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KATA PENGANTAR

Dengan bangga kami mempersembahkan buku Pengantar NLP
dan Topik Model LDA, sebuah karya yang dirancang untuk
menjembatani kesenjangan pengetahuan di bidang pemrosesan
bahasa alami (Natural Language Processing/NLP) dan pemodelan
topik. Dalam era digital yang semakin berkembang pesat,
kemampuan untuk memahami dan mengolah data teks menjadi
keterampilan yang sangat diperlukan. Buku ini hadir untuk
memenuhi kebutuhan pembaca akan pemahaman yang mendalam
dan praktis tentang bagaimana teknologi NLP dan model topik
seperti Latent Dirichlet Allocation (LDA) bekerja.

Buku ini disusun dengan alur yang sistematis, dimulai dari konsep
dasar NLP hingga ke teknik pemodelan topik yang lebih
kompleks. Setiap bab telah disusun dengan seksama untuk
memberikan wawasan yang tidak hanya mendasar tetapi juga
aplikatif, dengan berbagai contoh dan teknik yang relevan dengan
kebutuhan analisis data modern. Kami berharap buku ini dapat
memberikan manfaat yang luas bagi pembaca, baik yang baru
memulai di dunia NLP maupun yang ingin memperdalam
pengetahuan tentang pemodelan topik.

Akhir kata, kami mengucapkan terima kasih kepada seluruh pihak
yang telah berkontribusi dalam penyusunan buku ini. Semoga
buku Pengantar NLP dan Topik Model LDA ini dapat menjadi
sumber referensi yang berharga dan mendukung perkembangan
ilmu pengetahuan di bidang analisis data dan kecerdasan buatan
di Indonesia.

Penulis
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BAB 1
PENDAHULUAN

A. Definisi NLP

Natural Language Processing (NLP) adalah cabang dari
kecerdasan buatan yang berfokus pada interaksi antara komputer
dan bahasa manusia yang alami. NLP memungkinkan komputer
untuk memahami, menganalisis, memanipulasi, dan merespons
bahasa manusia. Tujuannya adalah untuk memfasilitasi
komunikasi yang mulus antara manusia dan mesin dengan
menggunakan bahasa sehari-hari yang kita gunakan.

Definisi NLP mencakup sejumlah teknologi dan algoritma yang
memungkinkan komputer untuk:

e Pemrosesan Teks: Memahami, menganalisis, dan
menghasilkan teks bahasa manusia. Ini melibatkan segala
hal mulai dari tokenisasi (memecah teks menjadi unit-unit
yang lebih kecil), hingga analisis sintaksis dan semantik.

e Pemahaman Bahasa: Memungkinkan komputer untuk
memahami konteks dari suatu teks, termasuk arti dari kata-
kata, frasa, atau kalimat, serta makna yang lebih luas
dalam sebuah konteks.

e Generasi Bahasa: Menghasilkan teks yang terstruktur
secara gramatikal dan bermakna, seperti dalam pembuatan
teks oleh chatbots atau penghasilan konten otomatis.

e Penerjemahan Bahasa: Menerjemahkan teks dari satu
bahasa ke bahasa lain dengan mempertahankan arti dan
konteksnya.

NLP memanfaatkan pendekatan statistik, mesin pembelajaran,
dan pemrosesan bahasa alami untuk mencapai tujuannya. Seiring
dengan perkembangan teknologi, model NLP yang menggunakan
deep learning seperti transformer-based models (misalnya, BERT,
GPT) telah menjadi semakin dominan dalam mengatasi banyak
tugas NLP kompleks.



Penerapan NLP sangat luas, mulai dari aplikasi sederhana seperti
koreksi ejaan hingga sistem yang kompleks seperti analisis
sentimen, pengenalan ucapan, dan pembuatan chatbot. Ini juga
memiliki peran yang penting dalam berbagai industri seperti
kesehatan, keuangan, pendidikan, dan lainnya untuk
mengoptimalkan pemrosesan data yang berkaitan dengan bahasa
manusia.

NLP merupakan komponen penting dalam berbagai aplikasi
perangkat lunak yang kita gunakan dalam kehidupan sehari-hari.
Di bagian ini, kami akan memperkenalkan beberapa aplikasi
utama dan juga melihat beberapa tugas umum yang akan Anda
lihat di berbagai aplikasi NLP.

Aplikasi inti:

* Platform email, seperti Gmail, Outlook, dll., menggunakan
NLP secara ekstensif untuk menyediakan serangkaian fitur
produk, seperti klasifikasi spam, kotak masuk prioritas,
ekstraksi acara kalender, pelengkapan otomatis, dll.

» Asisten berbasis suara, seperti Apple Siri, Google
Assistant, Microsoft Cortana, dan Amazon Alexa
mengandalkan serangkaian teknik NLP untuk berinteraksi
dengan pengguna, memahami perintah pengguna, dan
merespons dengan tepat.

* Mesin pencari modern, seperti Google dan Bing, yang
merupakan landasan internet saat ini, banyak
menggunakan NLP untuk berbagai subtugas, seperti
pemahaman kueri, perluasan kueri, menjawab pertanyaan,
pengambilan informasi, serta pemeringkatan dan
pengelompokan hasil, untuk beberapa nama.

» Layanan terjemahan mesin, seperti Google Translate, Bing
Microsoft Translator, dan Amazon Translate semakin
banyak digunakan di dunia saat ini untuk menyelesaikan
berbagai skenario dan kasus penggunaan bisnis.

Natural Language Processing (NLP) adalah cabang dari
kecerdasan buatan yang memfokuskan pada interaksi antara

komputer dan bahasa manusia, memungkinkan komputer untuk
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memahami, menganalisis, dan merespon bahasa manusia dalam
berbagai bentuknya. NLP mencakup sejumlah teknik dan
algoritma untuk memproses teks dan ucapan, termasuk
pemahaman bahasa, generasi bahasa, dan penerjemahan
antarbahasa. Dalam hal ini, NLP berfungsi sebagai jembatan
komunikasi antara manusia dan mesin, menggunakan bahasa
sehari-hari yang kita gunakan.

Sebagai cabang dari kecerdasan buatan, NLP memungkinkan
komputer untuk memahami, menganalisis, memanipulasi, dan
merespons bahasa manusia, memfasilitasi komunikasi antara
manusia dan mesin menggunakan bahasa alami (Agarwal, 2019).
Teknologi NLP mencakup pemrosesan teks, di mana komputer
diberdayakan untuk memahami dan menghasilkan teks bahasa
manusia, melibatkan proses dari tokenisasi hingga analisis
sintaksis dan semantic (Kjell et al., 2023).

Selain itu, pemahaman bahasa memungkinkan komputer untuk
memahami konteks dari teks, termasuk makna kata, frasa, atau
kalimat, serta makna yang lebih luas dalam konteks tertentu
(Basha et al., 2023). Generasi bahasa merupakan aspek lain dari
NLP, di mana komputer dapat menghasilkan teks yang terstruktur
secara gramatikal dan bermakna, seperti yang digunakan oleh
chatbots dan dalam penghasilan konten otomatis. Penerjemahan
bahasa, sebagai bagian dari NLP, melibatkan menerjemahkan teks
dari satu bahasa ke bahasa lain sambil mempertahankan makna
dan konteksnya (Hirschberg & Manning, 2015)

NLP menggunakan pendekatan statistik, mesin pembelajaran, dan
deep learning, termasuk model berbasis transformer seperti BERT
dan GPT, untuk mengatasi berbagai tugas NLP yang kompleks
(Mishra, 2019). Dengan perkembangan teknologi, model NLP
yang menggunakan deep learning seperti model berbasis
transformer telah menjadi semakin dominan dalam mengatasi
banyak tugas NLP yang kompleks, merevolusi cara komputer
memahami bahasa manusia.



Berikut adalah kerangka umum untuk sebuah tulisan yang
membahas tentang Natural Language Processing (NLP):

B. Sejarah singkat NLP

Sejarah Natural Language Processing (NLP) telah melalui
serangkaian perkembangan yang menarik sejak awalnya. Inilah
beberapa titik penting dalam sejarah NLP:

Awal Pengembangan tahun 1950-an dan 1960-an: Awalnya, NLP
muncul sebagai bagian dari kecerdasan buatan. Pada tahun 1950-
an, Alan Turing mengajukan pertanyaan dalam makalahnya yang
terkenal, "Apakah mesin bisa berpikir?" yang membuka jalan bagi
studi tentang kecerdasan buatan dan pemrosesan bahasa alami'.
1954: George Zipf, seorang linguistik, memberikan kontribusi
awal dengan hukum Zipf yang menggambarkan distribusi kata
dalam bahasa alami. 1950-an dan 1960-an: Pada masa ini, NLP
berfokus pada penerjemahan mesin dan pengembangan model
untuk pemahaman dan generasi bahasa.

Perkembangan Awal 1970-an hingga 1980-an: Era ini melihat
peningkatan dalam penerapan aturan dan pendekatan statistik
dalam NLP. Metode-metode seperti penguraian sintaksis berbasis
aturan dan model statistik mulai digunakan. 1980-an: Munculnya
sistem-sistem seperti SHRDLU (dikembangkan oleh Terry
Winograd) yang memungkinkan komunikasi dengan komputer
dalam bahasa alami, memberikan dorongan besar pada
pengembangan NLP2,

Era Statistik dan Mesin Pembelajaran: 1990-an hingga 2000-an:
Perkembangan metode-metode statistik semakin mendominasi.
Teknik-teknik sepertt HMM (Hidden Markov Models) dan
algoritma pembelajaran mesin lainnya diperkenalkan untuk tugas-
tugas NLP seperti pemodelan bahasa, penerjemahan, dan
pengenalan ucapan. Akhir 2000-an: Dengan kemajuan komputasi

L https://www.britannica.com/biography/Alan-Turing
2 https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence
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dan pendekatan deep learning, NLP mengalami revolusi baru.
Model-model seperti Word Embeddings (Word2Vec, GloVe)
memungkinkan representasi kata yang lebih baik, sementara
neural networks yang lebih dalam meningkatkan kinerja dalam
tugas-tugas NLP (Vajjala et al., 2012).

Era Transformer dan Model Bahasa Besar: 2010-an hingga saat
ini: Transformer, sebuah arsitektur neural network yang
memanfaatkan self-attention mechanism, mengubah lanskap
NLP?. Model-model besar seperti BERT (Bidirectional Encoder
Representations from Transformers) dari Google dan GPT
(Generative  Pre-Trained  Transformer) dari  OpenAl
mendefinisikan tingkat kinerja baru dalam pemahaman bahasa
dan tugas-tugas NLP lainnya (Vaswani et al., 2017).

Seiring dengan perubahan teknologi, dataset yang lebih besar, dan
kemajuan dalam algoritma, NLP terus berkembang pesat.
Kemampuan untuk memahami, menghasilkan, dan berinteraksi
dengan bahasa manusia semakin meningkat, memungkinkan
penerapan NLP yang lebih luas dalam berbagai industri dan
aplikasi sehari-hari.

C. Relevansi dan penerapan NLP dalam kehidupan

relevansi dan penerapan Natural Language Processing (NLP)
dalam kehidupan sehari-hari memiliki dampak yang signifikan
dalam berbagai konteks. Berikut adalah beberapa contoh konkret:

1. Asisten Virtual dan Chatbot: Relevansi: Membantu dalam
interaksi sehari-hari dengan teknologi. Contoh: Asisten
pribadi seperti Siri, Google Assistant, atau Alexa
memanfaatkan NLP untuk memahami perintah suara,
menjadikan penggunaan perangkat teknologi lebih mudah.
Chatbot yang terintegrasi dengan layanan pelanggan

3 https://blog.research.google/2017/08/transformer-novel-neural-
network.html



online juga menggunakan NLP untuk merespons
pertanyaan pelanggan.

Pencarian Informasi: Relevansi: Mempercepat akses dan
relevansi informasi. Contoh: Mesin pencari seperti Google
menggunakan NLP untuk memahami pertanyaan
pengguna dan menyajikan hasil pencarian yang relevan.
Pemahaman konteks dan arti di balik pertanyaan
memungkinkan hasil pencarian yang lebih akurat.
Analisis Sentimen Media Sosial: Relevansi: Memahami
pandangan publik terhadap suatu topik atau merek.
Contoh: Penggunaan NLP dalam analisis sentimen
membantu perusahaan memahami umpan balik pelanggan
di platform media sosial. Misalnya, menganalisis tweet
atau postingan Facebook untuk mengukur reaksi terhadap
produk tertentu.

Penerjemahan  Bahasa:  Relevansi:  Memfasilitasi
komunikasi lintas budaya. Contoh: Google Translate
menggunakan teknologi NLP untuk menerjemahkan teks
dari satu bahasa ke bahasa lain secara cepat dan akurat. Ini
sangat membantu dalam komunikasi global di antara
individu yang berbicara bahasa yang berbeda.
Otomatisasi Pekerjaan: Relevansi: Meningkatkan efisiensi
pekerjaan dan tugas-tugas rutin. Contoh: Penggunaan NLP
dalam pengelompokan email, pemrosesan formulir, atau
analisis dokumen membantu dalam mengotomatisasi
tugas-tugas yang membutuhkan pemahaman bahasa alami.
Sistem Pembelajaran Adaptif: Relevansi: Meningkatkan
pengalaman belajar yang disesuaikan dengan individu.
Contoh: Platform pembelajaran online menggunakan NLP
untuk menyediakan materi yang disesuaikan dengan
kebutuhan  belajar ~ masing-masing  siswa.  Ini
memungkinkan pengalaman belajar yang lebih efektif.
Pelayanan Kesehatan yang Lebih Baik: Relevansi:
Meningkatkan diagnosis dan pengelolaan informasi
medis. Contoh: NLP digunakan dalam analisis rekam
medis dan dokumen kesehatan untuk membantu dokter
dalam membuat diagnosis yang lebih cepat dan akurat,
serta memantau perkembangan pasien.
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8. Keamanan dan Penegakan Hukum: Relevansi: Mendeteksi

ancaman potensial dan kegiatan kriminal. Contoh:
Analisis teks pada platform online untuk mendeteksi
ancaman atau kegiatan yang mencurigakan, membantu
dalam keamanan siber dan penegakan hukum.

Penerapan NLP dalam kehidupan sehari-hari telah mengubah cara
kita berinteraksi dengan teknologi, membawa kemudahan dalam
akses informasi, dan meningkatkan efisiensi dalam banyak aspek
kehidupan (Tunstall et al., 2022).

D. Tujuan

Tujuan penulisan mengenai Natural Language Processing (NLP)
adalah untuk menyampaikan pemahaman yang mendalam tentang
konsep, perkembangan, penerapan, dan relevansi NLP dalam
berbagai bidang kehidupan. Beberapa tujuan spesifiknya meliputi:

1.

Pemahaman Konsep NLP: menjelaskan tentang apa itu
NLP, konsep dasar di baliknya, dan bagaimana komputer
dapat memahami, memproses, dan menghasilkan bahasa
manusia dengan bantuan teknologi.

. Menjelaskan Teknik dan Algoritma NLP: Memberikan

pemahaman tentang teknik-teknik utama dalam NLP
seperti tokenisasi, pengenalan entitas, penerjemahan,
analisis sentimen, dan model-model seperti transformer-
based models. Tujuannya adalah agar pembaca memahami

bagaimana NLP diimplementasikan dalam konteks yang
berbeda.

. Penerapan dalam Berbagai Bidang: Menjelaskan

penerapan NLP dalam industri, kesehatan, pendidikan,
keamanan, dan bidang lainnya. Menyoroti kontribusi NLP
dalam mengoptimalkan proses, meningkatkan efisiensi,
dan menghadirkan solusi dalam setiap bidang ini.
Tantangan dan Isu Etika: Membahas tantangan teknis
dalam pengembangan NLP, seperti ambiguitas bahasa dan
kurangnya data berkualitas, serta menyoroti isu-isu etika
seperti privasi data, bias dalam model, dan tanggung jawab
sosial dalam penggunaan teknologi NLP.
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5. Edukasi dan Informasi Masyarakat: Memberikan
pemahaman yang lebih luas kepada masyarakat umum
tentang bagaimana NLP memengaruhi kehidupan sehari-
hari mereka, baik dalam penggunaan aplikasi yang dikenal
seperti asisten virtual maupun implikasinya dalam industri
dan pengembangan teknologi masa depan.

6. Mendorong Pengembangan dan Penelitian Lanjutan:
Merangsang minat dan keingintahuan pembaca untuk
terlibat dalam pengembangan lebih lanjut dalam bidang
NLP, serta mendorong penelitian yang lebih mendalam
dalam pengembangan teknologi bahasa.

7. Menggugah Kesadaran akan Potensi dan Tantangan:
Memberikan pemahaman yang utuh tentang potensi luar
biasa NLP dalam merubah cara kita berinteraksi dengan
teknologi, sambil menyadari tantangan teknis dan etika
yang terkait.

Tujuan utama dari penulisan tentang NLP adalah untuk
memberikan pemahaman menyeluruh tentang konsep ini,
memberikan wawasan tentang peran dan pengaruhnya dalam
kehidupan sehari-hari, serta menyampaikan tantangan dan
peluang yang terkait dengan penggunaan teknologi bahasa ini.



BAB II
DASAR-DASAR NLP

A. Pengertian dasar tentang bahasa alami

Bahasa alami adalah bahasa yang digunakan oleh manusia untuk
berkomunikasi sehari-hari. Bahasa alami bersifat kompleks dan
fleksibel, dan dapat digunakan untuk berbagai tujuan, seperti
menyampaikan informasi, mengekspresikan emosi, dan
membangun hubungan. Ini adalah cara alami di mana manusia
menyampaikan ide, emosi, informasi, dan instruksi kepada orang
lain menggunakan kata-kata, frasa, kalimat, dan struktur bahasa
yang kompleks(Tunstall et al., 2022).

Bahasa alami terdiri dari berbagai komponen, antara lain:

* Morfologi adalah cabang linguistik yang mempelajari
bentuk kata. Morfologi meliputi pembentukan
kata, seperti  proses  pengimbuhan, pengulangan, dan
penggabungan.

» Sintaksis adalah cabang linguistik yang mempelajari
struktur kalimat. Sintaksis meliputi aturan-aturan yang
mengatur bagaimana kata-kata dapat digabungkan
menjadi kalimat yang bermakna.

* Semantik adalah cabang linguistik yang mempelajari
makna kata dan kalimat. Semantik meliputi hubungan
antara kata dan dunia nyata.

* Pragmatik adalah cabang linguistik yang mempelajari
penggunaan bahasa dalam konteks tertentu. Pragmatik
meliputi cara penggunaan bahasa untuk menyampaikan
maksud dan tujuan tertentu.

Perbedaan bahasa alami dan bahasa formal: Bahasa alami berbeda
dengan bahasa formal, seperti bahasa pemrograman. Bahasa
formal memiliki aturan yang ketat dan tidak fleksibel, sedangkan
bahasa alami memiliki aturan yang lebih longgar dan fleksibel.
Bahasa formal digunakan untuk tujuan-tujuan tertentu, seperti
menulis program komputer, sedangkan bahasa alami digunakan



untuk berbagai tujuan, seperti berkomunikasi, mengekspresikan
emosi, dan membangun hubungan.

Penerapan bahasa alami: Bahasa alami diterapkan dalam berbagai
bidang, antara lain: Bahasa alami digunakan dalam berbagai
produk dan layanan teknologi, seperti mesin penerjemah, asisten
virtual, dan chatbot. Bahasa alami digunakan untuk membuat
konten pembelajaran yang lebih menarik dan interaktif, serta
untuk memberikan umpan balik yang lebih personal kepada siswa.
Bahasa alami digunakan untuk mendiagnosis penyakit, untuk
memberikan layanan kesehatan yang lebih personal, dan untuk
meningkatkan penelitian medis. Bahasa alami digunakan untuk
meningkatkan layanan pelanggan, untuk meningkatkan
pemasaran, dan untuk membuat keputusan bisnis yang lebih baik.
Bahasa alami adalah alat komunikasi yang penting bagi manusia.
Bahasa alami memiliki berbagai komponen dan digunakan dalam
berbagai bidang.

Beberapa aspek penting dalam pengertian dasar tentang bahasa
alami meliputi:

* Kompleksitas dan Struktur: Bahasa alami memiliki
struktur kompleks yang terdiri dari unsur-unsur seperti
fonem (unit bunyi), morfem (unit makna terkecil), kata-
kata, frasa, kalimat, dan aturan sintaksis yang
mempengaruhi arti dari teks atau ucapan.

» Kekayaan dan Produktivitas: Bahasa alami memiliki sifat
kekayaan yang memungkinkan pembicara untuk
menghasilkan kombinasi yang tak terbatas dari kata-kata
dan kalimat untuk menyampaikan pesan yang berbeda
dalam situasi yang berbeda.

* Makna dan Konteks: Makna dalam bahasa alami sangat
bergantung pada konteks penggunaannya. Kata atau frase
dapat memiliki makna yang berbeda-beda tergantung pada
situasi dan bagaimana mereka digunakan dalam kalimat
atau percakapan.

