagai

kombinasi parameter yang mungkin dan mengevaluasi setiap

kombinasi tersebut untuk memilih yang terbaik. Hasil perhitungan

dari script di atas adalah sebagai berikut:

No Validation_Set Topics Alpha Beta Coherence

1 100% Corpus 10 0.01 0.91 0.554553496

2 100% Corpus 3 0.91 0.91 0.554553496

3 100% Corpus 3 0.91 0.31 0.546011003

4 100% Corpus 3 0.91 symmetric 0.546011003

5 100% Corpus 3 asymmetric 0.01 0.544522395

6 100% Corpus 3 0.61 0.61 0.541360905

7 100% Corpus 3 0.91 0.01 0.540641211

8 100% Corpus 3 0.61 symmetric 0.536954678

9 100% Corpus 3 0.61 0.91 0.535848054

10 100% Corpus 3 0.61 0.31 0.534917947

11 100% Corpus 8 symmetric 0.91 0.532990744

12 75% Corpus 3 0.61 0.31 0.531145051

13 75% Corpus 3 0.91 0.61 0.531057059

14 75% Corpus 3 0.91 0.91 0.531057059

15 100% Corpus 3 0.61 0.01 0.527612144

16 75% Corpus 3 0.61 0.01 0.526229031

17 75% Corpus 3 0.61 symmetric 0.523419221

18 75% Corpus 3 0.91 symmetric 0.52139985

117

Dari hasil di atas dapat dilihat bahwa nilai coherence yang lebih

dari 0.50 terlihat dan terdapat pada 3 dan 8 topic. Yang perlu

diperhatikan adalah apakah dengan 8 topic masih mendapatkan

makna yang berbeda pada setiap topik, jika makanya berbeda

jumlah topik dapat di set menjadi 8 (nomor urut 11). Namun jika

banyak topik yang sama, maka dapat dipilih 10 topic dengan nilai

coherence tertinggi terlihat pada nomor urut 1.

Berdasarkan evaluasi eksternal (Kode akan ditambahkan dari

analisis berbasis Excel), mari kita latih model akhir dengan

parameter yang menghasilkan skor koherensi tertinggi.

num_topics = 10

lda_model = gensim.models.LdaMulticore(corpus=corpus,

 id2word=id2word,

 num_topics=num_topics,

 random_state=100,

 chunksize=100,

 passes=10,

 # alpha='asymmetric',

 alpha=0.01,

 #eta=0.9

 eta=0.91)

Perintah di atas adalah bagian dari proses pembentukan model

LDA (Latent Dirichlet Allocation) menggunakan pustaka Gensim

dalam Python. Ini digunakan untuk membuat model topik dari

data teks yang telah diubah menjadi representasi Bag-of-Words

(BoW).

num_topics = 10: Parameter ini menentukan jumlah topik yang

ingin ditemukan dalam korpus teks. Dalam kasus ini, ditetapkan

sebagai 10, artinya model akan berusaha menemukan 10 topik

yang berbeda dalam teks yang diberikan.

118

gensim.models.LdaMulticore: Ini adalah fungsi untuk membuat

model LDA menggunakan teknik multicore dari pustaka Gensim.

corpus=corpus: Representasi BoW dari dokumen yang akan

digunakan untuk melatih model.

id2word=id2word: Kamus yang memetakan kata-kata ke indeks

numerik, digunakan untuk memahami representasi numerik kata-

kata dalam model.

random_state=100: Seed untuk inisialisasi bilangan acak. Ini

memastikan bahwa hasil dari model yang sama akan konsisten

ketika dijalankan kembali dengan seed yang sama.

chunksize=100: Jumlah dokumen yang akan digunakan dalam

satu batch selama proses pelatihan model. Ini mempengaruhi

efisiensi dan penggunaan memori saat pelatihan.

passes=10: Jumlah iterasi yang dilakukan oleh model saat melatih

dataset. Setiap iterasi melibatkan pembaruan bobot pada model.

alpha=0.01: Parameter alpha mengontrol seberapa banyak topik

yang ada dalam satu dokumen. Nilai yang lebih rendah seperti

0.01 mengindikasikan bahwa dokumen hanya akan memiliki

sedikit topik yang dominan.

eta=0.91: Parameter eta mengontrol seberapa banyak kata yang

terkait dengan satu topik tertentu. Nilai yang lebih tinggi seperti

0.91 menunjukkan bahwa setiap topik akan memiliki banyak kata

yang kuat terkait dengannya. Kombinasi dari parameter-parameter

ini membentuk model LDA yang akan menemukan 10 topik

dalam data teks, dengan distribusi yang dikendalikan oleh nilai

alpha dan eta yang telah ditetapkan.

from pprint import pprint

Print the Keyword in the 10 topics

pprint(lda_model.print_topics())

doc_lda = lda_model[corpus]

119

Perintah ini menggunakan pustaka pprint untuk mencetak topik-

topik yang telah ditemukan oleh model LDA (Latent Dirichlet

Allocation) yang telah dilatih sebelumnya.