* Ambiguitas: Bahasa alami sering kali mengandung
ambiguitas, di mana satu kata atau frasa dapat memiliki
beberapa makna yang berbeda. Ini dapat menjadi
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tantangan dalam pemrosesan bahasa alami karena
memerlukan pemahaman yang tepat dari konteksnya.

* Perubahan dan Variasi: Bahasa alami terus berkembang
dan bervariasi dari waktu ke waktu serta antar komunitas
bahasa. Perubahan ini dapat terjadi dalam kosakata, tata
bahasa, atau penggunaan kata-kata yang baru.

Dalam konteks Natural Language Processing (NLP), pemahaman
tentang bahasa alami menjadi dasar utama. Mesin atau komputer
yang memproses bahasa alami harus mampu memahami
kompleksitas struktur bahasa, mengatasi ambiguitas, dan
memperhitungkan konteks dalam rangka melakukan tugas-tugas
seperti pemrosesan teks, analisis sentimen, penerjemahan, dan
lainnya. Menciptakan model dan algoritma yang dapat memahami
dan memanipulasi bahasa alami dengan baik adalah inti dari
pengembangan dalam NLP.

B. Teknik-teknik dasar dalam NLP

Teknik-teknik dasar dalam Natural Language Processing (NLP)
adalah fondasi penting untuk memproses, menganalisis, dan
memahami bahasa manusia. Berikut adalah beberapa teknik dasar
yang sering digunakan dalam NLP(Atkinson-Abutridy, 2022):

» Tokenisasi: Proses memecah teks menjadi unit-unit yang
lebih kecil, seperti kata-kata, frasa, atau kalimat. Contoh:
Mengubah  kalimat menjadi kumpulan kata-kata
individual.

* Stopword Removal: Menghapus kata-kata umum yang
tidak memberikan nilai tambah dalam analisis teks, seperti
"dan", "atau", "di", dll. Dalam analisis sentimen, kata-kata
ini sering dihapus karena kurangnya kontribusi terhadap
penilaian keseluruhan.

* Stemming dan Lemmatisasi: Stemming: Proses mengubah
kata-kata menjadi bentuk dasar atau akar kata dengan
menghilangkan imbuhan. Lemmatisasi: Proses mengubah
kata-kata ke bentuk dasarnya (kata baku) berdasarkan
kamus atau aturan linguistik. Contoh: Mengubah kata-kata
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"berlari", "lari", dan "lari-lari" menjadi bentuk dasarnya
"lari".

Part-of-Speech (POS) Tagging: Mengidentifikasi dan
menandai jenis kata dalam sebuah kalimat, seperti kata
benda, kata kerja, kata sifat, dan lain-lain. Contoh:
Menandai kata "makan" sebagai kata kerja dan "rumah"
sebagai kata benda.

Named Entity Recognition (NER): Mendeteksi dan
menandai entitas penting dalam teks seperti nama orang,
tempat, tanggal, organisasi, dll. Contoh: Mengidentifikasi
"Bill Gates" sebagai nama orang atau "Microsoft" sebagai
nama perusahaan.

Word Embeddings dan Word Vectors: Representasi vektor
yang menyandikan makna kata-kata dalam bentuk
numerik, memungkinkan model untuk memahami
hubungan antar kata. Contoh: Model Word2Vec atau
GloVe menghasilkan vektor yang merepresentasikan kata-
kata dan maknanya dalam ruang vektor.

Analisis Sintaksis dan Semantik: Sintaksis: Menganalisis
struktur gramatikal dari kalimat, seperti hubungan antara
kata-kata dalam sebuah kalimat. Semantik: Memahami
makna dari kalimat atau teks, termasuk hubungan makna
antara kata-kata.

Analisis Sentimen: Mengidentifikasi, mengekstrak, atau
menganalisis sentimen dari teks, seperti apakah sebuah
ulasan bersifat positif, negatif, atau netral. Contoh: Menilai
apakah sebuah ulasan produk di platform e-commerce
adalah positif atau negatif. Teknik-teknik ini membentuk
dasar dalam pengolahan bahasa alami. Dalam kombinasi
dengan model-model machine learning atau deep learning,
teknik-teknik ini memungkinkan mesin untuk memahami,
menganalisis, dan menghasilkan teks dalam cara yang
semakin mirip dengan cara manusia.

1. Tokenisasi

Tokenisasi adalah proses memecah teks menjadi unit-unit yang
lebih kecil, seperti kata-kata, frasa, atau kalimat yang disebut
token. Setiap token mewakili bagian terpisah dari teks yang dapat
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dianggap sebagai unit yang berarti. Proses tokenisasi sangat
penting dalam Natural Language Processing (NLP) karena
membantu dalam analisis, pemrosesan, dan pemahaman teks oleh
mesin.

Konsep Tokenisasi: Unit Token: Token bisa berupa kata, frasa,
kalimat, atau bahkan karakter tergantung pada kebutuhan analisis
atau pemrosesan yang dilakukan. Pemisahan: Teks dapat
dipisahkan menjadi token berdasarkan spasi (untuk kata-kata),
tanda baca, atau aturan tertentu seperti tokenisasi berdasarkan
kata. Pembersihan dan Normalisasi: Tokenisasi dapat melibatkan
pembersihan teks dari karakter khusus, tanda baca, dan
normalisasi huruf menjadi huruf kecil atau huruf besar untuk
konsistensi. Berikut teknik untuk Melakukan Tokenisasi:

Tokenisasi Berdasarkan Spasi:
Pemisahan teks menjadi token berdasarkan spasi antara kata-kata.

Contoh: "Saya sedang belajar NLP." akan menjadi token: ["Saya",
"Sedang", Hbelajar"’ HNLPH, H.H]
Tokenisasi Berdasarkan Kata:

Memisahkan teks berdasarkan aturan kata, mengabaikan tanda
baca atau spasi.

Contoh: "Dia tidak suka berjalan-jalan." akan menjadi token:
["Dia", "tidak", "suka", "berjalan-jalan", "."]

Tokenisasi Berdasarkan Frasa atau Kalimat:
Memisahkan teks menjadi token berdasarkan frasa atau kalimat.

Contoh: "Saya belajar NLP. Ini menarik!" akan menjadi token
kalimat: ["Saya belajar NLP.", "Ini menarik!"]

Tokenisasi dengan Penggunaan Algoritma Khusus:

Menggunakan aturan linguistik atau algoritma yang lebih
kompleks untuk memisahkan teks menjadi token.
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Contoh: Algoritma seperti WordPunctTokenizer dalam Python
yang membagi teks menjadi kata-kata dan tanda baca sebagai
token terpisah. Langkah-langkah dalam Proses Tokenisasi:

a) Pemisahan Teks: Pisahkan teks menjadi unit-unit yang
relevan berdasarkan jenis token yang diinginkan (kata,
frasa, kalimat).

b) Pembersihan: Hilangkan karakter khusus, normalisasikan
huruf, dan lakukan pre-processing lainnya jika diperlukan.

c) Representasi dalam Bentuk Token: Hasil tokenisasi
diwakili dalam bentuk daftar atau struktur data lainnya
yang menyimpan token-token tersebut.

d) Pentingnya Tokenisasi: Memungkinkan mesin untuk
memproses teks dalam format yang dapat dipahami dan
diolah. Dasar untuk langkah-langkah pemrosesan NLP
lainnya seperti analisis sintaksis, pembangunan model,
atau analisis sentimen. Membantu dalam mempersiapkan
data untuk berbagai tugas NLP seperti machine translation,
analisis teks, dan lainnya. Tokenisasi merupakan langkah
penting dalam pemrosesan teks dalam NLP yang
membantu dalam memahami dan memanipulasi bahasa
manusia secara efisien oleh komputer atau mesin.

2. Stopword removal

Stopword removal adalah proses menghilangkan kata-kata umum
yang tidak memberikan kontribusi signifikan terhadap makna
dalam analisis teks. Kata-kata semacam ini, seperti "dan", "atau",
"di", "yang", dan lainnya, sering muncul dalam teks tetapi
cenderung tidak memiliki nilai informasi yang besar dalam
pemrosesan atau analisis teks. Proses penghapusan stopwords
sangat penting dalam tahap pra-pemrosesan dalam NLP untuk
meningkatkan kualitas analisis dan model yang dibangun. Berikut
adalah konsep Stopword Removal:

a) Kata-kata Umum: Stopwords adalah kata-kata umum yang
sering ditemukan dalam bahasa namun jarang membawa
makna khusus atau signifikan dalam analisis teks.

b) Mengurangi Noise: Penghapusan stopwords membantu
mengurangi noise dalam data teks. Ini memungkinkan
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fokus pada kata-kata yang lebih penting dalam
pemrosesan.

c) Pembersihan Teks: Proses ini melibatkan menghapus
stopwords dari teks, meninggalkan hanya kata-kata yang
dianggap lebih relevan dalam analisis.

3. Stemming dan Lemmatisasi

Stemming dan lemmatisasi adalah dua teknik dalam pemrosesan
bahasa alami yang bertujuan untuk mengubah kata-kata menjadi
bentuk dasar atau kata baku agar lebih mudah dianalisis atau
dipahami oleh mesin.

Stemming:

Konsep: Stemming adalah proses menghilangkan imbuhan atau
akhiran kata untuk mendapatkan bentuk dasar atau stem dari
sebuah kata. Tujuan: Mengurangi kata-kata ke bentuk dasarnya
sehingga kata-kata yang memiliki akar kata yang sama dapat
dianggap sebagai bentuk yang sama. Teknik: Stemming
menggunakan aturan sederhana untuk menghapus imbuhan kata.
Namun, hasil stemming tidak selalu merupakan kata yang benar
dalam bahasa yang sesungguhnya. Contoh: "Berlari", "lari", "lari-
lari" akan diubah menjadi bentuk dasarnya "lar".

Lemmatisasi:

Konsep: Lemmatisasi adalah proses mengubah kata-kata menjadi
bentuk dasar atau kata baku berdasarkan kamus atau aturan
linguistik. Tujuan: Menghasilkan kata yang merupakan bentuk
dasar kata dalam bahasa yang tepat. Teknik: Lemmatisasi
menggunakan kamus kata-kata yang telah didefinisikan dan
aturan linguistik untuk mengubah kata-kata menjadi bentuk dasar.
Contoh: "Berlari", "lari", "lari-lari" akan diubah menjadi bentuk
dasarnya "lari".

Perbandingan Antara Stemming dan Lemmatisasi:

Stemming: Lebih sederhana karena hanya menghapus imbuhan
untuk mendapatkan akar kata yang mungkin tidak selalu benar.
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Lemmatisasi: Lebih kompleks karena memerlukan pengetahuan
tentang kamus dan struktur bahasa untuk mengubah kata menjadi
bentuk yang benar secara linguistik.

Langkah-langkah dalam Stemming dan Lemmatisasi:

Tokenisasi: Pemecahan teks menjadi token (kata-kata).

Proses Stemming atau Lemmatisasi: Penggunaan algoritma atau
aturan linguistik untuk mengubah kata-kata menjadi bentuk dasar.
Pentingnya Stemming dan Lemmatisasi: Normalisasi Teks:
Membantu dalam normalisasi teks untuk analisis yang lebih
akurat. Reduksi Redundansi: Mengurangi redundansi kata-kata
yang memiliki akar yang sama. Baik stemming maupun
lemmatisasi digunakan untuk menyederhanakan kata-kata
menjadi bentuk dasar atau kata baku untuk memfasilitasi analisis
teks dalam NLP. Meskipun tidak sempurna, keduanya membantu
dalam memproses dan memahami teks dalam analisis bahasa
alami.

4. Part-of-Speech (POS) Tagging

Part-of-Speech (POS) tagging adalah proses yang dilakukan
dalam  Natural = Language  Processing (NLP) untuk
mengidentifikasi jenis kata dalam sebuah kalimat, seperti kata
benda, kata kerja, kata sifat, kata tanya, dan lainnya. Ini penting
dalam pemahaman makna dan struktur kalimat dalam bahasa
alami.

Konsep POS Tagging:

Jenis Kata: Setiap kata dalam sebuah kalimat memiliki peran atau
fungsi tertentu dalam kalimat tersebut, misalnya sebagai subjek,
predikat, atau objek.

Tujuan: POS tagging bertujuan untuk mengidentifikasi peran atau
fungsi setiap kata dalam kalimat untuk memahami struktur dan
makna kalimat.

Teknik untuk Melakukan POS Tagging:

Menggunakan Model Statistik: Memanfaatkan model statistik
seperti Hidden Markov Models (HMM) atau Conditional Random
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Fields (CRF) untuk memprediksi jenis kata berdasarkan konteks
kalimat.

Pemanfaatan Kamus Kata: Menggunakan kamus kata-kata yang
sudah diberi label jenis kata untuk mengidentifikasi tipe kata.
Penggunaan Algoritma Berbasis Aturan: Penggunaan aturan
linguistik dan struktur bahasa untuk menentukan jenis kata dalam
konteks kalimat.

Langkah-langkah dalam Proses POS Tagging:

Tokenisasi: Pemisahan kata-kata dalam kalimat menjadi token.
Ekstraksi Fitur: Mendapatkan fitur-fitur dari kata-kata yang dapat
membantu dalam prediksi jenis kata, seperti kata sebelumnya atau
kata-kata yang terkait dalam kalimat.

Pemodelan: Menggunakan model (statistik atau berbasis aturan)
untuk memprediksi jenis kata untuk setiap token dalam kalimat.
Labeling: Memberikan label atau tag untuk setiap kata dalam
kalimat berdasarkan jenis kata yang diprediksi.

Contoh POS Tagging:

Dalam kalimat "Ani membaca buku di perpustakaan," hasil POS
taggingnya mungkin seperti:

"Ani" -> Noun (Kata benda)

"membaca" -> Verb (Kata kerja)

"buku" -> Noun (Kata benda)

"di" -> Preposition (Kata depan)

"perpustakaan" -> Noun (Kata benda)

Pentingnya POS Tagging:

Pemahaman Struktur Kalimat: Memahami struktur kalimat dan
hubungan antara kata-kata dalam konteks kalimat.

Pemrosesan Bahasa yang Lebih Lanjut: Membantu dalam
berbagai tugas NLP seperti analisis sintaksis, parsing, dan
terjemahan.

POS Tagging membantu dalam memahami makna dan struktur
kalimat, yang merupakan langkah penting dalam analisis dan
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pemrosesan teks dalam NLP. Ini memungkinkan mesin untuk
memahami peran dan hubungan antar kata-kata dalam konteks
kalimat.

5. Named Entity Recognition (NER)

Named Entity Recognition (NER) adalah proses dalam Natural
Language  Processing (NLP) yang bertuyjuan untuk
mengidentifikasi dan menandai entitas penting dalam teks seperti
nama orang, tempat, tanggal, organisasi, dan lainnya. Tujuannya
adalah untuk mengenali dan mengekstrak informasi yang relevan
dari teks yang dapat dianggap sebagai entitas (Li et al., 2022).

NER adalah teknik penting dalam NLP karena memungkinkan
pengenalan dan penandaan entitas penting dalam teks, yang
mendukung berbagai tugas pemrosesan bahasa alami dan analisis
teks yang lebih lanjut. Named Entity Recognition (NER)
merupakan salah satu tugas dasar dalam Natural Language
Processing (NLP). NER bertujuan untuk mengidentifikasi dan
mengklasifikasikan entitas bernama dalam teks, seperti nama
orang, nama organisasi, lokasi, tanggal, dan waktu.

Pengenalan entitas dinamis telah berkembang secara signifikan
dalam dekade terakhir, dengan penelitian terbaru yang semakin
banyak mengadopsi pembelajaran mendalam, pembelajaran
transfer, basis pengetahuan, dan metode lainnya. Penelitian NER
untuk bahasa-bahasa sumber daya rendah juga meningkat pesat
(Sun et al., 2018). Salah satu tantangan utama dalam NER adalah
mengatasi entitas bersarang dan tumpang tindih, di mana token
yang sama bisa menjadi bagian dari lebih dari satu kategori entitas.
Strategi baru yang diusulkan melibatkan memformalkan tugas
ekstraksi entitas sebagai tugas pemahaman bacaan berbasis kueri,
di mana tugas mengekstraksi entitas dengan PER diformalkan
sebagai menjawab pertanyaan "orang mana yang disebutkan
dalam teks?" (Meng et al., 2019).

Dalam hal pengembangan model NER, telah diperkenalkan S-
NER, model NER berbasis rentang yang terlebih dahulu membagi

teks mentah menjadi rentang teks dan menganggapnya sebagai
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kandidat entitas. Ini kemudian langsung memperoleh jenis rentang
dengan melakukan klasifikasi jenis entitas pada representasi
semantik rentang, yang menghilangkan kebutuhan akan
ketergantungan label (Yu et al., 2022). Metode yang diusulkan ini
telah menunjukkan peningkatan signifikan dalam performa NER,
terutama dalam menangani jumlah contoh pendukung yang
rendah, yang menyoroti pentingnya mengadaptasi strategi NER
untuk domain dan tantangan baru (Ziyadi et al., 2020). Dengan
terus berkembangnya metode dan pendekatan baru dalam NER,
penelitian di bidang ini tetap menjadi area yang aktif dan penting
dalam pemrosesan bahasa alami, memberikan kontribusi
signifikan terhadap berbagai aplikasi NLP yang bergantung pada
pemahaman teks yang akurat dan mendalam (Hannon et al., 2024)

Konsep Named Entity Recognition (NER):

Entitas Nama: Dalam sebuah teks, entitas nama adalah segmen
yang merujuk kepada orang, tempat, tanggal, organisasi, dan
entitas penting lainnya yang memiliki makna spesifik dalam
konteks yang diberikan. Tujuannya untuk Mengidentifikasi dan
menandai entitas penting ini dalam teks untuk menggali informasi
yang berguna. Teknik wuntuk Melakukan Named Entity
Recognition (NER), Pemodelan Berbasis Aturan: Menggunakan
aturan linguistik atau pola tertentu untuk mengidentifikasi entitas
nama dalam teks.

Pemanfaatan Machine Learning: Menerapkan pendekatan
machine learning seperti Conditional Random Fields (CRF) atau
deep learning menggunakan model seperti Recurrent Neural
Networks (RNN) atau Transformer untuk mengidentifikasi
entitas.

Langkah-langkah dalam Proses Named Entity Recognition

(NER):

1. Tokenisasi: Pemisahan teks menjadi token atau kata-kata.

2. POS Tagging: Identifikasi jenis kata-kata dalam teks
menggunakan Part-of-Speech tagging.

3. Feature Extraction: Ekstraksi fitur yang relevan, seperti kata
sebelumnya, jenis kata, atau pola tertentu dalam teks.
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4. Pemodelan dan Prediksi: Menggunakan model machine
learning atau aturan tertentu untuk memprediksi dan menandai
entitas dalam teks.

Contoh Named Entity Recognition (NER):

Dalam kalimat "Mark Zuckerberg mendirikan Facebook pada
tahun 2004 di Harvard University," hasil NER-nya mungkin
seperti:

"Mark Zuckerberg" -> Nama Orang (Person)

"Facebook" -> Organisasi (Organization)

"2004" -> Tanggal (Date)

"Harvard University" -> Lokasi (Location)

Pentingnya Named Entity Recognition (NER):

Ekstraksi Informasi: Membantu dalam mengekstrak informasi
penting dari teks seperti nama, tempat, atau tanggal.

Analisis Data: Memungkinkan pemrosesan lebih lanjut untuk
analisis data seperti analisis sentimen, klasifikasi teks, dan
lainnya.

Entitas bernama adalah frasa benda (noun phrase) yang memiliki

tipe spesifik. Misalnya, "John Doe" adalah nama orang,

"Microsoft" adalah nama organisasi, "Jakarta" adalah lokasi,

"2023-12-13" adalah tanggal, dan "10:00" adalah waktu. Teknik

untuk melakukan NER. Ada dua pendekatan utama untuk

melakukan NER, yaitu pendekatan berbasis aturan dan

Pendekatan berbasis pembelajaran mesin.

1. Pendekatan berbasis aturan: Pendekatan berbasis aturan
menggunakan serangkaian aturan untuk mengidentifikasi dan
mengklasifikasikan entitas bernama. Aturan-aturan ini
biasanya dibuat oleh ahli bahasa berdasarkan pengetahuan
mereka tentang bahasa.

2. Keuntungan dari pendekatan berbasis aturan: Efektif untuk
kasus-kasus yang sederhana dan terdefinisi dengan baik. Dapat
digunakan untuk bahasa yang tidak memiliki data pelatihan
yang besar

3. Kerugian dari pendekatan berbasis aturan: Sulit untuk
membuat aturan yang lengkap dan akurat untuk semua kasus.
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Sulit untuk mengadaptasi aturan untuk bahasa yang baru atau
berubah.

Pendekatan berbasis pembelajaran mesin. Pendekatan berbasis
pembelajaran mesin menggunakan model pembelajaran mesin
untuk mengidentifikasi dan mengklasifikasikan entitas bernama.
Model pembelajaran mesin dilatih pada data pelatihan yang berisi
contoh entitas bernama. Keuntungan dari pendekatan berbasis
pembelajaran mesin: Dapat menangani kasus-kasus yang
kompleks dan tidak terdefinisi dengan baik. Dapat beradaptasi
dengan data pelatihan yang baru atau berubah.

Kerugian dari pendekatan berbasis pembelajaran mesin:
Membutuhkan data pelatihan yang besar. Dapat menghasilkan
hasil yang tidak akurat jika data pelatihan tidak representative.
Kombinasi pendekatan berbasis aturan dan pembelajaran mesin.
Pendekatan berbasis aturan dan pembelajaran mesin dapat
dikombinasikan untuk meningkatkan akurasi NER. Misalnya,
pendekatan  berbasis  aturan  dapat  digunakan  untuk
mengidentifikasi entitas bernama yang umum, dan pendekatan
berbasis pembelajaran mesin dapat digunakan untuk
mengidentifikasi entitas bernama yang tidak umum. Pencarian
informasi. NER dapat digunakan untuk mengidentifikasi entitas
bernama dalam dokumen teks. Misalnya, NER dapat digunakan
untuk mengidentifikasi nama orang, nama organisasi, dan lokasi
dalam dokumen berita. Pemrosesan bahasa alami. NER dapat
digunakan untuk berbagai tugas pemrosesan bahasa alami, seperti:

* **Peringkasan teks**

* **Pertanyaan jawab**

* **Pemahaman bahasa alami**

Aplikasi bisnis: NER dapat digunakan untuk berbagai aplikasi
bisnis, seperti:

* %% Analisis sentimen®*

* #*Pencegahan penipuan™®*

* **Pemasarkan™*
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Named Entity Recognition (NER) adalah tugas dasar dalam
Natural Language Processing (NLP). NER bertujuan untuk
mengidentifikasi dan mengklasifikasikan entitas bernama dalam
teks. Ada dua pendekatan utama untuk melakukan NER, yaitu:
Pendekatan berbasis aturan dan Pendekatan berbasis pembelajaran
mesin. Pendekatan berbasis aturan efektif untuk kasus-kasus yang
sederhana dan terdefinisi dengan baik, sedangkan pendekatan
berbasis pembelajaran mesin dapat menangani kasus-kasus yang
kompleks dan tidak terdefinisi dengan baik. Pendekatan berbasis
aturan dan pembelajaran mesin dapat dikombinasikan untuk
meningkatkan akurasi NER. NER memiliki berbagai penerapan,
antara lain: Pencarian informasi. Pemrosesan bahasa alami.
Aplikasi bisnis

6. Word Embeddings dan Word Vectors

Word Embeddings dan Word Vectors adalah teknik penting dalam
Natural Language Processing (NLP) yang digunakan untuk
merepresentasikan kata-kata dalam bentuk vektor numerik dalam
ruang dimensi yang lebih rendah. Representasi ini memungkinkan
mesin untuk memahami dan memanipulasi makna kata-kata
dalam pemrosesan bahasa alami.

Word embeddings dan word vectors dalam Natural Language
Processing (NLP) memiliki peran penting karena kemampuan
mereka untuk mengkodekan hubungan antar kata dalam ruang
vektor. Hal ini bermanfaat untuk berbagai tugas pemrosesan
bahasa, dari komponen dalam sistem NLP hingga alat untuk
analisis  linguistik dalam studi bahasa dan literatur.
Menginterpretasikan embeddings dan memahami hubungan
gramatikal dan semantik yang dikodekan di dalamnya berguna
namun menantang. Visualisasi dapat membantu dalam interpretasi
embeddings tersebut (Heimerl & Gleicher, 2018).

Word embeddings merupakan teknik pembelajaran fitur yang
memetakan kata-kata dari kosakata ke dalam vektor bilangan riil
dalam ruang berdimensi rendah. Dengan memanfaatkan korpus
teks tanpa label yang besar, representasi ruang kontinu ini dapat
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dihitung untuk menangkap informasi sintaktis dan semantik
tentang kata-kata. Ketika digunakan sebagai representasi input
dasar, word embeddings telah terbukti menjadi aset besar untuk
berbagai tugas NLP. Teknik-teknik terkini untuk mendapatkan
word embeddings sebagian besar berbasis pada model bahasa
neural network (NNLM), di mana vektor kata diinisialisasi secara
acak dan kemudian dilatih untuk memprediksi konteks di mana
kata-kata yang bersangkutan cenderung muncul (Gavhane et al.,
2022).

Dalam pemrosesan Bahasa Gujarati, yang merupakan bahasa
dengan sumber daya rendah, word2vec dan fastText merupakan
beberapa teknik word embeddings yang paling umum. Sementara
banyak pekerjaan telah dilakukan untuk mendapatkan embeddings
dalam bahasa dengan sumber daya kaya seperti Bahasa Inggris,
masih ada pekerjaan yang harus dilakukan untuk bahasa dengan
sumber daya rendah. Fokus pada pengembangan vektor kata untuk
bahasa Gujarati dan penyiapan dataset tes analogi untuk
mengevaluasi akurasi embeddings yang diperoleh telah dilakukan.
Kinerja model juga dibandingkan dengan model Gujarati pra-latih
yang sudah tersedia (Joshi et al., 2019).

Word embeddings (representasi vektor kata yang didistribusikan)
telah menjadi komponen penting dalam banyak tugas pemrosesan
bahasa alami (NLP) seperti terjemahan mesin, analisis sentimen,
analogi kata, pengenalan entitas bernama, dan kesamaan kata.
Meskipun demikian, pekerjaan terkini hanya menyediakan vektor
kata untuk bahasa Hausa yang dilatih menggunakan fastText,
terdiri dari hanya beberapa vektor kata. Penelitian ini menyajikan
model embeddings kata menggunakan model Continuous Bag of
Words (CBoW) dan Skip Gram dari Word2Vec. Model-model ini,
hauWE (Hausa Words Embedding), lebih besar dan lebih baik dari
model sebelumnya, membuatnya lebih berguna dalam tugas-tugas
NLP. Untuk membandingkan model, mereka digunakan untuk
memprediksi 10 kata yang paling mirip dengan 30 kata Hausa
yang dipilih secara acak. hauWE CBoW dengan akurasi prediksi
88,7% dan hauWE SG dengan 79,3% jauh melampaui performa
model [1] dengan 22,3% (Abdulmumin & Galadanci, 2019).
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Konsep Word Embeddings dan Word Vectors:

1. Representasi Numerik: Kata-kata dalam teks diubah menjadi
vektor numerik dalam ruang dimensi yang lebih rendah.

2. Makna dan Hubungan: Vektor kata-kata yang serupa atau
terkait secara semantik ditempatkan lebih dekat satu sama lain
dalam ruang vektor.

Teknik untuk Melakukan Word Embeddings:

Word2Vec: Salah satu teknik paling terkenal yang mempelajari
representasi vektor kata-kata dengan memanfaatkan jaringan saraf
tiruan. GloVe (Global Vectors for Word Representation): Teknik
lain yang menggabungkan informasi dari matriks co-occurrence
kata-kata dalam corpus untuk menghasilkan representasi vektor
kata. Langkah-langkah dalam Proses Word Embeddings:

1. Pra-Pemrosesan: Pra-pemrosesan teks seperti tokenisasi,
penghapusan stopwords, stemming, atau lemmatisasi.

2. Pembuatan Model: Pembuatan model Word2Vec atau GloVe
dengan menggunakan data teks yang besar.

3. Pelatihan Model: Melatih model pada teks yang digunakan
untuk membuat representasi vektor kata-kata.

4. Contoh Word Embeddings: Misalkan representasi vektor untuk
kata-kata "king" dan "queen". Dalam ruang vektor, mereka
mungkin memiliki hubungan yang serupa dengan kata "royal"
atau "throne" karena keterkaitan semantiknya.

5. Pentingnya Word Embeddings: Semantik yang Lebih Dalam:
Memungkinkan mesin untuk memahami hubungan dan makna
antara kata-kata dalam konteks.

6. Pemrosesan Bahasa yang Lebih Baik: Meningkatkan kinerja
model dalam berbagai tugas NLP seperti analisis sentimen,
penerjemahan, dan klasifikasi teks.

Word Embeddings menjadi kunci dalam NLP karena

memungkinkan representasi kata-kata dalam ruang vektor

numerik yang memperhitungkan hubungan semantik dan makna.

Representasi ini memperkaya pemahaman mesin terhadap bahasa

manusia dan mendukung kinerja model dalam berbagai tugas

NLP.
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Ada berbagai teknik yang dapat digunakan untuk melakukan word
embeddings dan word vectors. Beberapa teknik yang umum
digunakan adalah: Skip-gram, Continuous Bag-of-Words
(CBOW), Glove, Word2Vec

Skip-gram adalah teknik yang menggunakan model pembelajaran
mesin untuk memprediksi kata-kata di sekitar kata tertentu.
Misalnya, model skip-gram akan dilatih untuk memprediksi kata
"makan" jika kata "nasi" muncul di sekitarnya. CBOW adalah
teknik yang menggunakan model pembelajaran mesin untuk
memprediksi kata tertentu berdasarkan kata-kata di sekitarnya.
Misalnya, model CBOW akan dilatih untuk memprediksi kata
"nasi" jika kata "makan" dan "ayam" muncul di sekitarnya. Glove
adalah teknik yang menggunakan metode statistik untuk
menghitung representasi vektor dari kata-kata. Metode Glove
menghitung representasi vektor dari kata-kata berdasarkan
frekuensi kemunculan kata-kata dalam dokumen teks.

Word2Vec adalah teknik yang menggabungkan teknik skip-gram
dan CBOW. Teknik Word2Vec dapat menghasilkan representasi
vektor dari kata-kata yang lebih akurat daripada teknik skip-gram
atau CBOW saja. Word embeddings dan word vectors adalah
representasi vektor dari kata-kata dalam bahasa alami. Word
embeddings dan word vectors dapat digunakan untuk berbagai
tugas pemrosesan bahasa alami. Ada berbagai teknik yang dapat
digunakan untuk melakukan word embeddings dan word vectors.
Beberapa teknik yang umum digunakan adalah skip-gram,
CBOW, Glove, dan Word2Vec.

25



C. Algoritma dan Model dalam NLP

Algoritma dan model dalam NLP dapat diklasifikasikan menjadi
dua kategori utama, yaitu: Algoritma berbasis aturan dan
Algoritma berbasis pembelajaran mesin.

Algoritma berbasis aturan

Algoritma berbasis aturan menggunakan serangkaian aturan untuk
menyelesaikan tugas NLP. Aturan-aturan ini biasanya dibuat oleh
ahli bahasa berdasarkan pengetahuan mereka tentang bahasa.
Beberapa contoh algoritma berbasis aturan dalam NLP adalah:

1. Algoritma part-of-speech tagging

2. Algoritma named entity recognition

3. Algoritma sentiment analysis

4. Algoritma berbasis pembelajaran mesin

Algoritma berbasis pembelajaran mesin menggunakan model
pembelajaran mesin untuk menyelesaikan tugas NLP. Model
pembelajaran mesin dilatih pada data pelatihan yang berisi contoh
input dan output. Algoritma machine translation, Algoritma
summarization, Algoritma question answering. Selain itu, ada
beberapa algoritma dan model NLP yang khusus untuk tugas
tertentu, seperti:

Algoritma speech recognition, Algoritma natural language
generation, Algoritma natural language understanding. Berikut
adalah penjelasan lebih rinci tentang beberapa algoritma dan
model NLP yang umum digunakan: Algoritma part-of-speech
tagging, Algoritma part-of-speech tagging (POS tagging) adalah
algoritma yang digunakan untuk menentukan kelas kata (part-of-
speech) dari setiap kata dalam kalimat. Kelas kata menentukan
fungsi kata dalam kalimat. Beberapa contoh kelas kata adalah:

Nama (noun)

Kata kerja (verb)

Kata sifat (adjective)
Kata keterangan (adverb)
Kata ganti (pronoun)
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Algoritma POS tagging dapat digunakan untuk berbagai tugas
NLP, seperti:

Pencarian informasi, Pemahaman bahasa alami, Pertanyaan
jawab, Algoritma named entity recognition. Algoritma named
entity recognition (NER) adalah algoritma yang digunakan untuk
mengidentifikasi dan mengklasifikasikan entitas bernama dalam
teks. Entitas bernama adalah frasa benda (noun phrase) yang
memiliki tipe spesifik, seperti nama orang, nama organisasi,
lokasi, tanggal, dan waktu. Beberapa contoh entitas bernama
adalah:

John Doe (nama orang)
Microsoft (nama organisasi)
Jakarta (lokasi)

2023-12-13 (tanggal)

10:00 (waktu)

Algoritma NER dapat digunakan untuk berbagai tugas NLP,
seperti: Pencarian informasi, Pemahaman bahasa alami, Aplikasi
bisnis. Algoritma machine translation: Algoritma machine
translation (MT) adalah algoritma yang digunakan untuk
menerjemahkan teks dari satu bahasa ke bahasa lain. Algoritma
MT menggunakan model pembelajaran mesin untuk mempelajari
hubungan antara kata dan frasa dalam dua bahasa. Algoritma MT
dapat digunakan untuk berbagai keperluan, seperti: Penerjemahan
dokumen, Penerjemahan percakapan, Penerjemahan situs web

Algoritma summarization: Algoritma summarization adalah
algoritma yang digunakan untuk membuat ringkasan dari teks.
Algoritma summarization menggunakan model pembelajaran
mesin untuk mengidentifikasi informasi yang penting dalam teks
dan untuk menyusun informasi tersebut menjadi ringkasan yang
ringkas dan informatif. Algoritma summarization dapat digunakan
untuk berbagai keperluan, seperti: Pencarian informasi,
Pemahaman bahasa alami, Layanan pelanggan
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Algoritma question answering: Algoritma question answering
(QA) adalah algoritma yang digunakan untuk menjawab
pertanyaan tentang teks. Algoritma QA menggunakan model
pembelajaran mesin untuk memahami pertanyaan dan untuk
mencari jawaban yang relevan dalam teks. Algoritma QA dapat
digunakan untuk berbagai keperluan, seperti: Pendidikan,
Pencarian informasi, Layanan pelanggan. Terdapat banyak
algoritma dan model yang digunakan dalam Natural Language
Processing (NLP) untuk berbagai tugas analisis bahasa. Berikut
adalah beberapa di antaranya:

Naive Bayes: Digunakan dalam klasifikasi teks atau analisis
sentimen berdasarkan probabilitas dan teorema Bayes. Support
Vector Machines (SVM): Model pembelajaran yang digunakan
untuk klasifikasi teks dan pembedaan antara kelas-kelas yang
berbeda dalam data teks. Hidden Markov Models (HMM):
Digunakan dalam pemodelan urutan kata-kata atau kata-kata
tersembunyi dalam konteks seperti tugas NER atau POS tagging.
Conditional Random Fields (CRF): Algoritma yang digunakan
dalam tugas NER, POS tagging, atau labeling urutan berdasarkan
ketergantungan kondisional antara elemen dalam urutan.

Model dalam NLP:

Transformer: Model yang revolusioner dalam NLP, seperti
BERT, GPT (Generative Pre-trained Transformer), dan lainnya.
Mereka menggunakan self-attention mechanism  untuk
memproses teks dan menghasilkan representasi yang lebih baik.
Recurrent Neural Networks (RNN): Model yang memproses
data urutan seperti teks dan menghasilkan output berdasarkan
pemahaman konteks sebelumnya. Variannya seperti LSTM dan
GRU sering digunakan dalam NLP. Word2Vec: Model yang
menghasilkan representasi vektor kata-kata dalam ruang vektor
berdasarkan kemunculan kata-kata dalam konteks tertentu. GloVe
(Global Vectors for Word Representation): Model yang
menghasilkan representasi vektor kata-kata berdasarkan matriks
co-occurrence kata-kata dalam teks. BERT (Bidirectional
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Encoder Representations from Transformers): Model yang
menggunakan transformer dan pelatihan unsupervised learning
pada teks besar untuk memahami konteks dan menyediakan
representasi yang lebih baik untuk kata-kata. CNN
(Convolutional Neural Networks): Meskipun awalnya
digunakan dalam pengolahan citra, varian CNN juga digunakan
dalam NLP untuk tugas seperti klasifikasi teks dan analisis
sentiment (Tunstall et al., 2022).

Pendekatan Hybrid:

Beberapa model NLP menggabungkan berbagai elemen dari
model-model yang berbeda atau menggunakan strategi ensemble
untuk meningkatkan kinerja dan kemampuan dalam pemrosesan
bahasa alami. Setiap algoritma dan model memiliki keunggulan
dan kelemahan tertentu, dan pemilihan yang tepat tergantung pada
tugas spesifik dalam NLP yang akan dijalankan serta ketersediaan
data yang tersedia. Kombinasi model dan pendekatan tertentu
sering kali memberikan kinerja yang lebih baik dalam berbagai
konteks pengolahan bahasa alami.

1. Naive Bayes

Naive Bayes merupakan algoritma klasifikasi yang menggunakan
Teorema Bayes untuk menentukan probabilitas kelas suatu sampel
data berdasarkan fitur-fitur yang diamati. Meskipun sering
digunakan dalam konteks klasifikasi teks atau analisis sentimen,
Naive Bayes juga diterapkan dalam berbagai masalah klasifikasi
di bidang Machine Learning.

Konsep Naive Bayes: Teorema Bayes: Mendasarkan diri pada
Teorema Bayes yang menyatakan hubungan antara probabilitas
posterior (kemungkinan kejadian setelah melihat data baru)
dengan probabilitas prior (kejadian sebelum melihat data baru)
dan likelihood (kemungkinan data yang diamati jika kelas
tertentu).
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Klasifikasi dengan Probabilitas: Naive Bayes memprediksi kelas
suatu sampel data berdasarkan perhitungan probabilitas kelas
tersebut dengan mengasumsikan independensi antara fitur-fitur
yang diamati (yang sering disebut "naive" karena asumsi ini).

Proses Naive Bayes dalam Klasifikasi Teks atau Analisis
Sentimen: Pra-Pemrosesan: Tahap ini melibatkan tokenisasi teks,
penghapusan stopwords, dan representasi fitur-fitur teks dalam
bentuk vektor (misalnya, TF-IDF atau Bag-of-Words).
Penghitungan Probabilitas: Menghitung probabilitas masing-
masing kelas (positif, negatif, atau kelas lainnya) berdasarkan
kemunculan kata-kata atau fitur-fitur yang diamati dalam data
pelatihan. Teorema Bayes: Memanfaatkan Teorema Bayes untuk
menghitung probabilitas posterior dari kelas berdasarkan fitur-
fitur yang diamati dalam data uji. Klasifikasi: Memilih kelas
dengan probabilitas posterior tertinggi sebagai prediksi kelas
untuk sampel data yang diamati.

Keunggulan dan Keterbatasan Naive Bayes: Keunggulan: Cepat
dalam pembelajaran dan prediksi, bahkan dengan dataset yang
besar. Efektif dalam klasifikasi teks dengan fitur yang besar.
Keterbatasan: Asumsi naif tentang independensi fitur bisa tidak
realistis dalam konteks nyata. Kinerjanya dapat terpengaruh jika
ada ketergantungan antara fitur-fitur yang diamati.

Aplikasi Naive Bayes dalam NLP: Analisis Sentimen: Klasifikasi
teks berdasarkan sentimen (positif, negatif, atau netral).
Klasifikasi Teks: Pengelompokan teks ke dalam kategori tertentu
seperti klasifikasi berita, spam detection, dan lainnya. Naive
Bayes, meskipun memiliki asumsi naif tentang independensi fitur,
tetap menjadi salah satu algoritma klasifikasi yang cukup populer
dalam NLP karena kemampuannya dalam menangani klasifikasi
teks dengan baik, terutama ketika dataset besar dan fitur-fitur teks
yang kompleks terlibat.
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2. Support Vector Machines (SVM)

Support Vector Machines (SVM) merupakan salah satu model
pembelajaran yang umum digunakan dalam klasifikasi, termasuk
dalam konteks analisis teks dalam Natural Language Processing
(NLP). SVM  digunakan untuk  memisahkan  dan
mengklasifikasikan data ke dalam kelas-kelas yang berbeda
dengan mencari hyperplane terbaik yang memisahkan antara
kelas-kelas tersebut di dalam ruang fitur.

Konsep SVM:

Hyperplane: SVM mencari hyperplane (bidang dalam kasus dua
dimensi) yang memisahkan data ke dalam kelas-kelas yang
berbeda. Pemisahan ini dilakukan sedemikian rupa sehingga jarak
(marginal) antara hyperplane dan titik-titik data (yang disebut
support vectors) dari kedua kelas adalah maksimum.

Pemisahan Non-linear: SVM dapat mengatasi masalah
pemisahan yang tidak linier dengan menggunakan fungsi kernel
yang dapat mentransformasi data ke dalam dimensi yang lebih
tinggi, memungkinkan pembuatan hyperplane yang lebih
kompleks untuk pemisahan yang lebih baik.