Langkah-langkahnya adalah sebagai berikut:

from pprint import pprint: Ini mengimpor fungsi pprint dari

pustaka pprint. pprint (pretty-print) digunakan untuk mencetak

output dengan tata letak yang lebih baik dan lebih mudah dibaca

daripada fungsi print biasa.

pprint(lda_model.print_topics()): Perintah ini mencetak topik-

topik yang telah ditemukan oleh model LDA yang telah dilatih

sebelumnya. Fungsi print_topics() pada objek model LDA

mengembalikan daftar topik dengan kata-kata kunci yang paling

berkaitan dengan setiap topik.

doc_lda = lda_model[corpus]: Ini adalah cara untuk menerapkan

model LDA yang telah dilatih pada seluruh dataset (corpus) yang

telah digunakan sebelumnya untuk melatih model. Hasilnya

disimpan dalam variabel doc_lda. Ini akan memberikan distribusi

topik untuk setiap dokumen dalam corpus, yaitu, seberapa kuat

setiap dokumen terhubung dengan setiap topik.

120

DAFTAR PUSTAKA

Abdulmumin, I., & Galadanci, B. S. (2019). hauWE: Hausa

Words Embedding for Natural Language Processing. 2019

2nd International Conference of the IEEE Nigeria

Computer Chapter (NigeriaComputConf), 1–6.

https://doi.org/10.1109/NigeriaComputConf45974.2019.89

49674

Agarwal, M. (2019). An Overview of Natural Language

Processing. International Journal for Research in Applied

Science and Engineering Technology, 7(5), 2811–2813.

https://doi.org/10.22214/ijraset.2019.5462

Atkinson-Abutridy, J. (2022). Text analytics: An introduction to

the science and applications of unstructured information

analysis. In Text Analytics: An Introduction to the Science

and Applications of Unstructured Information Analysis.

https://doi.org/10.1201/9781003280996

Basha, M. J., Vijayakumar, S., Jayashankari, J., Alawadi, A. H.,

& Durdona, P. (2023). Advancements in Natural Language

Processing for Text Understanding. E3S Web of

Conferences, 399.

https://doi.org/10.1051/e3sconf/202339904031

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet

Allocation. 3, 993–1022.

Gavhane, J., Prasad, R., & Kumar, R. (2022). Graph embeddings

for natural language processing. Graph Learning and

Network Science for Natural Language Processing, 7148,

77–95. https://doi.org/10.1201/9781003272649-4

Gross, A., & Murthy, D. (2014). Modeling virtual organizations

with Latent Dirichlet Allocation: A case for natural

language processing. Neural Networks, 58, 38–49.

https://doi.org/10.1016/j.neunet.2014.05.008

Hannon, B., Kumar, Y., Gayle, D., Li, J. J., & Morreale, P. (2024).

Robust Testing of AI Language Model Resiliency with

Novel Adversarial Prompts. Electronics (Switzerland),

121

13(5). https://doi.org/10.3390/electronics13050842

Heimerl, F., & Gleicher, M. (2018). Interactive Analysis of Word

Vector Embeddings. Computer Graphics Forum, 37(3),

253–265. https://doi.org/10.1111/cgf.13417

Hirschberg, J., & Manning, C. D. (2015). Advances in natural

language processing. Science, 349(6245), 261–266.

https://doi.org/10.1126/science.aaa8685

Joshi, I., Koringa, P., & Mitra, S. (2019). Word Embeddings in

Low Resource Gujarati Language. 2019 International

Conference on Document Analysis and Recognition

Workshops (ICDARW), 110–115.

https://doi.org/10.1109/ICDARW.2019.40090

Kjell, O., Giorgi, S., & Schwartz, H. A. (2023). The Text-Package:

An R-Package for Analyzing and Visualizing Human

Language Using Natural Language Processing and

Transformers. Psychological Methods, 28(6), 1478–1498.

https://doi.org/10.1037/met0000542

Li, J., Sun, A., Han, J., & Li, C. (2022). A Survey on Deep

Learning for Named Entity Recognition. IEEE Transactions

on Knowledge and Data Engineering, 34(1), 50–70.

https://doi.org/10.1109/TKDE.2020.2981314

Meng, Y., Li, X., Sun, Z., & Li, J. (2019). Query-Based Named

Entity Recognition. http://arxiv.org/abs/1908.09138

Mishra, P. (2019). Natural Language Processing Using PyTorch.

In PyTorch Recipes (pp. 165–178). Apress.

https://doi.org/10.1007/978-1-4842-4258-2_7

Sun, P., Yang, X., Zhao, X., & Wang, Z. (2018). An Overview of

Named Entity Recognition. 2018 International Conference

on Asian Language Processing (IALP), 273–278.

https://doi.org/10.1109/IALP.2018.8629225

Tunstall, L., 22TUNA, Von Werra, L., & Wolf, T. (2022). NLP

with transformers building language applications.

Vajjala, S., Majumder, B., Gupta, A., & Surana, H. (2012).

Statistical Natural Language Processing. In

SpringerReference.

https://doi.org/10.1007/springerreference_205170

122

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention

is all you need. Advances in Neural Information Processing

Systems, 2017-Decem(Nips), 5999–6009.

Wang, D., Thint, M., & Al-Rubaie, A. (2012). Semi-Supervised

Latent Dirichlet Allocation and Its Application for

Document Classification. 2012 IEEE/WIC/ACM

International Conferences on Web Intelligence and

Intelligent Agent Technology, 306–310.

https://doi.org/10.1109/WI-IAT.2012.211

Yu, J., Ji, B., Li, S., Ma, J., Liu, H., & Xu, H. (2022). S-NER: A

Concise and Efficient Span-Based Model for Named Entity

Recognition. Sensors, 22(8).

https://doi.org/10.3390/s22082852

Ziyadi, M., Sun, Y., Goswami, A., Huang, J., & Chen, W. (2020).

Example-Based Named Entity Recognition. 1–15.

http://arxiv.org/abs/2008.10570

123