Proses SVM dalam Klasifikasi Teks:

1. Pra-Pemrosesan: Mirip dengan langkah pra-pemrosesan
untuk model lainnya dalam NLP, seperti tokenisasi,
penghapusan stopwords, dan pembuatan vektor fitur seperti
TF-IDF atau Bag-of-Words.

2. Pemilihan Hyperplane: SVM akan mencari hyperplane
terbaik yang memisahkan antara kelas-kelas dalam ruang fitur
berdasarkan vektor fitur teks.

3. Penentuan Margin Terbesar: SVM berusaha menemukan
hyperplane yang memiliki margin terbesar, yaitu jarak terbesar
antara support vectors dan hyperplane tersebut.

4. Penentuan Kelas: Setelah mendapatkan hyperplane terbaik,
SVM dapat mengklasifikasikan data baru ke dalam kelas yang
sesuai berdasarkan posisi relatifnya terhadap hyperplane.
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Keunggulan dan Keterbatasan SVM: Keunggulan: Efektif dalam
ruang fitur berdimensi tinggi, mampu menangani dataset yang
kompleks, dan dapat berkinerja baik bahkan dengan jumlah fitur
yang lebih besar. Keterbatasan: Rentan terhadap overfitting jika
hyperparameter tidak disesuaikan dengan baik. Membutuhkan
pemrosesan yang memakan waktu untuk pemilihan parameter
yang tepat.

Aplikasi SVM dalam NLP yaitu Klasifikasi Teks: Klasifikasi
dokumen, analisis sentimen, deteksi spam, kategorisasi teks, dan
lainnya. Pengelompokan Teks: SVM digunakan untuk
mengelompokkan teks-teks dengan karakteristik yang serupa.
SVM merupakan algoritma yang kuat dalam klasifikasi teks dan
telah banyak digunakan dalam berbagai tugas NLP karena
kemampuannya dalam menangani pemisahan antar kelas dalam
ruang fitur dengan baik, bahkan pada dataset dengan dimensi yang
tinggi atau kompleks. SVM (Support Vector Machine) adalah
algoritma klasifikasi yang bertujuan untuk menemukan
hyperplane terbaik yang memisahkan antara kelas-kelas dalam
data dengan margin terbesar. Dalam kasus klasifikasi biner (dua
kelas), rumus untuk SVM dengan hyperplane linier dapat
dijelaskan sebagai berikut:

Hyperplane Linier:

Misalkan kita memiliki data pelatihan dengan vektor fitur xi yang
terdiri dari n fitur, dan label kelasnya adalah yi (dengan yi=1 atau
yi=—1). Fungsi hipotesis untuk SVM dapat ditulis sebagai:

f(x)=w'x+b

di mana:

w adalah vektor bobot normal ke hyperplane,

x adalah vektor fitur,

b adalah bias.

Persamaan untuk Hyperplane:

Hyperplane dipilih untuk memiliki margin terbesar antara kelas
1

[wll’

yang dipisahkan. Jarak dari titik data ke hyperplane adalah
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Maksimalkan margin dengan meminimalkan |[Iw]|l (norma
Euclidean dari w) yang setara dengan meminimalkan 1/2[lwll?,
dengan mempertimbangkan pembatasan: yi(wTxi+b)>1 untuk
semua titik data yang merupakan support vectors. Fungsi Objektif
(Objective  Function): Objektif utama dari SVM adalah
meminimalkan fungsi objektif berikut:

minyp 1/2]lwll?
dengan pembatasan:

yi(wTxitb)>1

Fungsi Objektif (Objective Function):

Objektif utama dari SVM adalah meminimalkan fungsi objektif berikut:
min, %Hw”2

dengan pembatasan:

yi(wlz; +b) > 1

Metode Lagrange:

Dalam praktiknya, konsep Lagrange multipliers digunakan untuk
menyelesaikan masalah optimasi SVM dengan pembatasan ini.
Menggunakan metode Lagrange, kita mendapatkan fungsi Lagrange
yang akan dioptimalkan untuk mencari nilai minimum:

L(w,b,0) = 5llw|® — 3% aulys(whz; +b) — 1]

di mana « adalah Lagrange multipliers.
Solusi SVM ditemukan dengan mencari nilai minimum dari fungsi
Lagrange tersebut. Solusi ini menghasilkan hyperplane terbaik

yang memisahkan antara kelas dengan margin terbesar di antara
support vectors.
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Rumus-rumus ini mencerminkan dasar dari bagaimana SVM
bekerja dalam menemukan hyperplane terbaik untuk pemisahan
kelas dalam data. Dalam prakteknya, untuk kasus-kasus yang
lebih kompleks, seperti SVM non-linier, digunakan kernel untuk
memungkinkan pemisahan yang lebih kompleks dalam ruang fitur
yang lebih tinggi.

3. Recurrent Neural Networks (RNN)

Jaringan Saraf Rekurensial (RNN) adalah jenis arsitektur jaringan
saraf yang dirancang khusus untuk memproses data urutan atau
data yang terstruktur secara sekuensial, seperti teks, audio, atau
data deret waktu. Konsep dasar RNN: Memori Jangka Pendek:
RNN memiliki kemampuan untuk menyimpan informasi dalam
keadaan internal atau "memori jangka pendek". Ini
memungkinkannya untuk mengingat informasi sebelumnya saat
memproses elemen berikutnya dalam urutan. Keterkaitan Antar
Elemen: Setiap elemen dalam urutan diolah secara berurutan, dan
informasi dari elemen sebelumnya digunakan untuk memproses
elemen berikutnya.

Arsitektur RNN: RNN memiliki struktur yang mengizinkan
informasi  untuk  mengalir mundur melalui jaringan,
memungkinkan koneksi siklus atau rekurensi. Setiap langkah
waktu (time step) dalam urutan diproses oleh lapisan yang sama
dari jaringan. Jenis-jenis RNN: One-to-One: Input tunggal
menghasilkan output tunggal, seperti dalam jaringan saraf biasa
(feedforward). One-to-Many: Satu input menghasilkan
serangkaian output, seperti menghasilkan kalimat dari gambar
tunggal. Many-to-One: Serangkaian input menghasilkan output
tunggal, seperti klasifikasi teks dari urutan kata-kata. Many-to-
Many: Urutan input dihubungkan dengan urutan output, seperti
terjemahan mesin atau POS tagging.

Keunggulan RNN:

Penanganan Data Urutan: Cocok untuk data yang memiliki
struktur sekuensial, seperti teks, audio, atau data deret waktu.
Memori Jangka Pendek: Kemampuan untuk "mengingat"
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informasi dari langkah-langkah sebelumnya dalam urutan.
Keterbatasan RNN: Masalah Pelatihan: Rentan terhadap masalah
menghilangnya atau meledaknya gradien, yang mempengaruhi
kemampuannya untuk memahami hubungan jarak jauh dalam
urutan panjang. Komputasi yang Lambat: Keterkaitan antar
elemen membuat proses komputasi RNN cenderung lambat dalam
pengolahan data yang panjang.

Penggunaan RNN dalam NLP: RNN sering digunakan dalam NLP
untuk tugas-tugas seperti: Analisis Sentimen: Mengklasifikasikan
sentimen dalam teks. Penerjemahan Mesin: Menerjemahkan teks
dari satu bahasa ke bahasa lain. Generasi Teks: Menghasilkan teks
yang baru, seperti pembuatan cerita atau artikel. RNN adalah alat
yang berguna dalam NLP karena kemampuannya untuk
memproses data teks secara sekuensial dan mempertahankan
memori jangka pendek, yang memungkinkannya untuk
menghadapi tugas-tugas kompleks dalam analisis bahasa alami.
Tahapan dalam Recurrent Neural Networks (RNN) melibatkan
proses yang berurutan dari pengolahan data urutan di setiap
langkah waktu (time step). Berikut adalah tahapan-tahapan utama
dalam RNN:

1. Input Data:

Data Urutan: Seperti teks, data deret waktu, atau data yang
memiliki struktur sekuensial. Misalnya, urutan kata-kata dalam
kalimat.

2. Representasi Data:

Tokenisasi: Pemecahan data urutan menjadi unit-unit terpisah
(token), misalnya, pemecahan kalimat menjadi kata-kata atau
karakter. Pembuatan Vektor Fitur: Representasi data dalam
bentuk vektor fitur seperti Bag-of-Words atau word embeddings
(misalnya, Word2Vec, GloVe).

3. Pembuatan Arsitektur RNN:

Inisialisasi: Pembuatan model RNN dengan menentukan jumlah
neuron, lapisan, dan jenis RNN yang akan digunakan (misalnya,
SimpleRNN, LSTM, atau GRU). Pengaturan Hiperparameter:
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Penyesuaian hyperparameter seperti jumlah neuron, jumlah
lapisan, learning rate, dan jenis fungsi aktivasi.

4. Pelatihan (Training):

Pengolahan Data Langkah per Langkah: Pengolahan data
langkah per langkah (time step) dalam urutan. Pembelajaran
Bobot: Pembelajaran parameter bobot dalam jaringan dengan
menggunakan algoritma seperti backpropagation melalui waktu
(Backpropagation Through Time - BPTT).

5. Validasi dan Evaluasi:

Validasi Model: Menggunakan data validasi untuk mengevaluasi
performa model dan menyesuaikan hyperparameter jika
diperlukan. Evaluasi Performa: Menggunakan metrik evaluasi
seperti akurasi, Fl-score, atau perplexity untuk mengevaluasi
kinerja model.

6. Prediksi dan Penggunaan Model:

Prediksi: Menggunakan model yang telah dilatih untuk membuat
prediksi pada data baru atau untuk tugas yang ditentukan, seperti
klasifikasi, generasi teks, atau penerjemahan.

7. Penyesuaian dan Peningkatan Model:

Optimisasi:  Peningkatan model dengan  penyesuaian
hyperparameter, pemilihan arsitektur yang lebih kompleks, atau
teknik regularisasi.

Catatan: Backpropagation Through Time (BPTT): Penting
dalam RNN karena memungkinkan propagasi gradien dari
langkah waktu ke langkah waktu, membantu dalam pembelajaran
parameter bobot. Overfitting: RNN rentan terhadap overfitting
pada data urutan yang panjang. Oleh karena itu, pemilihan model
yang tepat dan teknik regularisasi seperti dropout atau batch
normalization dapat membantu mengurangi masalah ini. Tahapan-
tahapan ini membentuk proses umum dalam penggunaan dan
pengolahan data menggunakan Recurrent Neural Networks dalam
berbagai tugas dalam pemrosesan bahasa alami dan pengenalan
pola dalam data sekuensial.
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4. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) adalah jenis arsitektur
jaringan saraf yang dirancang khusus untuk pemrosesan dan
pengenalan pola dalam data grid, seperti gambar. CNN sangat
efektif dalam mengekstraksi fitur-fitur spasial dari data dan telah
menjadi alat yang kuat dalam pengolahan citra dan pengenalan
pola.

Konsep dasar CNN: Konvolusi: CNN menggunakan operasi
konvolusi untuk mengekstraksi fitur-fitur dari gambar. Ini
melibatkan pergerakan filter (kernel) ke seluruh gambar untuk
mendeteksi pola-pola visual seperti tepi, sudut, atau tekstur.
Pooling: Operasi pooling seperti max pooling digunakan untuk
mereduksi dimensi dari fitur yang diekstraksi, mempertahankan
informasi penting dan mengurangi kompleksitas model.

Struktur CNN:

Convolutional Layer: Lapisan konvolusi terdiri dari filter yang
memindai gambar untuk mengekstraksi fitur-fitur. Pooling Layer:
Lapisan pooling yang mengurangi dimensi spasial dari fitur yang
diekstraksi oleh lapisan konvolusi. Fully Connected Layer:
Lapisan-lapisan terhubung sepenuhnya yang menggabungkan
fitur-fitur yang diekstraksi untuk klasifikasi akhir.

Keunggulan CNN:

Ekstraksi Fitur Otomatis: Kemampuan untuk secara otomatis
mengekstraksi fitur-fitur hierarkis dari data gambar. Invariansi
Spatial: Invariansi terhadap pergeseran dan transformasi kecil
dalam gambar. Aplikasi CNN dalam Computer Vision: Klasifikasi
Gambar: Mengenali objek atau kelas dari gambar. Deteksi Objek:
Menemukan dan menandai lokasi objek dalam gambar.
Segmentasi Gambar: Memisahkan objek dari latar belakang.

Perkembangan Terkini: Transfer Learning: Pemanfaatan model-
model yang sudah dilatih sebelumnya untuk tugas-tugas spesifik
dalam gambar atau domain lain. Architectural Advancements:
Pengembangan arsitektur yang lebih kompleks seperti ResNet,
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Inception, atau EfficientNet untuk kinerja yang lebih baik dalam
pengenalan gambar.

CNN telah menjadi landasan dalam bidang Computer Vision dan
telah membawa kemajuan signifikan dalam berbagai aplikasi,
mulai dari pengenalan wajah hingga mobil otonom.
Kemampuannya dalam mengekstraksi fitur dari gambar dan
merangkai informasi spasial membuatnya sangat efektif dalam
memahami data visual. Convolutional Neural Networks (CNN)
pada awalnya dikembangkan untuk memproses data grid seperti
gambar. Namun, beberapa penelitian terbaru telah mencoba
menerapkan konsep dasar CNN dalam pemrosesan data teks
dengan perubahan dalam representasi dan pemrosesan.
Penerapan CNN untuk data teks melibatkan transformasi data teks
menjadi matriks atau tensor yang dapat diproses oleh CNN.
Berikut adalah cara umum dalam menggunakan CNN untuk
pemrosesan data teks:

1. Representasi Data Teks:

Word Embeddings: Mengubah kata-kata dalam teks menjadi
vektor numerik, seperti Word2Vec, GloVe, atau FastText. One-
Hot Encoding: Representasi biner dari kata-kata dalam bentuk
matriks yang besar (sering kali digunakan dalam kasus yang lebih
sederhana).

2. Convolutional Layer:

Convolution: Konvolusi diterapkan pada representasi vektor kata
atau matriks berukuran kelompok kata-kata yang disebut filter
(kernel) untuk mengekstraksi fitur-fitur dari urutan kata-kata.
Misalnya, filter 1 akan mendeteksi fitur-fitur seperti kata-kata
yang berdekatan, filter 2 mungkin mendeteksi pola khusus
lainnya.

3. Max Pooling Layer:

Pooling: Operasi pooling (misalnya, max pooling) digunakan
untuk  mereduksi  dimensi  vektor hasil  konvolusi,
mempertahankan  fitur-fitur  penting sambil mengurangi
kompleksitas.
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4. Fully Connected Layer:

Layer Terhubung Penuh: Fitur-fitur yang diekstraksi oleh CNN
kemudian digabungkan ke dalam lapisan-lapisan terhubung penuh
untuk klasifikasi akhir atau tugas-tugas lainnya seperti analisis
sentimen atau klasifikasi teks.

Keunggulan dan Penggunaan dalam NLP: Ekstraksi Fitur: CNN
dapat mempelajari representasi hierarkis dari teks, mengenali pola
seperti kata-kata yang berdekatan, frasa, atau makna tertentu
dalam teks. Analisis Sentimen: Penerapan CNN pada data teks
untuk analisis sentimen atau klasifikasi teks. Pemrosesan Bahasa:
Meskipun RNN dan Transformer lebih umum dalam NLP, CNN
telah digunakan dalam tugas-tugas seperti pemrosesan bahasa dan
generasi teks. Catatan Penting: Ukuran Jendela (Window Size):
Penting untuk memilih ukuran jendela yang sesuai untuk filter
dalam CNN agar dapat menangkap pola yang relevan dalam teks.

Penggunaan Bersama dengan Model Lain: Pada beberapa kasus,
CNN digunakan bersama dengan arsitektur lain seperti LSTM
atau dilakukan fine-tuning pada model pre-trained untuk kinerja
yang lebih baik. Meskipun awalnya CNN dirancang untuk data
grid seperti gambar, adaptasi terbaru telah memperluas
penggunaannya dalam pemrosesan data teks dengan mengubah
representasi teks menjadi format yang dapat diproses oleh CNN.
Meskipun RNN dan Transformer masih dominan dalam NLP,
CNN tetap menjadi area penelitian yang menarik dalam
pemrosesan bahasa alami. Tahapan Convolutional Neural
Networks (CNN) untuk pengolahan data teks melibatkan
serangkaian langkah yang mirip dengan penggunaan CNN pada
data gambar, namun dengan representasi data teks yang berbeda.
Berikut tahapan-tahapan utama:

1. Preprocessing Data Teks:

Tokenisasi: Pemecahan teks menjadi token, seperti kata-kata atau
karakter. Pembuatan Sequence: Membentuk urutan dari token-
token yang terbagi dalam suatu urutan (kalimat atau teks).
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2. Representasi Data Teks:

Word Embeddings: Mengonversi token-token teks menjadi vektor
numerik menggunakan Word Embeddings seperti Word2Vec,
GloVe, atau FastText. Ini mengubah kata-kata menjadi
representasi vektor dalam ruang dimensi yang lebih kecil.
One-Hot Encoding: Representasi biner dari kata-kata dalam
bentuk matriks yang besar. Sering kali digunakan dalam
eksperimen awal atau dalam kasus dengan dataset yang lebih
sederhana.

3. Convolutional Layer:

Convolution: Lapisan konvolusi diterapkan pada representasi
vektor kata atau matriks berukuran kelompok kata-kata yang
disebut filter (kernel) untuk mengekstraksi fitur-fitur dari urutan
kata-kata. Filter akan "memindai" sekuens dan menemukan pola
yang relevan.

4. Pooling Layer:

Pooling: Operasi pooling (misalnya, max pooling) digunakan
untuk  mereduksi  dimensi  vektor  hasil  konvolusi,
mempertahankan  fitur-fitur  penting sambil mengurangi
kompleksitas dan ukuran data.

5. Fully Connected Layer:

Layer Terhubung Penuh: Fitur-fitur yang diekstraksi oleh CNN
kemudian digabungkan ke dalam lapisan-lapisan terhubung penuh
untuk klasifikasi akhir atau tugas lain seperti analisis sentimen,
klasifikasi teks, atau generasi teks.

6. Output Layer:

Layer Output: Lapisan terakhir yang menghasilkan output yang
cocok dengan tugas spesifik yang dijalankan, seperti klasifikasi
kategori teks atau nilai sentimen.

Catatan Penting: Hyperparameter Tuning: Pemilihan filter size,

jumlah filter, tingkat dropout, dan learning rate adalah kunci untuk
meningkatkan performa CNN pada data teks.
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Penyesuaian  dengan  Arsitektur:  Beberapa  penelitian
menggunakan CNN bersama dengan arsitektur lain seperti LSTM
atau menggunakan fine-tuning pada model pre-trained untuk hasil
yang lebih baik. Dimensi Data: Representasi vektor kata-kata dari
Word Embeddings atau matriks one-hot encoding mempengaruhi
dimensi data masukan dan proses konvolusi. Penerapan CNN
pada data teks mengharuskan pengubahan representasi teks
menjadi format yang dapat diproses oleh CNN, dan meskipun
CNN lebih sering digunakan dalam pengolahan gambar, terdapat
penelitian dan aplikasi yang menarik dalam penggunaannya pada
data teks.

5. Transformer-based models (seperti BERT, GPT, dll.)
Transformer-based models adalah model pembelajaran mesin
yang menggunakan arsitektur Transformer. Transformer adalah
arsitektur jaringan saraf tiruan yang dirancang untuk menangani
data berurutan, seperti teks, audio, dan video. Transformer
memiliki kemampuan untuk memahami hubungan antara input
dan output, sehingga membuatnya lebih cocok untuk tugas-tugas
yang membutuhkan pemahaman kontekstual.

Model berbasis Transformer merupakan pendekatan revolusioner
dalam pemrosesan bahasa alami yang menghilangkan
ketergantungan pada urutan (sequence dependency) dan
menggabungkan mekanisme self-attention untuk memahami
konteks dari kata-kata atau token dalam teks. Ini memungkinkan
model untuk memperoleh pemahaman yang lebih baik tentang
hubungan antara kata-kata dalam teks. Konsep dasar Transformer:
Self-Attention Mechanism: Transformer menggunakan self-
attention untuk menimbang hubungan antara semua token dalam
kalimat secara sekaligus. Ini memungkinkan model untuk
memberikan bobot yang tepat untuk setiap token berdasarkan
hubungannya dengan token lain dalam kalimat tersebut. Multi-
Head Attention: Transformer memiliki beberapa head attention
yang beroperasi secara independen, memungkinkan model untuk
mempelajari hubungan yang lebih kompleks di berbagai sudut
pandang.
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Encoder-Decoder Architecture: Transformer umumnya terdiri
dari blok encoder untuk memproses input dan blok decoder untuk
menghasilkan output dalam tugas seperti penerjemahan bahasa.

Komponen-komponen Transformer: Positional Encoding: Karena
Transformer tidak mempertahankan urutan token seperti RNN,
positional encoding diperkenalkan untuk memperkenalkan
informasi urutan ke dalam representasi vektor token. Encoder
Layers: Setiap layer dalam blok encoder memiliki modul self-
attention dan modul feed-forward neural network. Decoder
Layers: Mirip dengan encoder, blok decoder memiliki self-
attention, ditambah attention terhadap output dari encoder (untuk
tugas penerjemahan).

Keunggulan Transformer: Paralelisme yang Lebih Baik:
Transformer memungkinkan perhitungan paralel yang lebih
efisien dibandingkan dengan RNN atau LSTM, mempercepat
pelatihan model. Kemampuan untuk Memahami Konteks yang
Lebih Luas: Mekanisme self-attention memungkinkan model
untuk memahami hubungan antara kata-kata yang jauh dalam
teks.

Aplikasi Transformer-based Models: Penerjemahan Bahasa:
Model Transformer seperti GPT (Generative Pre-trained
Transformer) dan BERT telah digunakan untuk penerjemahan
bahasa dan pemahaman teks yang lebih baik. Generasi Teks:
Transformer juga digunakan untuk menghasilkan teks yang lebih
lancar dan realistis dalam tugas generasi teks. Analisis Sentimen:
Penggunaan Transformer dalam tugas analisis sentimen telah
meningkatkan akurasi dan pemahaman konteks sentimen dalam
teks.

Contoh Model Transformer: BERT (Bidirectional Encoder
Representations from Transformers): Model yang dilatih secara
pre-trained untuk pemahaman konteks bahasa. GPT (Generative
Pre-Trained Transformer): Model yang berfokus pada generasi
teks yang lebih baik berdasarkan pemahaman konteks bahasa.
Transformer-based models telah mengubah lanskap dalam
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pemrosesan bahasa alami dengan meningkatkan kemampuan
memahami konteks dan urutan kata-kata dalam teks, dan mereka
terus menjadi fokus penelitian dan pengembangan dalam NLP.

Arsitektur Transformer: Arsitektur Transformer terdiri dari dua
bagian utama, yaitu encoder dan decoder. Encoder bertanggung
jawab untuk menganalisis input, sedangkan decoder bertanggung
jawab untuk menghasilkan output. Encoder terdiri dari beberapa
layer self-attention. Self-attention adalah teknik yang digunakan
untuk menghitung hubungan antara setiap input. Self-attention
memungkinkan Transformer untuk memahami hubungan antara
input yang berdekatan dan input yang jauh.

Decoder juga terdiri dari beberapa layer self-attention. Selain itu,
decoder juga memiliki layer feedforward. Feedforward adalah
teknik yang digunakan untuk mengubah representasi vektor dari
input.

Keunggulan Transformer-based models. Transformer-based
models memiliki beberapa keunggulan dibandingkan dengan
model-model sebelumnya, seperti RNN dan CNN. Keunggulan-
keunggulan tersebut antara lain:

1. Kemampuan untuk memahami hubungan: Transformer dapat
memahami hubungan antara input dan output, sehingga
membuatnya lebith cocok untuk tugas-tugas yang
membutuhkan pemahaman kontekstual.

2. Efisiensi: Transformer lebih efisien daripada RNN dan
CNN, terutama untuk tugas-tugas yang membutuhkan
pemahaman jangka panjang.

3. Keakuratan: Transformer dapat menghasilkan akurasi yang
lebih tinggi daripada RNN dan CNN untuk berbagai
tugas, seperti terjemahan mesin, pengenalan bahasa alami, dan
klasifikasi teks.
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4. Aplikasi Transformer-based models Transformer-based
models telah digunakan untuk berbagai tugas pemrosesan data
berurutan, seperti:

5. Terjemahan mesin: Transformer telah menjadi standar de facto
untuk terjemahan mesin. Transformer dapat menghasilkan
terjemahan yang lebih akurat dan alami daripada model-model
sebelumnya.

6. Pemahaman bahasa alami: Transformer telah digunakan untuk
berbagai tugas pemrosesan bahasa alami, seperti pengenalan
entitas, klasifikasi teks, dan sentiment analysis.

7. Pengenalan suara: Transformer telah digunakan untuk
meningkatkan akurasi pengenalan suara.

8. Komposisi musik: Transformer telah digunakan untuk
menghasilkan musik yang mirip dengan musik yang sudah ada.

Transformer-based models adalah model pembelajaran mesin
yang kuat dan serbaguna yang dapat digunakan untuk berbagai
tugas pemrosesan data berurutan. Transformer telah menjadi
standar de facto untuk beberapa tugas, seperti terjemahan mesin.
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BAB III
PENERAPAN NLP

A. NLP dalam Industri

1. Customer Service

Penerapan Natural Language Processing (NLP) dalam layanan
pelanggan (Customer Service) telah menjadi kunci dalam
meningkatkan pengalaman pelanggan, efisiensi operasional, dan
pemahaman yang lebih baik terhadap kebutuhan pelanggan.
Berikut adalah rincian tentang bagaimana NLP digunakan dalam
layanan pelanggan:

1. Chatbot dan Asisten Virtual: Automatisasi Respon: Chatbot
menggunakan NLP untuk memahami pertanyaan atau masalah
pelanggan dan memberikan respons yang relevan secara
otomatis. Mereka dapat membantu dalam menjawab
pertanyaan umum, memberikan informasi produk, atau
menyelesaikan masalah tertentu. Pemahaman Bahasa Alami:
Melalui NLP, chatbot dapat memahami pertanyaan dalam
bahasa alami, bahkan dengan variasi atau frasa yang berbeda.

2. Analisis Sentimen: Pemantauan Sentimen: NLP digunakan
untuk menganalisis sentimen dari ulasan atau feedback
pelanggan di media sosial, forum, atau platform lainnya. Ini
membantu perusahaan memahami perasaan pelanggan
terhadap produk atau layanan mereka. Deteksi Masalah:
Dengan menganalisis sentimen, perusahaan dapat mendeteksi
masalah atau keluhan yang muncul dari pelanggan secara cepat
dan meresponnya dengan tepat waktu.

3. Analisis Percakapan Pelanggan: Pemrosesan Transkripsi:
NLP digunakan untuk menganalisis percakapan telepon, chat,
atau email dengan pelanggan untuk mengekstrak informasi
penting seperti masalah umum, kebutuhan, atau keluhan.
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Peningkatan Layanan: Analisis NLP pada percakapan
pelanggan dapat membantu dalam mengidentifikasi area di
mana layanan dapat ditingkatkan atau masalah yang perlu
diselesaikan.

4. Klasifikasi dan Pemrosesan Permintaan Pelanggan: Klasifikasi
Permintaan: NLP digunakan untuk mengklasifikasi
permintaan pelanggan ke dalam kategori yang tepat. Ini
membantu dalam menentukan prioritas dan menanggapi
dengan lebih cepat. Pemrosesan Otomatis: Dengan
pemahaman NLP terhadap permintaan pelanggan, beberapa
tugas dapat diproses secara otomatis, seperti pembuatan tiket
layanan atau pengiriman pesan balasan awal.

5. Personalisasi Layanan: Analisis Riwayat: NLP membantu
menganalisis riwayat interaksi pelanggan untuk memahami
preferensi, kebutuhan, dan pola perilaku. Ini memungkinkan
perusahaan untuk memberikan layanan yang lebih personal dan
relevan.

6. Implementasi NLP di Platform Layanan Pelanggan: Integrasi
dalam CRM: Integrasi NLP dalam perangkat lunak
manajemen hubungan pelanggan (CRM) membantu dalam
pemrosesan dan pengelolaan data pelanggan untuk
memberikan layanan yang lebih baik. Penggunaan API:
Penggunaan API (Application Programming Interface) NLP
dari penyedia layanan dapat memperkaya fungsionalitas
platform layanan pelanggan dengan kemampuan bahasa alami.
Penerapan NLP dalam layanan pelanggan membantu
perusahaan dalam memahami dan merespons kebutuhan
pelanggan dengan lebih efisien, meningkatkan interaksi, dan
memberikan pengalaman pelanggan yang lebih baik secara
keseluruhan.

2. Analisis Sentimen

Penerapan Natural Language Processing (NLP) dalam analisis
sentimen bertujuan untuk memahami dan mengekstrak sentimen,
opini, atau perasaan dari teks yang dihasilkan oleh pengguna,
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konsumen, atau pemangku kepentingan. Berikut adalah rincian
tentang bagaimana NLP digunakan dalam analisis sentimen:

1. Preprocessing Data Teks: Tokenisasi: Pemecahan teks menjadi
token, seperti kata-kata, frasa, atau karakter. Stopword
Removal: Penghapusan kata-kata umum yang tidak
memberikan makna penting dalam analisis sentimen.
Stemming atau Lemmatisasi: Normalisasi kata-kata menjadi
bentuk dasar mereka untuk mengurangi variasi dalam teks.

2. Representasi Data Teks: Word Embeddings: Mengubah teks
menjadi  vektor numerik menggunakan teknik Word
Embeddings seperti Word2Vec, GloVe, atau FastText. TF-IDF
(Term Frequency-Inverse Document Frequency): Menghitung
bobot kata-kata dalam teks berdasarkan frekuensi kemunculan
kata-kata tersebut dalam dokumen dan seberapa umum kata-
kata tersebut dalam korpus keseluruhan.

3. Analisis Sentimen: Pendekatan Supervised Learning:
Menggunakan metode klasifikasi (misalnya, Support Vector
Machines, Naive Bayes, atau Neural Networks) yang dilatih
dengan data yang dilabeli untuk mengklasifikasikan teks ke
dalam kategori sentimen tertentu (positif, negatif, atau netral).
Unsupervised Learning: Menggunakan teknik Clustering atau
analisis topik untuk mengelompokkan teks ke dalam kelompok
sentimen berdasarkan kesamaan topik atau karakteristik.

4. Emotion Analysis: Deteksi Emosi: Menerapkan NLP untuk
mengidentifikasi emosi atau perasaan tertentu dalam teks
seperti kegembiraan, kemarahan, atau kecemasan.

5. Aspect-Based Sentiment Analysis: Analisis Berbasis Aspek:
Memahami sentimen terkait dengan aspek-aspek tertentu
dalam teks, seperti produk dalam ulasan, fitur spesifik, atau
layanan yang disediakan.

6. Pengembangan Model Sentiment Analysis: Fine-tuning Model
Pre-trained: Menggunakan model yang telah dilatih
sebelumnya dalam bahasa alami (seperti BERT, GPT, atau
Transformer) dan menyesuaikannya dengan tugas analisis
sentimen tertentu.
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7. Evaluasi Model: Menggunakan Metrics: Menggunakan metrik
evaluasi seperti akurasi, F1-score, atau Confusion Matrix untuk
mengukur kinerja model dalam memprediksi sentimen dengan
benar.

Penerapan NLP dalam analisis sentimen memungkinkan
perusahaan untuk memahami perasaan pelanggan, umpan balik
produk, atau sentimen pasar secara luas. Hal ini membantu dalam
pengambilan keputusan yang lebih baik, penyesuaian strategi
bisnis, dan meningkatkan interaksi dengan pelanggan berdasarkan
pemahaman yang lebih baik tentang sentimen yang terkandung
dalam teks.

3. Pencarian Informasi

Penerapan Natural Language Processing (NLP) dalam pencarian
informasi membantu dalam pemrosesan, pemahaman, dan
relevansi pencarian terhadap teks yang dimasukkan pengguna.
Berikut adalah rincian tentang bagaimana NLP digunakan dalam
pencarian informasi:

1. Query Understanding: Analisis Pencarian: NLP digunakan
untuk memahami query atau pertanyaan pengguna yang
dimasukkan ke dalam mesin pencarian, memecahnya menjadi
token dan mengidentifikasi kata kunci penting. Pemrosesan
Bahasa Alami: Memahami makna atau intent di balik query,
termasuk penanganan variasi frasa atau pertanyaan yang mirip
namun memiliki struktur yang berbeda.

2. Pengindeksan Informasi: Tokenisasi dan Representasi:
Dokumen-dokumen atau konten yang akan diindeks dianalisis
menggunakan NLP untuk tokenisasi, mengubah teks menjadi
representasi vektor, dan menghitung bobot kata-kata (TF-IDF)
untuk membangun indeks yang mempercepat proses pencarian.
Entity Recognition: Mengidentifikasi entitas seperti nama
orang, tempat, atau organisasi dalam teks untuk meningkatkan
akurasi pencarian.

3. Relevansi Pencarian: Matching dan Ranking: NLP digunakan
untuk mencocokkan query pengguna dengan dokumen yang
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4.

relevan dan memberi peringkat pada hasil pencarian
berdasarkan relevansi. Pemahaman Konteks:
Memperhitungkan konteks dalam pencarian, memastikan hasil
yang diberikan sesuai dengan kebutuhan pengguna.

. Pencarian Semantik: Analisis Semantik: Menggunakan NLP

untuk memahami arti sebenarnya dari query atau dokumen,
bukan hanya kata-kata yang digunakan, melainkan juga konsep
yang terkandung dalam teks. Pemrosesan Teks yang Lebih
Lanjut: Penggunaan teknik seperti Word Embeddings atau
Transformer untuk pemahaman yang lebih dalam tentang
hubungan antar kata-kata atau makna di balik teks.

. Personalisasi Pencarian: Pemahaman User Intent: NLP

membantu dalam memahami intent atau tujuan pengguna yang
berbeda, memungkinkan sistem untuk memberikan hasil yang
lebih relevan berdasarkan histori pencarian atau profil
pengguna.

. Evaluasi dan Peningkatan Sistem: Analisis Feedback:

Menggunakan NLP untuk menganalisis umpan balik pengguna
terhadap hasil pencarian untuk meningkatkan relevansi dan
kualitas hasil.

Fine-tuning Model

Meningkatkan model pencarian berbasis pada informasi dari
evaluasi dan umpan balik untuk meningkatkan performa dan
akurasi. Penerapan NLP dalam pencarian informasi membantu
dalam meningkatkan akurasi, relevansi, dan kecepatan pencarian,
memastikan bahwa pengguna mendapatkan informasi yang
mereka cari dengan lebih efisien dan sesuai dengan kebutuhan
mereka.

1.

Chatbots dan Virtual Assistants: Penerapan Natural Language
Processing (NLP) dalam Chatbots dan Virtual Assistants
memungkinkan sistem untuk memahami, memproses, dan
merespons bahasa manusia secara efektif. Berikut adalah
rincian tentang bagaimana NLP digunakan dalam Chatbots dan
Virtual Assistants:

. Pengenalan dan Pemahaman Bahasa Manusia: Pemrosesan

Bahasa Alami: NLP digunakan untuk memahami perintah,
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pertanyaan, atau masukan pengguna dalam bahasa alami. Ini
melibatkan pemecahan kalimat, tokenisasi, dan pemahaman
intent di balik permintaan. Entity Recognition: Identifikasi
entitas seperti nama orang, lokasi, tanggal, atau objek tertentu
dalam teks untuk memberikan respon yang lebih tepat.

. Pembangunan Chatbots yang Responsif: Generasi Respon:
NLP membantu dalam menghasilkan respon yang relevan dan
kontekstual berdasarkan pemahaman terhadap permintaan
pengguna. Ini melibatkan pembuatan respon yang sesuai
dengan konteks, bahasa yang ramah, dan pilihan kata yang
tepat. Personalisasi Respon: Sistem dapat menyesuaikan
respon berdasarkan informasi pengguna atau sejarah interaksi
sebelumnya.

. Pengelolaan Dialog dan Konteks: Memahami Konteks: NLP
membantu dalam mempertahankan konteks percakapan dan
memastikan Chatbot atau Virtual Assistant dapat mengingat
percakapan sebelumnya untuk memberikan respon yang lebih
baik. Dialog State Management: Manajemen status
percakapan yang memungkinkan sistem untuk menanggapi
permintaan yang berurutan atau berkelanjutan.

. Integrasi dengan Pengetahuan dan Informasi Tambahan: Akses
ke Informasi: NLP memungkinkan Chatbot untuk mengakses
basis pengetahuan, database, atau sumber informasi lainnya
untuk memberikan jawaban yang lebih lengkap dan akurat.

. Evaluasi dan Peningkatan Kualitas Respon: Analisis
Sentimen: Menggunakan NLP untuk memahami sentimen
pengguna terhadap respon yang diberikan oleh Chatbot dan
mengadaptasi respons berdasarkan umpan balik. Peningkatan
Model: Penggunaan umpan balik pengguna dan analisis
performa untuk meningkatkan model Chatbot, termasuk fine-
tuning model berbasis NLP.

. Pengembangan Multilingual Chatbots: Penerapan Bahasa
Lain: NLP digunakan untuk mendukung chatbot dalam bahasa
yang berbeda, memungkinkan sistem untuk beroperasi dalam
lingkungan multilingual. Penerapan NLP dalam Chatbots dan
Virtual Assistants membantu dalam memberikan pengalaman
interaktif yang lebih manusiawi, efisien, dan responsif bagi
pengguna. Kemampuan sistem untuk memahami bahasa
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manusia secara alami merupakan inti dari efektivitas Chatbot
dalam memberikan layanan yang berguna dan informatif
kepada pengguna.

. NLP dalam Kesehatan

. Analisis data medis: Penerapan Natural Language Processing
(NLP) dalam analisis data medis bertujuan untuk memahami,
mengekstrak, dan mengelola informasi dari catatan medis,
laporan laboratorium, dokumen kesehatan, atau literatur medis.
Berikut adalah rincian tentang bagaimana NLP digunakan
dalam analisis data medis:

. Pemrosesan Catatan Medis: Ekstraksi Informasi: NLP
digunakan untuk mengekstrak informasi klinis seperti
diagnosis, tindakan medis, gejala, atau riwayat penyakit dari
catatan medis yang sering kali terstruktur atau tidak terstruktur.
Named Entity Recognition (NER): Mengidentifikasi entitas
medis seperti nama pasien, dokter, obat-obatan, atau prosedur
medis dalam catatan medis.

. Klasifikasi dan Analisis Teks Medis: Diagnosis Otomatis:
Penggunaan NLP dalam klasifikasi teks medis untuk
mendukung diagnosa otomatis berdasarkan informasi yang
terkandung dalam catatan medis. Analisis Sentimen
Kesehatan: Menganalisis catatan medis untuk mengevaluasi
sentimen pasien terhadap pengalaman perawatan atau prosedur
medis tertentu.

. Penelitian dan Literatur Medis: Literature Review: NLP
digunakan untuk memproses dan menganalisis literatur medis
yang luas, membantu peneliti untuk mendapatkan wawasan
dari artikel dan penelitian terbaru dalam bidang kesehatan.
Pengelompokan Tema: Mengelompokkan artikel atau
makalah medis berdasarkan tema tertentu menggunakan teknik
pengelompokan topik.

. Pemahaman Bahasa Kesehatan: Terminologi Medis:
Memahami istilah medis yang kompleks dan terminologi
khusus yang digunakan dalam catatan medis atau literatur
medis. Analisis Percakapan Medis: Memahami percakapan
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antara dokter dan pasien dalam rekaman medis untuk
meningkatkan pemahaman terhadap situasi kesehatan pasien.

6. Prediksi Penyakit dan Perawatan: Prediksi Risiko:
Menggunakan NLP untuk mengidentifikasi faktor risiko atau
prediksi perjalanan penyakit berdasarkan informasi yang
terdapat dalam catatan medis.

7. Privasi dan Keamanan Data: Anonimisasi Data: Penggunaan
NLP dalam menghapus atau mengaburkan informasi identitas
pribadi dari catatan medis untuk menjaga keamanan dan privasi
data.

8. Pengembangan Sistem Berbasis NLP: Sistem Dukungan
Keputusan: Membangun sistem NLP yang mendukung
pengambilan keputusan klinis atau memberikan saran terhadap
perawatan medis.

Penerapan NLP dalam analisis data medis membuka potensi besar
untuk meningkatkan pengelolaan data kesehatan, penelitian
medis, pelayanan kesehatan, dan pengembangan sistem yang
mendukung pengambilan keputusan klinis yang lebih baik. Ini
juga memainkan peran penting dalam meningkatkan efisiensi,
akurasi, dan pemahaman terhadap informasi kesehatan yang
terkandung dalam dokumen medis.

Penerapan Natural Language Processing (NLP) dalam pengenalan

entitas medis (NER - Named Entity Recognition) adalah tentang

mengidentifikasi dan mengekstrak entitas spesifik dalam teks
medis seperti nama pasien, nama dokter, jenis penyakit, obat-
obatan, prosedur medis, tanggal, dan informasi penting lainnya.

Berikut adalah rincian tentang penerapan NLP dalam NER untuk

pengenalan entitas medis:

1. Pemrosesan Teks Medis: Tokenisasi: Memecah teks medis
menjadi token (kata-kata, frasa, atau bagian-bagian lain) untuk
analisis lebih lanjut. Stopword Removal: Penghapusan kata-
kata umum yang tidak relevan dalam teks medis.

2. Penggunaan Model NLP untuk Pengenalan Entitas Medis:
Model Berbasis Aturan (Rule-Based): Menerapkan aturan
linguistik atau peraturan manual untuk mengidentifikasi entitas
medis. Contohnya, pengenalan nama orang berdasarkan pola
penulisan nama manusia. Machine Learning-Based Models:
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Penggunaan algoritma pembelajaran mesin seperti Conditional
Random Fields (CRFs), Support Vector Machines (SVM), atau
Deep Learning (misalnya, LSTM atau Transformer) yang telah
dilatih pada data yang dilabeli untuk mengenali entitas medis.

3. Pengembangan Anotasi dan Dataset: Anotasi Manual:
Menandai atau memberi label entitas medis dalam teks medis
oleh ahli manusia untuk membuat dataset pelatihan yang
dilabeli.

4. Feature Engineering: Penggunaan Fitur: Pemilihan fitur yang
relevan seperti kata-kata sekitar, morfologi kata, atau konteks
untuk membantu model dalam mengenali entitas medis dengan
lebih akurat.

5. Evaluasi dan Peningkatan Model: Cross-Validation:
Menggunakan teknik cross-validation untuk mengukur kinerja
model dalam mengenali entitas medis dan menghindari
overfitting. Fine-Tuning Model: Memperbarui atau
menyesuaikan model NER berdasarkan umpan balik dari
evaluasi hasil model untuk meningkatkan akurasi.

6. Penerapan dalam Aplikasi Kesehatan: Sistem Manajemen
Kesehatan  Elektronik: Menggunakan NER  untuk
mengekstrak dan mengelola informasi penting dalam catatan
medis elektronik untuk memfasilitasi pencarian, analisis, dan
perawatan pasien. Penelitian Klinis: Penerapan NER dalam
analisis literatur medis untuk mengidentifikasi informasi
penting dalam artikel penelitian atau makalah medis.
Penerapan NLP dalam NER untuk pengenalan entitas medis
merupakan langkah penting dalam pengelolaan data kesehatan,
penelitian medis, dan perawatan pasien yang memungkinkan
pengambilan informasi yang lebih cepat dan akurat dari teks
medis yang besar dan kompleks.

C. NLP dalam Pendidikan

1. Evaluasi dan pembelajaran berbasis teks

Penerapan Natural Language Processing (NLP) dalam evaluasi
dan pembelajaran berbasis teks melibatkan analisis teks untuk

mengukur  kinerja, = meningkatkan = pemahaman, dan
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mengembangkan sistem yang mendukung pendidikan dan
evaluasi. Berikut adalah rincian tentang bagaimana NLP
digunakan dalam konteks ini:

1.

Penilaian Otomatis: Analisis Jawaban Siswa: Penggunaan
NLP dalam mengevaluasi jawaban siswa dalam bentuk teks,
mengidentifikasi kesalahan atau kekurangan dalam jawaban
mereka, serta memberikan umpan balik yang sesuai. Penilaian
Tugas: NLP digunakan untuk memberikan penilaian otomatis
terhadap tugas yang mencakup teks, seperti esai, tugas menulis,
atau penugasan proyek.

Analisis Sentimen dan Partisipasi: Pemantauan Sentimen:
Menganalisis sentimen dari diskusi kelas, tanggapan siswa,
atau umpan balik untuk memahami perasaan dan tingkat
partisipasi.

Pemahaman Konten: Ringkasan Otomatis: Menggunakan
NLP untuk merangkum teks panjang, seperti materi pelajaran
atau artikel, agar lebih mudah dipahami oleh siswa.
Pemahaman Materi Pelajaran: Penerapan NLP untuk
memahami  pertanyaan siswa, memberikan informasi
tambahan, atau menjelaskan konsep yang rumit dalam teks.
Peningkatan Pengalaman Belajar: Personalisasi
Pembelajaran: Memanfaatkan NLP untuk mempersonalisasi
pengalaman belajar siswa berdasarkan kemajuan mereka,
preferensi, dan kebutuhan individu. Rekomendasi Konten:
Menyediakan rekomendasi materi pembelajaran berdasarkan
minat dan kemajuan siswa.

Analisis Diskusi Kelas dan Forum: Analisis Diskusi:
Menggunakan NLP untuk menganalisis percakapan atau
diskusi dalam forum online atau kelas virtual guna
mengidentifikasi topik populer, pola partisipasi, atau
pemahaman umum.

Pengembangan Sistem Pendidikan: Sistem Tutor Cerdas:
Membangun sistem tutor yang menggunakan NLP untuk
memahami kebutuhan siswa, memberikan bantuan, dan
menyesuaikan pembelajaran. Pengembangan Platform
Pembelajaran: Integrasi NLP dalam platform pembelajaran
daring untuk meningkatkan interaksi, pembelajaran adaptif,
dan evaluasi.
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Penerapan NLP dalam evaluasi dan pembelajaran berbasis teks
memberikan peluang untuk meningkatkan efisiensi dalam
penilaian, personalisasi pembelajaran, dan pemahaman konten
secara lebih baik. Hal ini juga mendukung perkembangan sistem
pendidikan yang lebih adaptif, interaktif, dan responsif terhadap
kebutuhan individual siswa.

2. Analisis plagiarism

Penerapan Natural Language Processing (NLP) dalam analisis
plagiarisme adalah tentang penggunaan teknologi bahasa alami
untuk mendeteksi dan menganalisis kesamaan atau plagiarisme
antara dokumen atau teks. Berikut adalah rincian tentang
bagaimana NLP diterapkan dalam konteks ini:

1. Preprocessing Teks: Tokenisasi dan Representasi: Mengubah
teks ke dalam representasi numerik atau token untuk analisis
lebih lanjut. Pembersihan Teks: Membersihkan teks dari
informasi yang tidak relevan, seperti tanda baca, karakter
khusus, atau formatting.

2. Penggunaan Model NLP: Model Berbasis Aturan (Rule-
Based): Menerapkan aturan linguistik atau logika untuk
mendeteksi kesamaan teks, terutama dalam dokumen panjang
atau struktur kompleks. Machine Learning-Based Models:
Penggunaan algoritma pembelajaran mesin (misalnya,
Decision Trees, Support Vector Machines, atau Neural
Networks) yang dilatth dengan data yang dilabeli untuk
mengidentifikasi pola plagiarisme.

3. Analisis Struktural Teks: Alignment dan Similarity
Detection: Menggunakan NLP untuk menemukan kesamaan
atau kemiripan antara teks, baik dalam frasa, kalimat, paragraf,
atau struktur keseluruhan. Deteksi Plagiarisme Paragraf atau
Dokumen: Menggunakan teknik seperti cosine similarity atau
Levenshtein distance untuk mendeteksi plagiarisme pada
tingkat dokumen atau paragraf.

4. Analisis Konten dan Semantik: Kesamaan Makna:
Menggunakan NLP untuk memahami makna di balik kata-kata
atau frasa, bukan hanya kesamaan kata. Analisis Semantik:
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Mengidentifikasi makna dan inti dari teks untuk
membandingkan konten secara lebih mendalam.

5. Pengembangan Algoritma Khusus: Fine-Tuning Model:
Meningkatkan model NLP untuk deteksi plagiarisme,
memastikan sensitivitas yang tinggi dan akurasi dalam
mengidentifikasi kesamaan teks.

6. Evaluasi Hasil: Pengukuran Similaritas: Mengukur tingkat
kesamaan atau plagiarisme antara teks berdasarkan hasil
analisis NLP. Umpan Balik dan Peningkatan: Menggunakan
umpan balik untuk meningkatkan algoritma deteksi
plagiarisme dan meningkatkan ketepatan serta ketelitian hasil.

Penerapan NLP dalam analisis plagiarisme memiliki peran
penting dalam memastikan keaslian dan integritas karya tulis. Ini
membantu institusi pendidikan, editor, peneliti, atau penerbit
untuk mengidentifikasi plagiarisme dengan lebih efisien dan
akurat, serta menjaga kejujuran dalam publikasi karya.
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BAB 1V
TANTANGAN DAN ISU ETIKA DALAM
NLP

A. Tantangan dalam NLP

1. Polysemy dan Ambiguitas

Dalam Natural Language Processing (NLP), terdapat sejumlah
tantangan dan isu etika yang berkaitan dengan polisemi
(polysemy) dan ambiguitas dalam bahasa:

1.

Polisemi dan Ambiguitas: Arti Ganda: Polisemi merujuk pada
kata-kata atau frasa yang memiliki lebih dari satu arti yang sah.
Ambiguitas mencakup situasi di mana kalimat atau teks
memiliki arti yang tidak jelas atau lebih dari satu arti yang
memungkinkan.

. Kesulitan dalam Pemahaman Konteks: Konteks yang

Membingungkan: Penafsiran kata-kata atau frasa terkadang
tergantung pada konteksnya. Meskipun NLP mungkin mampu
mengenali variasi kata, memahami makna sebenarnya dalam
konteks yang tepat bisa menjadi sulit.

. Tantangan dalam Pemrosesan Bahasa Alami: Disambiguasi:

NLP harus mampu untuk mengatasi polisemi dan ambiguitas,
memutuskan makna yang benar berdasarkan konteks yang
diberikan. Ini sering kali menantang karena bahasa manusia
penuh dengan kompleksitas dan nuansa.

. Isu Etika dalam Penggunaan Teknologi: Bias dan Penafsiran

yang Salah: Ketika NLP menghadapi polisemi dan ambiguitas,
ada risiko penafsiran yang salah atau bias dalam analisis, yang
dapat memengaruhi hasil dan keputusan yang dibuat oleh
sistem berbasis NLP.

. Dampak pada Aplikasi NLP: Ketepatan dalam Pemrosesan

Teks: Polisemi dan ambiguitas dapat mengganggu ketepatan
hasil analisis NLP, misalnya dalam kasus klasifikasi teks atau
pemahaman konten.

57



6. Perlunya Penanganan yang Lebih Cermat: Peningkatan
Algoritma: Diperlukan pengembangan algoritma NLP yang
lebih canggih untuk menangani polisemi dan ambiguitas secara
lebih efektif.

Isu Etika Terkait: Transparansi dan Akuntabilitas: Penerapan
NLP yang tidak mempertimbangkan polisemi atau ambiguitas
bisa mengakibatkan kesalahan atau interpretasi yang salah, yang
bisa menjadi isu etika jika hal itu memengaruhi keputusan penting
atau menimbulkan bias.

Privasi dan Keamanan: Ketika NLP digunakan dalam aplikasi
yang melibatkan data sensitif, risiko salah tafsir atau manipulasi
akibat polisemi atau ambiguitas bisa memengaruhi privasi atau
keamanan data. Penanganan polisemi dan ambiguitas dalam NLP
adalah tantangan penting karena memengaruhi tingkat akurasi,
keandalan, dan interpretasi yang tepat dari teks dalam konteks
yang berbeda. Isu etika terkait juga harus dipertimbangkan secara
cermat untuk memastikan penggunaan NLP yang bertanggung
jawab dan tepat.

2. Kurangnya data yang berkualitas

Salah satu tantangan utama dalam Natural Language Processing
(NLP) adalah kurangnya data yang berkualitas. Hal ini bisa
menjadi hambatan serius dalam mengembangkan model NLP
yang baik. Berikut adalah penjelasan lebih rinci:

1. Keterbatasan Dataset: Kurangnya Volume Data: Dalam
beberapa kasus, dataset yang tersedia untuk pelatihan model
NLP bisa sangat terbatas, terutama untuk bahasa yang kurang
umum atau domain tertentu seperti medis atau hukum.
Kualitas Data yang Buruk: Data yang tidak terstruktur, tidak
terlabeli dengan baik, atau tidak terkumpul dengan baik dapat
menghambat kemampuan model untuk belajar dengan baik.

2. Tantangan Variasi Bahasa: Variasi Dialek dan Gaya Bahasa:
Bahasa manusia sangat bervariasi, termasuk penggunaan
dialek, slang, atau wvariasi dalam gaya penulisan. Ini
membutuhkan data yang representatif untuk melatih model
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agar mampu memahami variasi bahasa tersebut. Bahasa yang
Kurang Dikenal: Bahasa-bahasa yang kurang umum atau
kuno sering kali memiliki keterbatasan dalam data, membuat
pengembangan model NLP yang akurat menjadi sulit.

. Biaya dan Waktu Pengumpsulan Data: Biaya Pengumpulan
Data: Mengumpulkan dataset yang besar dan berkualitas
memerlukan sumber daya yang signifikan, baik itu biaya
maupun waktu. Keterbatasan Waktu: Dalam beberapa kasus,
pembangunan model NLP yang baik membutuhkan waktu
yang lama karena proses pengumpulan, pembersihan, dan
anotasi data yang memadai.

. Ketergantungan pada Data Label: Ketergantungan pada Data
yang Dilabeli: Model pembelajaran mesin sering kali
memerlukan data yang sudah dilabeli dengan benar untuk
melatih dan memvalidasi kinerja. Kurangnya data yang dilabeli
bisa menjadi kendala. Cara Mengatasinya: Augmentasi Data:
Menciptakan data tambahan dari data yang ada dengan teknik
seperti penggandaan, translasi, atau penggabungan untuk
meningkatkan jumlah dan variasi data. Transfer Learning:
Memanfaatkan model yang sudah dilatih pada data yang besar
(pre-trained models) dan menyesuaikannya dengan data yang
tersedia dalam domain atau bahasa tertentu. Collaborative
Efforts: Kerja sama dan pertukaran dataset antara lembaga,
peneliti, atau komunitas dapat membantu mengatasi
keterbatasan data.

Kurangnya data yang berkualitas bisa menjadi tantangan utama
dalam pengembangan model NLP yang akurat dan andal. Strategi
pengumpulan data yang cerdas, teknik augmentasi data, dan
pemanfaatan model yang sudah dilatih dapat membantu mengatasi
sebagian dari kendala ini dalam mengembangkan model NLP
yang lebih baik.

3. Overfitting dan generalisasi

Dalam konteks Natural Language Processing (NLP), overfitting
dan generalisasi adalah dua konsep penting yang memengaruhi
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kualitas dan performa model yang dikembangkan untuk

pemrosesan bahasa alami.

1. Overfitting: Definisi Overfitting: Overfitting terjadi ketika
model terlalu "memorize" data pelatihan dan tidak mampu
melakukan generalisasi dengan baik pada data baru atau data
yang belum pernah dilihat sebelumnya. Penyebab Overfitting:
Overfitting seringkali terjadi ketika model terlalu kompleks
atau memiliki kapasitas yang berlebihan untuk mempelajari
detail-detail kecil yang sebenarnya bersifat acak atau tidak
relevan dalam data. Indikasi Overfitting: Biasanya, tanda-tanda
overfitting termasuk performa model yang sangat baik pada
data pelatihan tetapi performa yang buruk pada data validasi
atau data uji. Strategi Penanggulangan: Menggunakan teknik
regularisasi seperti dropout, pengurangan kompleksitas model,
atau menggunakan teknik validasi silang untuk memvalidasi
performa model.

2. Generalisasi: Definisi Generalisasi: Generalisasi adalah
kemampuan model untuk mengadopsi pola yang ditemukan
dari data pelatihan dan menerapkannya dengan baik pada data
baru atau data yang belum dilihat sebelumnya. Penyebab
Generalisasi: Model yang mampu menangkap pola yang umum
dan relevan dari data pelatihan tanpa terlalu fokus pada detail
yang mungkin bersifat acak. Indikasi Generalisasi: Model yang
baik dalam generalisasi akan menunjukkan performa yang
konsisten pada data yang tidak pernah dilihat selama pelatihan.
Strategi Peningkatan Generalisasi: Menggunakan teknik
penambahan data, pengaturan yang tepat terkait kompleksitas
model, dan menggunakan metode regularisasi yang tepat untuk
mencegah overfitting.

Relevansi dalam NLP: Dalam NLP, overfitting bisa terjadi saat
model NLP terlalu "memorize" teks pelatihan dengan sangat baik,
tetapi tidak bisa menerapkan pemahaman yang diperolehnya pada
teks baru yang berbeda. Generalisasi yang baik dalam NLP
menunjukkan kemampuan model untuk memahami bahasa secara
umum tanpa terlalu terkait dengan detail-detail yang mungkin
tidak relevan atau acak dalam teks. Tantangan dalam NLP adalah
membangun model yang memiliki tingkat generalisasi yang tinggi
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sehingga dapat memproses dan memahami beragam jenis teks
dengan akurat, bahkan teks yang belum pernah dilihat
sebelumnya. Memahami konsep overfitting dan generalisasi
penting dalam mengembangkan model NLP yang handal dan
efektif dalam memahami, memproses, dan menghasilkan hasil
yang akurat dari teks dalam berbagai konteks dan jenis data.

B. Isu Etika dalam NLP
1. Privasi dan keamanan data

Isu etika privasi dan keamanan data dalam Natural Language

Processing (NLP) menjadi sangat penting karena penggunaan data

teks yang melibatkan informasi pribadi atau sensitif dari individu

atau kelompok. Berikut adalah beberapa poin terkait isu etika ini:

1. Privasi Data: Penggunaan Informasi Pribadi: Penggunaan data
teks yang mengandung informasi pribadi seperti riwayat medis,
percakapan pribadi, atau informasi identitas individu
menimbulkan kekhawatiran privasi. Risiko Identifikasi: Proses
analisis NLP yang tidak memadai bisa mengungkap informasi
sensitif yang dapat mengidentifikasi individu, bahkan jika
nama tidak disebutkan.

2. Keamanan Data: Kekhawatiran Keamanan: Data teks yang
disimpan, diproses, atau ditransmisikan dalam sistem NLP
rentan terhadap ancaman keamanan seperti peretasan atau
akses tidak sah. Risiko Penyalahgunaan Informasi: Data teks
yang tidak terlindungi dapat disalahgunakan untuk tujuan jahat
seperti penipuan, pencurian identitas, atau penargetan individu.

3. Isu Etika Terkait: Transparansi Penggunaan Data: Pentingnya
memberikan informasi kepada pengguna terkait bagaimana
data mereka digunakan dalam sistem NLP dan untuk tujuan
apa. Konsentuasi dan Izin: Menghargai hak privasi dan
mendapatkan izin atau persetujuan dari individu sebelum
menggunakan atau memproses data teks mereka. Pemulihan
dan Hapus Data: Menciptakan mekanisme untuk menghapus
atau memulihkan data teks secara efektif jika diminta oleh
individu terkait hak privasi mereka.
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4. Penerapan FEtika dalam Pengembangan Model NLP:
Pengembangan Model yang Bertanggung Jawab: Pentingnya
membangun model NLP dengan mempertimbangkan prinsip-
prinsip privasi dan keamanan, serta memastikan bahwa data
sensitif diperlakukan dengan hati-hati.

Enkripsi dan Perlindungan Data: Menggunakan teknologi enkripsi
dan pengamanan data yang tepat untuk melindungi informasi yang
disimpan dan diproses oleh sistem NLP. Kerangka Regulasi:
Perlunya kerangka regulasi yang kuat wuntuk mengatur
penggunaan data teks dalam NLP, memastikan perlindungan yang
tepat terhadap privasi dan keamanan. Menyadari dan
mempertimbangkan isu privasi dan keamanan data dalam
pengembangan dan penerapan teknologi NLP sangat penting
untuk memastikan penggunaan yang etis, aman, dan bertanggung
jawab dari informasi teks yang sensitif atau pribadi.

2. Bias dalam data dan model

Isu etika tentang bias dalam data dan model dalam Natural

Language Processing (NLP) mengacu pada ketidakseimbangan

atau distorsi dalam data serta model yang dapat menyebabkan

hasil yang tidak adil atau tidak representatif. Berikut adalah
beberapa poin terkait isu etika ini:

1. Bias dalam Data: Ketidakseimbangan Representasi: Data yang
digunakan untuk melatth model NLP mungkin tidak
mencerminkan keberagaman masyarakat, menyebabkan
kurangnya representasi yang merata dari berbagai kelompok
atau perspektif. Replikasi Bias Manusia: Data teks bisa
mencerminkan bias yang ada dalam masyarakat, seperti
gender, ras, atau kecenderungan budaya, yang dapat tercermin
dalam model NLP.

2. Bias dalam Model: Pengambilan Keputusan Tidak Adil: Model
NLP yang dikenai bias dalam data latihnya dapat menghasilkan
keputusan atau penilaian yang tidak adil atau diskriminatif.
Perpetuasi Bias: Model NLP yang belajar dari data yang sudah
terbias cenderung memperkuat atau memperpanjang bias
tersebut dalam hasilnya.
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3. Isu Etika Terkait: Keadilan dan Kesetaraan: Model NLP yang
bias dapat memberikan keputusan atau prediksi yang tidak adil,
memengaruhi kesetaraan akses atau perlakuan yang adil.
Transparansi dan Akuntabilitas: Perlunya transparansi dalam
proses pembangunan model dan pengambilan keputusan untuk
memahami dan memeriksa bias yang ada. Keragaman dan
Representasi: Pentingnya memastikan keberagaman dan
representasi yang adil dari berbagai perspektif dalam data dan
model NLP.

4. Penanganan Bias dalam NLP: Pembersihan Data: Identifikasi,
analisis, dan pembersihan data yang memiliki bias yang tidak
diinginkan. Pengaturan Model: Menerapkan teknik seperti
debiasing atau fine-tuning untuk mengurangi atau
menghilangkan bias yang ditemukan dalam model. Monitoring
dan Evaluasi Berkelanjutan: Melakukan evaluasi berkelanjutan
terhadap model untuk mengidentifikasi dan mengatasi bias
yang baru muncul. Pendekatan yang Berbasis Etika:
Menggunakan pendekatan yang berbasis etika dalam
pengembangan model untuk memastikan  keadilan,
transparansi, dan kesetaraan. Mengatasi isu bias dalam data dan
model NLP sangat penting untuk memastikan bahwa teknologi
ini diterapkan secara adil, transparan, dan menghormati
keberagaman serta hak asasi manusia. Hal ini membantu
mencegah model NLP menyebarkan atau memperkuat
ketidaksetaraan yang ada dalam masyarakat.
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BAB V
TOPIK MODEL

A. Topik Model LDA

Dalam dunia yang dipenuhi dengan ledakan informasi,
pengelolaan dan pemahaman terhadap teks telah menjadi
tantangan besar. Bagaimana kita bisa mengurai ratusan, bahkan
ribuan dokumen, untuk menemukan pola dan tema yang
tersembunyi di dalamnya? Inilah di mana Model Latent Dirichlet
Allocation (LDA) memasuki panggung sebagai alat penting dalam
pemrosesan teks dan analisis topik.

LDA, yang merupakan singkatan dari Latent Dirichlet Allocation,
adalah sebuah model probabilistik yang memungkinkan kita untuk
mengidentifikasi topik-topik yang tersembunyi di dalam sebuah
koleksi besar dokumen. Konsep utama di balik LDA adalah ide
bahwa setiap dokumen dalam koleksi tersebut merupakan
kombinasi dari beberapa topik, sementara setiap topik sendiri
adalah distribusi probabilitas atas sekelompok kata-kata.

Mengapa LDA penting? Alat ini memungkinkan kita untuk
menjelajahi teks dengan cara yang tidak terlalu langsung, dengan
mengidentifikasi hubungan dan tema yang ada di antara kumpulan
kata-kata yang mungkin tidak terlihat pada pandangan pertama.
Dengan kemampuannya untuk menemukan pola tersembunyi,
LDA telah diterapkan dalam berbagai bidang mulai dari analisis
sentimen hingga klasifikasi dokumen, serta pemahaman yang
lebih dalam terhadap tren dan opini dalam teks yang besar.

Namun, seperti halnya alat analisis lainnya, LDA memiliki
kelebihan dan batasannya sendiri. Penggunaannya yang efektif
membutuhkan pemahaman yang baik akan parameter, proses
preprocessing data yang teliti, serta interpretasi hasil yang tepat.
Meskipun memberikan wawasan yang kuat, model ini juga
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memerlukan penggunaan yang bijaksana dan penyesuaian yang
cermat sesuai dengan konteks aplikasinya.

Dalam buku ini, kami akan membawa Anda melalui perjalanan
mendalam dari dasar-dasar probabilitas hingga implementasi
praktis dari Model LDA. Kami akan membahas teori di balik
model ini, langkah-langkah untuk menerapkannya secara efektif,
strategi evaluasi, dan juga memperlihatkan berbagai studi kasus
yang memperlihatkan aplikasi nyata dari model ini. Semoga buku
ini membantu Anda memahami, menerapkan, dan mengambil
manfaat dari kekuatan analisis teks yang ditawarkan oleh Model
Latent Dirichlet Allocation. Selamat menikmati perjalanan Anda
dalam mempelajari model yang luar biasa ini. Ruang lingkup dan
tujuan dalam penggunaan Model Latent Dirichlet Allocation
(LDA) sangat penting untuk memberikan pemahaman yang jelas
kepada pembaca tentang apa yang dapat dicapai dengan model ini
dan bagaimana mereka bisa menerapkannya secara praktis.
Berikut penjelasan mengenai ruang lingkup dan tujuan LDA:

B. Ruang Lingkup LDA

Ruang lingkup LDA meliputi pemahaman tentang bagaimana
model ini digunakan untuk menganalisis teks secara probabilistik.
Dalam penggunaannya, LDA membantu dalam:

1. Penemuan  Topik  Tersembunyi: = LDA  membantu
mengidentifikasi pola dan topik yang tersembunyi di dalam
kumpulan dokumen, memungkinkan kita untuk mengetahui
topik apa saja yang sedang dibahas.

2. Representasi Dokumen: Model ini memungkinkan dokumen
direpresentasikan sebagai distribusi topik, memberikan cara
yang kuat untuk melihat bagaimana dokumen terkait dengan
topik-topik tertentu.

3. Analisis Sentimen dan Klasifikasi Dokumen: Dengan
memahami topik utama dalam dokumen, LDA dapat
digunakan untuk menganalisis sentimen, mengelompokkan
dokumen ke dalam kategori tertentu, atau bahkan membantu
dalam pemrosesan pencarian.

65



C. Tujuan Implementasi LDA

Pemahaman Teori Probabilistik di Balik LDA: Tujuan pertama
adalah memberikan pemahaman yang kuat tentang dasar-dasar
probabilistik yang mendasari model LDA sehingga pembaca
dapat mengerti alasan di balik proses dan hasilnya. Implementasi
Praktis dengan Alat yang Tersedia: Buku ini bertujuan untuk
membantu pembaca dalam mengimplementasikan LDA dengan
alat dan bahasa pemrograman yang umum digunakan seperti
Python, R, atau bahasa lainnya yang mendukung analisis teks.

Strategi Preprocessing dan Evaluasi yang Efektif: Penting bagi
pembaca untuk memahami langkah-langkah pra-pemrosesan data
yang diperlukan sebelum menerapkan LDA, serta cara melakukan
evaluasi yang tepat terhadap model yang telah dibangun. Studi
Kasus dan Contoh yang Nyata: Buku ini akan memaparkan studi
kasus yang bervariasi dan contoh penggunaan nyata LDA di
berbagai bidang agar pembaca mendapatkan gambaran yang jelas
tentang cara praktis dalam menerapkan model ini. Dengan
memahami ruang lingkup dan tujuan penggunaan LDA,
diharapkan pembaca dapat merencanakan,
mengimplementasikan, dan mengevaluasi model ini secara efektif
untuk kebutuhan analisis teks mereka.

Dalam dunia pembelajaran mesin, model probabilistik menjadi
fondasi yang kuat untuk pemahaman dan analisis data. Dasar-
dasar model probabilistik mengacu pada representasi matematis
dari ketidakpastian dalam suatu sistem. Konsep ini melibatkan
probabilitas sebagai alat utama untuk menggambarkan
ketidakpastian dalam data. Dalam konteks model probabilistik,
variabel yang diamati diasumsikan memiliki  distribusi
probabilitas tertentu yang menentukan kemungkinan nilai-nilai
yang mungkin mereka miliki.

Model probabilistik menawarkan pendekatan kuat untuk
memahami dan memodelkan data yang kompleks. Dengan
memperhitungkan distribusi probabilitas dari berbagai variabel
dan parameter, model-model ini memungkinkan penanganan
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ketidakpastian dengan cara yang sistematis. Penggunaannya yang
luas meliputi pembelajaran mesin, di mana model probabilistik
digunakan untuk membuat prediksi yang bergantung pada
distribusi probabilitas, bukan hanya untuk memberikan hasil biner
atau deterministik.

Dasar-dasar model probabilistik melibatkan konsep teoritis seperti
distribusi probabilitas, fungsi likelihood, teori keputusan, dan
inferensi statistik. Melalui representasi matematis yang rumit
namun sistematis, model probabilistik memungkinkan kita untuk
mengeksplorasi dan menganalisis data secara lebih mendalam.
Dalam konteks pembelajaran mesin, ini memungkinkan
pengembangan model yang mampu mengidentifikasi pola,
menarik kesimpulan, dan membuat keputusan berdasarkan
analisis statistik yang kuat. Dengan demikian, pemahaman yang
kuat tentang dasar-dasar model probabilistik menjadi krusial
dalam menjelajahi dan menerapkan teknik-teknik analisis data
yang lebih canggih.

D. Konsep Dasar Probabilistik

Konsep Dasar Probabilistik merujuk pada teori dan prinsip yang
mendasari penggunaan probabilitas dalam pemodelan fenomena
yang tidak pasti. Probabilitas adalah ukuran untuk mengukur
seberapa mungkin suatu peristiwa akan terjadi, dan konsep dasar
probabilistik digunakan untuk menggambarkan ketidakpastian
dalam berbagai situasi.

Di dalamnya terdapat beberapa konsep utama, salah satunya
adalah Distribusi Probabilitas. Ini merujuk pada cara peristiwa
acak atau variabel acak tersebar di berbagai nilai dengan berbagai
kemungkinan. Distribusi probabilitas memungkinkan kita untuk
menggambarkan peluang masing-masing nilai yang mungkin
diambil oleh variabel acak.

Selain itu, konsep dasar probabilistik juga mencakup Fungsi
Likelihood. Ini menggambarkan seberapa baik suatu model
statistik cocok dengan data yang diamati. Fungsi Likelihood
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menjadi dasar bagi banyak metode estimasi parameter dalam
statistika, dan digunakan untuk mengukur seberapa mungkin
parameter model yang diestimasi memproduksi data yang diamati.
Konsep dasar ini juga mencakup Teori Keputusan, yang berkaitan
dengan cara kita membuat keputusan dalam kondisi
ketidakpastian. Teori Keputusan berusaha untuk menggabungkan
aspek keuntungan (reward) dan risiko dalam pengambilan
keputusan dengan mempertimbangkan probabilitas dan dampak
dari pilihan yang dibuat.

Inferensi Statistik juga merupakan bagian penting dari konsep
dasar probabilistik. Ini berkaitan dengan proses membuat
kesimpulan atau generalisasi tentang populasi atau fenomena
berdasarkan data yang hanya diambil dari sampel. Dengan
menggunakan prinsip-proprinsi dasar probabilitas, inferensi
statistik memungkinkan kita untuk melakukan generalisasi yang
masuk akal dari data sampel ke populasi yang lebih besar.

Keseluruhan, Konsep Dasar Probabilistik menyediakan kerangka
kerja matematis dan konseptual yang penting dalam memahami
dan menerapkan teori probabilitas. Ini membantu kita untuk
memodelkan dan memahami fenomena kompleks dengan
menggambarkan ketidakpastian, membuat keputusan dalam
kondisi tidak pasti, serta membuat inferensi yang dapat dipercaya
berdasarkan data yang terbatas.

E. Contoh Konsep Dasar Probabilistik:

Berikut adalah beberapa contoh Konsep Dasar Probabilistik:

1. Distribusi Probabilitas: Misalkan Anda melempar koin.
Kemungkinan hasilnya adalah gambar (heads) atau angka
(tails), di mana masing-masing hasil memiliki probabilitas 0.5
(asumsi koin yang adil). Distribusi probabilitas ini membantu
menggambarkan kemungkinan hasil yang mungkin dari
eksperimen acak ini.

2. Fungsi Likelihood: Bayangkan Anda memiliki data
pengamatan tentang tinggi badan orang-orang di suatu
populasi. Dengan menggunakan model statistik, Anda ingin
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menemukan distribusi tinggi badan yang paling mungkin
mewakili data yang diamati. Dalam konteks ini, fungsi
likelihood membantu mengukur seberapa baik model distribusi
tinggi badan ini cocok dengan data yang ada.

3. Teori Keputusan: Anda berada di supermarket dan ingin
memilih antara dua merek produk dengan harga yang berbeda.
Anda tidak yakin kualitas produk mana yang lebih baik.
Melalui  teori  keputusan, Anda mempertimbangkan
kemungkinan manfaat dari masing-masing pilihan berdasarkan
harga dan probabilitas bahwa salah satu merek produk lebih
baik daripada yang lain.

4. Inferensi Statistik: Anda ingin mengetahui rata-rata waktu
yang dibutuhkan seseorang untuk menyelesaikan tes tertentu.
Anda hanya memiliki data waktu yang diperlukan oleh
sekelompok sampel orang. Dengan menggunakan inferensi
statistik, Anda dapat membuat perkiraan rata-rata waktu yang
diperlukan oleh seluruh populasi berdasarkan data sampel ini.

Semua contoh di atas menunjukkan penerapan Konsep Dasar
Probabilistik dalam berbagai konteks, mulai dari eksperimen acak
hingga pengambilan keputusan dan estimasi parameter dari data
terbatas. Konsep-konsep ini membantu dalam menggambarkan,
memahami, dan membuat prediksi dalam situasi di mana terdapat
ketidakpastian atau variasi dalam hasil yang mungkin terjadi.

Model Probabilistik dalam Pembelajaran Mesin mengacu pada
pendekatan di mana model statistik menggunakan konsep
probabilitas untuk memodelkan dan mengevaluasi data. Ini adalah
salah satu pendekatan yang sangat berguna dalam membuat
estimasi, klasifikasi, dan prediksi berdasarkan data yang tidak
pasti.

Dalam pembelajaran mesin, model-model ini memungkinkan kita
untuk menggabungkan informasi dari data yang diberikan dengan
ketidakpastian yang melekat pada proses pengambilan keputusan.
Beberapa konsep utama dalam model probabilistik pembelajaran
mesin termasuk:
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. Probabilitas sebagai Landasan Utama: Model probabilistik
menggunakan probabilitas sebagai dasar untuk memahami dan
memodelkan  ketidakpastian ~ dalam  data.  Mereka
mengekspresikan hubungan antara input dan output dengan
distribusi probabilitas, yang membantu dalam mengukur
ketidakpastian dalam prediksi.

. Pemodelan Distribusi Data: Model probabilistik mampu
memodelkan distribusi data yang kompleks, memberikan cara
yang lebih fleksibel untuk menggambarkan keragaman dan
kompleksitas data dalam pembelajaran mesin.

. Estimasi Parameter dengan Maksimum Likelihood atau
Metode Bayesian: Model ini sering kali menggunakan metode
maksimum likelihood atau pendekatan Bayesian untuk
mengestimasi parameter dari data yang diamati. Dengan cara
ini, mereka dapat menyesuaikan model mereka dengan data
yang ada dan menghasilkan prediksi yang lebih akurat.

. Penggunaan dalam Klasifikasi dan Regresi: Model-model
ini digunakan untuk Kklasifikasi, regresi, atau tugas-tugas
pembelajaran mesin lainnya. Mereka mampu memberikan
prediksi dengan menghasilkan distribusi probabilitas atas
output yang mungkin, bukan hanya memberikan label atau nilai
tunggal.

. Interpretasi yang Lebih Mudah: Dalam beberapa kasus,
model probabilistik dapat memberikan interpretasi yang lebih
intuitif atas hasilnya. Mereka memungkinkan kita untuk
memahami seberapa yakin model terhadap prediksi yang
dibuatnya.

. Dalam  Kkeseluruhan, Model Probabilistik dalam
Pembelajaran  Mesin  membantu  dalam  mengatasi
ketidakpastian yang melekat dalam data, memungkinkan
model untuk membuat prediksi yang lebih cermat, dan
memberikan cara yang lebih terstruktur untuk memahami
distribusi data yang kompleks. Ini adalah pendekatan yang kuat
dalam konteks di mana informasi probabilistik diperlukan
untuk membuat keputusan yang cerdas dan akurat.

. Pemodelan Distribusi Data merujuk pada upaya untuk
menggambarkan atau memahami bagaimana data yang diamati
tersebar atau didistribusikan di dalam ruang sampel. Ini adalah
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konsep yang penting dalam statistika dan pembelajaran mesin
karena membantu dalam memahami sifat-sifat data dan
mencari model yang cocok untuk menjelaskan data tersebut.

Dalam pemodelan distribusi data, kita mencari fungsi matematis
yang paling sesuai untuk menggambarkan sebaran atau distribusi
data yang diamati. Fungsi ini sering kali didasarkan pada sejumlah
parameter yang kemudian akan diestimasi dari data yang tersedia.
Beberapa distribusi probabilitas yang sering digunakan untuk
memodelkan data meliputi distribusi normal (Gaussian), distribusi
binomial, distribusi Poisson, distribusi eksponensial, dan banyak
lagi.

F. Aspek Pemodelan distribusi data memiliki

1. Deskripsi Distribusi Data: Melalui pemodelan distribusi, kita
bisa mendapatkan gambaran yang jelas tentang sebaran data.
Misalnya, jika data terdistribusi normal, kita dapat
menggunakan parameter rata-rata dan deviasi standar untuk
mendeskripsikan distribusi tersebut.

2. Prediksi dan Estimasi: Dengan mengetahui distribusi data,
kita dapat membuat prediksi atau estimasi terkait nilai-nilai
yang mungkin dari data yang baru. Misalnya, dalam prediksi,
jika kita mengetahui distribusi data yang ada, kita dapat
membuat perkiraan tentang nilai yang paling mungkin terjadi.

3. Pemilihan Model yang Sesuai: Pemodelan distribusi
membantu kita memilih model yang paling cocok untuk data
yang kita hadapi. Ini membantu dalam pembuatan model yang
lebih akurat dan representatif terhadap data yang sebenarnya.

4. Analisis Statistik Lanjutan: Distribusi data juga menjadi
dasar untuk banyak analisis statistik lanjutan. Misalnya, dalam
inferensi statistik, pemodelan distribusi menjadi kunci dalam
membuat asumsi tentang distribusi data sampel terhadap
populasi yang lebih besar.

Dengan kata lain, pemodelan distribusi data adalah usaha untuk
menemukan atau menyesuaikan model matematika yang paling
cocok untuk menjelaskan cara data tersebar, sehingga membantu
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dalam analisis, prediksi, dan pengambilan keputusan yang
berkaitan dengan data tersebut.

G. Contoh Pemodelan Distribusi Data

Berikut adalah beberapa contoh Pemodelan Distribusi Data:
Distribusi Normal (Gaussian): Contoh: Misalkan Anda memiliki
ketinggian orang-orang dalam sebuah populasi. Jika data
ketinggian tersebut terdistribusi secara mendekati kurva normal
(bell curve) dengan rata-rata 170 cm dan deviasi standar 10 cm,
Anda dapat menggunakan distribusi normal untuk memodelkan
sebaran ketinggian tersebut. Dengan model ini, Anda dapat
memprediksi seberapa mungkin orang memiliki ketinggian
tertentu di dalam populasi berdasarkan karakteristik distribusi
tersebut.

Distribusi Binomial: Contoh: Bayangkan Anda melakukan
serangkaian uji coba di mana setiap uji coba memiliki dua hasil
mungkin: sukses atau gagal. Misalnya, Anda melempar koin 10
kali dan mencatat berapa kali hasilnya adalah gambar (heads). Jika
Anda ingin memodelkan distribusi jumlah gambar yang mungkin
muncul dari 10 lemparan tersebut, Anda bisa menggunakan
distribusi binomial. Dengan ini, Anda bisa memprediksi
probabilitas munculnya sejumlah gambar tertentu dalam
serangkaian lemparan koin.

Distribusi Poisson: Contoh: Anda mengamati jumlah kendaraan
yang melewati suatu titik dalam satu jam di suatu jalan raya yang
jarang dilewati. Anda mencatat rata-rata lima kendaraan per jam.
Distribusi Poisson bisa digunakan untuk memodelkan sebaran
jumlah kendaraan yang melewati titik tersebut dalam interval
waktu tertentu. Dengan model ini, Anda dapat memperkirakan
probabilitas munculnya sejumlah kendaraan dalam interval waktu
yang telah ditentukan.

Distribusi Eksponensial: Contoh: Bayangkan Anda ingin
memodelkan waktu antara kedatangan pelanggan ke suatu layanan

perbankan. Jika waktu antara kedatangan pelanggan terdistribusi
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eksponensial dengan rata-rata 5 menit, Anda dapat menggunakan
distribusi eksponensial untuk memodelkan interval waktu antara
kedatangan pelanggan ke lokasi tersebut. Dengan ini, Anda dapat
membuat perkiraan tentang waktu yang diharapkan untuk
kedatangan pelanggan berikutnya.

Contoh-contoh di atas mengilustrasikan cara pemodelan distribusi
data digunakan dalam berbagai konteks untuk menggambarkan
cara data tersebar, memberikan prediksi, serta membantu dalam
pengambilan keputusan berdasarkan karakteristik distribusi
tersebut. Berikut adalah contoh matematis dari beberapa distribusi
data yang umum digunakan dalam pemodelan statistik:

Distribusi Normal (Gaussian): Distribusi Normal didefinisikan
oleh fungsi densitas probabilitas (probability density function,
PDF)*:

_ (=
.e 202

1
fxlp, o) = Neros

Di sini, p adalah nilai rata-rata, ¢ adalah deviasi standar, dan x
adalah variabel acak yang diukur.

Distribusi Binomial: Distribusi Binomial menggambarkan
probabilitas p sukses atau 1—p gagal dalam n uji coba independen.
Fungsi mass probabilitas (probability mass function, PMF) untuk
distribusi binomial diberikan oleh:

P(X =k) = (Z) pk. (1—p)nk

Di sini, k adalah jumlah sukses yang diharapkan dalam n uji coba,
p adalah probabilitas sukses dalam satu uji coba, dan X adalah
variabel acak yang menggambarkan jumlah sukses.

4 https://en.wikipedia.org/wiki/Normal_distribution
5 https://itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
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Distribusi Poisson: Distribusi Poisson menggambarkan jumlah
peristiwa yang terjadi dalam Distribusi Poisson adalah distribusi
probabilitas diskrit yang menggambarkan jumlah peristiwa yang
terjadi dalam suatu interval waktu atau ruang tertentu, ketika
peristiwa-peristiwa tersebut terjadi dengan tingkat kejadian yang
konstan dan secara independen dari waktu sebelumnya. Distribusi
ini sering digunakan dalam berbagai bidang seperti ilmu statistik,
matematika, ilmu sosial, dan lainnya untuk memodelkan peristiwa
yang jarang terjadi namun memiliki tingkat kejadian yang stabil.
Rumus Distribusi Poisson adalah:

-2 k

e
P(X:k):T

P(X=k) adalah probabilitas bahwa terjadi
k peristiwa dalam interval waktu atau ruang yang diberikan.
e adalah konstanta Euler (sekitar 2.71828).

A adalah tingkat kejadian rata-rata per interval waktu atau ruang.
Ini bisa dianggap sebagai rata-rata jumlah peristiwa yang terjadi.
k adalah jumlah peristiwa yang ingin dihitung probabilitasnya. k!
adalah faktorial dari k (produk dari semua bilangan bulat positif
kurang dari atau sama dengan k).

Misalnya, jika kita memiliki situasi di mana rata-rata jumlah mobil
yang melewati suatu jalan dalam satu jam adalah 5, kita dapat
menggunakan distribusi Poisson untuk menghitung probabilitas
bahwa tepat 3 mobil akan melewati jalan dalam waktu satu jam:
-5 _53
P (X = 3) = T

Ini akan memberikan probabilitas bahwa tepat 3 mobil akan
melewati jalan dalam interval waktu satu jam, berdasarkan asumsi
tingkat kejadian rata-rata sebanyak 5 mobil per jam.
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Distribusi  Poisson berguna dalam memodelkan peristiwa-
peristiwa yang jarang terjadi namun memiliki distribusi kejadian
yang terukur.

Distribusi Eksponensial:

Distribusi Eksponensial menggambarkan waktu antara peristiwa-
peristiwa yang terjadi secara acak. Distribusi Eksponensial adalah
distribusi probabilitas yang digunakan untuk memodelkan waktu
antara peristiwa-peristiwa yang terjadi secara acak dan
independen dalam suatu proses yang memiliki tingkat kejadian
konstan. Ini sering digunakan dalam analisis waktu tunggu di
berbagai bidang seperti ilmu statistik, ilmu komputer, sistem
antrian, dan lainnya. Rumus Distribusi Eksponensial adalah
sebagai berikut:

fl ) =2e ™

f(x;A) adalah fungsi kepadatan probabilitas (PDF) dari variabel
acak

x dengan parameter

A, yang menyatakan tingkat kejadian.

A adalah tingkat kejadian yang merupakan invers dari rata-rata
peristiwa yang terjadi per unit waktu. Semakin besar nilai

A, semakin cepat peristiwa-peristiwa terjadi.

e adalah konstanta Euler (sekitar 2.71828).

x adalah waktu tunggu atau interval waktu antara peristiwa-
peristiwa.

Misalnya, jika kita ingin menghitung probabilitas bahwa waktu
antara dua kejadian (misalnya, kedatangan dua kendaraan pada
suatu titik dalam sistem transportasi) berada pada interval waktu
tertentu, kita dapat menggunakan distribusi Eksponensial. Jika
tingkat kedatangan rata-rata kendaraan adalah 4 per jam (A=4),
maka probabilitas bahwa waktu antara kedatangan dua kendaraan

adalah lebih dari 15 menit (x > g jam) adalah:

15 _ °°/1 _ixg
P(x,%)— _l_1_5 e X

60
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Distribusi Eksponensial juga sering digunakan dalam model
antrian untuk memprediksi waktu tunggu dalam antrian atau
interval antara kedatangan pelanggan dalam sistem layanan. Ini
membantu dalam analisis kinerja sistem di mana waktu antara
peristiwa memegang peranan penting.
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BAB VI
LATENT DIRICHLET ALLOCATION
(LDA)

Dalam dunia yang semakin dipenuhi oleh volume besar informasi
teks, pengelolaan dan pemahaman terhadap konten tersebut telah
menjadi tantangan yang semakin kompleks. Salah satu alat yang
paling penting dalam menganalisis data teks secara menyeluruh
adalah Model Latent Dirichlet Allocation (LDA)(Blei et al.,
2003). Konsep ini, yang diadaptasi dari bidang statistik dan
pembelajaran mesin, memungkinkan kita untuk mengurai struktur
tersembunyi  dari  dokumen-dokumen yang kompleks,
mengidentifikasi pola-pola yang tak terlihat pada pandangan
pertama. Sejarah dan latar belakang Model Latent Dirichlet
Allocation (LDA) berasal dari dunia ilmu komputer, statistik, dan
pengolahan bahasa alami. Model ini diperkenalkan pertama kali
oleh David Blei, Andrew Ng, dan Michael Jordan pada tahun 2003
melalui makalah penelitian yang diterbitkan dalam jurnal ilmiah
"Journal of Machine Learning Research".

Latar belakang LDA berakar dari upaya untuk menemukan cara
efektif untuk mengatasi kompleksitas dalam analisis teks.
Sebelum LDA, memahami dan mengelompokkan dokumen-
dokumen berdasarkan topik atau pola yang tersembunyi dalam
jumlah yang besar merupakan tantangan besar. LDA diciptakan
sebagai jawaban untuk mengatasi masalah ini, dengan tujuan
memberikan metode yang lebih sistematis dan terstruktur untuk
mengekstraksi topik tersembunyi dari kumpulan dokumen yang
besar.

Pada dasarnya, LDA diilhami oleh konsep tentang bagaimana
dokumen-dokumen terbentuk. Model ini mengasumsikan bahwa
dokumen-dokumen dibangun dari sejumlah topik yang
tersembunyi, dan setiap kata dalam dokumen tersebut berasal dari
salah satu dari topik-topik ini. LDA menggunakan pendekatan
probabilistik untuk mengekstraksi distribusi topik dari kumpulan
dokumen dan mengidentifikasi pola yang mendasarinya.

77



Sejak diperkenalkan, LDA telah menjadi salah satu alat yang
sangat populer dalam analisis teks, pengelompokan dokumen,
sistem rekomendasi, dan pemrosesan bahasa alami.
Penggunaannya telah meluas di berbagai bidang seperti ilmu
sosial, ekonomi, biomedis, dan lainnya, karena kemampuannya
dalam mengurai dan memahami konten teks yang kompleks
menjadi topik-topik yang lebih terdefinisi.

Latent Dirichlet Allocation (LDA) adalah model topik
probabilistik yang sangat digunakan dalam pemrosesan bahasa
alami (NLP) karena kemampuannya untuk mengidentifikasi
struktur semantik dalam kumpulan teks besar. LDA beroperasi
dengan mengasumsikan bahwa setiap dokumen adalah campuran
dari sejumlah topik, dan setiap topik diwakili sebagai distribusi
atas kata-kata. Hal ini memungkinkan LDA untuk mengekstraksi
dan memahami topik-topik yang mendasari dalam kumpulan data
teks tanpa perlu label atau anotasi manual, membuatnya sangat
berguna untuk berbagai aplikasi analisis teks.

Pentingnya LDA dalam NLP sangat signifikan karena
kemampuannya untuk menangani masalah skala besar, seperti
yang ditemukan dalam analisis Big Data. Model ini membantu
'membuka’ dan membuat koneksi percakapan laten yang
sebelumnya tidak terlihat dalam korpus teks yang luas, seperti
profil, thread diskusi, forum, dan media sosial lainnya. LDA
membantu dalam mengidentifikasi hubungan yang belum
diketahui sebelumnya dan menyediakan wawasan yang lebih
dalam tentang struktur semantik data teks (Gross & Murthy,
2014).

Dalam konteks NLP, LDA sering digunakan untuk meningkatkan
aplikasi seperti klasifikasi dokumen, pengelompokan teks, dan
sistem rekomendasi. Model ini menawarkan kerangka kerja yang
kuat untuk memahami dan mengelola variabilitas semantik dan
sintaktik dalam teks. Dengan memetakan dokumen ke dalam
ruang topik, LDA memfasilitasi pengurangan dimensi yang efektif
dan interpretasi semantik yang kaya, yang sangat penting dalam
tugas pemahaman teks dan pengambilan informasi (Wang et al.,
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2012). Selain itu, variasi LDA, seperti LDA semi-supervised,
telah dikembangkan untuk menggabungkan pengetahuan yang
diawasi ke dalam prosedur pembelajaran, memungkinkan
penggunaan label terawasi untuk memandu pemodelan topik dan
meningkatkan akurasi klasifikasi dokumen. Ini menunjukkan
fleksibilitas dan kemampuan adaptasi LDA untuk memenuhi
kebutuhan spesifik dari berbagai tugas NLP (Wang et al., 2012).

Secara keseluruhan, LDA merupakan alat yang sangat berharga
dalam kotak alat NLP, memberikan wawasan mendalam tentang
struktur semantik yang kompleks dari teks dan memfasilitasi
pengembangan aplikasi pemrosesan teks yang canggih.

A. Prinsip Kerja LDA

Model Latent Dirichlet Allocation (LDA) bekerja dengan cara
mengasumsikan bahwa setiap dokumen dalam kumpulan
dokumen dibentuk oleh kombinasi dari beberapa topik, dan setiap
kata dalam dokumen berasal dari salah satu dari topik-topik
tersebut. Prinsip kerja LDA secara rinci dapat dijabarkan sebagai
berikut:

Inisialisasi Awal: LDA dimulai dengan tahap inisialisasi di mana

setiap kata dalam setiap dokumen ditugaskan secara acak ke salah

satu dari sejumlah topik yang telah ditentukan. Awalnya,
distribusi kata dalam dokumen ditetapkan secara acak.

Iterasi Estimasi: Model melakukan iterasi untuk menyesuaikan

distribusi topik di setiap dokumen dan distribusi kata di setiap

topik. Dalam setiap iterasi, LDA mencoba untuk memperbaiki
penugasan kata-kata ke topik-topik berdasarkan dua hal utama:

1. Perhitungan Proporsi Topik dalam Dokumen: Model
memperkirakan seberapa banyak setiap topik mempengaruhi
setiap dokumen. Ini dilakukan dengan menghitung proporsi
atau distribusi probabilitas dari setiap topik dalam setiap
dokumen.

2. Perhitungan Proporsi Kata dalam Topik: LDA juga
memperkirakan seberapa banyak setiap kata terkait dengan
setiap topik. Ini dilakukan dengan menghitung proporsi atau
distribusi probabilitas dari setiap kata dalam setiap topik.
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Update Parameter: Setelah iterasi yang berulang, model
memperbarui  parameter-parameternya untuk memperbaiki
estimasi proporsi kata dalam topik dan proporsi topik dalam
dokumen.

Penentuan Topik: Setelah proses iterasi selesai, LDA
menghasilkan distribusi topik yang diperkirakan untuk setiap
dokumen dan distribusi kata yang diperkirakan untuk setiap topik.
Dengan hasil ini, kita dapat melihat topik-topik yang
mendominasi setiap dokumen dan kata-kata yang paling terkait
dengan masing-masing topik.

Prinsip utama di balik LDA adalah bagaimana model mencoba
untuk memperbaiki estimasi awal terkait dengan bagaimana kata-
kata terdistribusi di antara topik-topik dan bagaimana topik-topik
didistribusikan di antara dokumen-dokumen. Tujuannya adalah
untuk menemukan pola yang tersembunyi dalam dokumen-
dokumen dan menghasilkan representasi yang lebih terstruktur
dan informatif tentang topik-topik yang ada dalam kumpulan
dokumen tersebut. Implementasi matematis dari Model Latent
Dirichlet Allocation (LDA) melibatkan langkah-langkah yang
kompleks dalam memodelkan distribusi kata-kata di dalam
dokumen dan distribusi topik di dalam kumpulan dokumen. Di
bawah ini adalah detail langkah-langkah implementasi matematis
LDA:

B. Pembentukan Model:

Variabel Laten: LDA melibatkan variabel laten (tersembunyi),
termasuk variabel topik dan variabel distribusi topik pada
dokumen-dokumen.

Parameter Model: Parameter yang diperlukan meliputi jumlah
topik yang diinginkan (K), distribusi Dirichlet untuk topik dalam
dokumen (o), dan distribusi Dirichlet untuk kata dalam topik (B).
Representasi Dokumen: Dokumen direpresentasikan dalam
bentuk matriks di mana setiap baris mewakili sebuah dokumen,
dan setiap kolom mewakili jumlah kata dalam kosa kata yang
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digunakan. Nilai di dalam matriks ini mewakili frekuensi
kemunculan kata dalam dokumen tersebut.

Proses Estimasi dan Iterasi: [Iterasi dimulai dengan
menginisialisasi secara acak nilai-nilai awal untuk variabel
tersembunyi (topik dari kata-kata dalam dokumen).

Proses perhitungan dilakukan berulang kali untuk memperbaiki
estimasi variabel laten. Langkah-langkah ini melibatkan
perhitungan proporsi topik dalam dokumen dan proporsi kata
dalam topik.

Metode Variational Inference atau Gibbs Sampling: Metode ini
sering digunakan dalam LDA untuk mendekati distribusi posterior
dari variabel tersembunyi. Dalam variational inference, tujuannya
adalah untuk mendekati distribusi posterior dengan memilih
distribusi yang paling dekat secara matematis. Gibbs sampling,
metode lain yang digunakan, melibatkan pengambilan sampel
acak dari distribusi probabilitas yang diinginkan.

C. Penyesuaian Parameter

Selama iterasi, nilai-nilai parameter model (seperti a dan )
disesuaikan untuk memperbaiki estimasi distribusi topik dan kata-
kata di dalam dokumen.

Evaluasi dan Output: Setelah iterasi yang cukup banyak, model
LDA menghasilkan distribusi topik untuk setiap dokumen dan
distribusi kata untuk setiap topik. Hasil ini memberikan
representasi yang lebih baik tentang topik-topik yang
mendominasi dokumen dan kata-kata yang paling terkait dengan
masing-masing topik.

Implementasi  matematis LDA  melibatkan  perhitungan
probabilistik yang kompleks, termasuk penggunaan distribusi
Dirichlet dan perhitungan untuk memperbaiki estimasi variabel
tersembunyi. Langkah-langkah ini memungkinkan model untuk
mengekstraksi informasi tersembunyi dari kumpulan dokumen
secara efisien.
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D. Persamaan dalam Model LDA

Rumus Umum LDA: LDA dapat direpresentasikan sebagai model
generatif probabilitas yang mencakup beberapa variabel laten.
Untuk setiap kata dalam dokumen, ada dua variabel laten utama
yang penting dalam LDA, yaitu variabel topik z dan variabel
distribusi topik ¢.

0: Distribusi topik dalam dokumen.

z: Topik yang dipilih untuk setiap kata dalam dokumen.
B: Distribusi kata dalam topik.

w: Kata yang diamati dalam dokumen.

Model LDA direpresentasikan dengan rumus umum sebagai
berikut:

PO.2Blw) )
=p@) . || PO || @anlba. PWwar 1 B,

Dengan D adalah jumlah dokumen dalam kumpulan dokumen, N
adalah jumlah kata dalam dokumen, dan P(0) serta P(B) adalah
distribusi prior dari variabel 6 dan 3, masing-masing.

E. Perhitungan Distribusi Posterior

Untuk mengestimasi distribusi posterior dari variabel laten (6 dan
B) dalam LDA, diperlukan metode seperti variational inference
atau Gibbs sampling. Metode-metode ini digunakan untuk
mendekati distribusi posterior dari variabel laten, yang tidak dapat
dihitung secara langsung. Rumus umum LDA memberikan
kerangka kerja untuk memahami bagaimana dokumen dibangun
dari kombinasi topik dan bagaimana kata-kata dalam dokumen
berasal dari topik-topik tertentu. Langkah-langkah selanjutnya
dalam implementasi LDA melibatkan perhitungan untuk
mendekati distribusi posterior dari variabel laten ini.
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Tentu, berikut adalah rumus matematis yang mendasari Model
Latent Dirichlet Allocation (LDA):

Representasi Dokumen:
D: Jumlah dokumen dalam kumpulan dokumen.
Nd: Jumlah kata dalam dokumen d.
V: Jumlah kata unik dalam kosa kata.
wd,n: Kata ke-n dalam dokumen d.
Parameter Model:
K: Jumlah topik yang diinginkan.
a: Parameter distribusi Dirichlet untuk distribusi topik
dalam dokumen.
B: Parameter distribusi Dirichlet untuk distribusi kata
dalam topik.
Variabel Tersembunyi:
zd,n: Topik yang diatribusikan untuk kata ke-n dalam
dokumen d.

Rumus Estimasi LDA:
a. Distribusi topik dalam dokumen:
P(8, | @ = Dirichlet (64 Ia)

P(6,) = F(Zl 1“1) 1_[

b. Distribusi kata dalam top1k
P(¢x | B = Dirichlet (¢k | B)

T ) Bi-1
P(¢y) = T e 1l P i

c. Probabilitas word assignment
P(Wd,n | B4, ¢Zd,n) = Hd,zd,nx ¢Zd,and,n

Rumus-rumus di atas menggambarkan cara LDA memodelkan
distribusi topik dalam dokumen, distribusi kata dalam topik, dan
probabilitas penugasan kata ke topik dalam dokumen. Metode
variational inference atau Gibbs sampling sering digunakan untuk
mendekati atau menemukan solusi numerik dari model LDA ini.
Tentu, berikut adalah rumus matematis dari Model Latent
Dirichlet Allocation (LDA):
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Notasi dan Variabel yang Digunakan:
D = Jumlah dokumen dalam kumpulan dokumen
N = Jumlah kata dalam dokumen d
K = Jumlah topik yang diinginkan
V = Jumlah kata dalam kosa kata
Wdn = Kata ke-n dalam dokumen ke-d
zan = Topik yang ditugaskan kepada kata ke-n dalam
dokumen ke-d
o = Parameter distribusi Dirichlet untuk distribusi topik
dalam dokumen
B = Parameter distribusi Dirichlet untuk distribusi kata
dalam topik

F. Rumus-rumus LDA

Representasi Distribusi Topik dalam Dokumen: 04x~Dirichlet(a)
Representasi Distribusi Kata dalam Topik: ¢k,v~Dirichlet(B)
Pembentukan Variabel Laten: wd,n~Multinomial(¢zd,n)

Distribusi Posterior untuk 6 dan ¢:

(04 x p(W[64, §)x p(P|B)

p(wla,B)
Estimasi Distribusi Posterior:
Dirichlet(a + YN_; Count(wg,))
p(Bq lw,a) = —
Dirichlet(a) + N

__ Dirichlet(B+ Yo, IN_ count(wgn)x(zgn=k))
p(¢k |W'ﬁ) - Dirichlet(B)+¥5_, ¥N_, count(wgn)
rumus xx

p(64 lw,a) =

Persamaan xx menunjukkan adalah rumus posterior dari distribusi
probabilitas suatu topik (¢ k) dalam model Latent Dirichlet
Allocation (LDA). Dalam persamaan ini:

p(¢_k | w, B) adalah probabilitas posterior dari topik ¢ k, dengan

diberikan dokumen-dokumen (w) dalam korpus dan parameter
hyperparameter 3.
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Dirichlet (B+>._(d=1)"D > (n=1)"N Count(w_(d,n))
x(z_(d,n)=k)) adalah distribusi Dirichlet dengan parameter 3 yang
diubah dengan jumlah kata dalam dokumen yang terasosiasi
dengan topik k (¢_k).

Dirichlet(B) adalah distribusi Dirichlet dengan parameter f.
> (d=1)"D > (n=1)"N Count(w_(d,n)) x(z (d,n)=k) mewakili
jumlah kemunculan kata dalam dokumen yang dikaitkan dengan
topikk. > (d=1)"D ). (n=1)"N Count(w_(d,n)) mewakili jumlah
total kata dalam semua dokumen.

Secara intuitif, rumus tersebut menggambarkan bagaimana
probabilitas distribusi topik tertentu dihitung berdasarkan jumlah
kemunculan kata dalam dokumen yang terkait dengan topik
tersebut, dibandingkan dengan jumlah total kata dalam semua
dokumen, dan diperbarui dengan parameter  yang merupakan
prior distribusi topik. Dalam LDA, tujuannya adalah untuk
mengetahui distribusi topik kata (¢ k) dan distribusi topik
dokumen (6 _d), dan rumus ini membantu dalam memperbarui
estimasi distribusi topik kata berdasarkan dokumen yang diamati
dalam korpus yang diberikan.

G. Proses Model LDA

Secara singkat dapat dijelaskan sebagai berikut:

Model Latent Dirichlet Allocation (LDA) adalah model generatif
yang menggunakan konsep probabilitas untuk menggambarkan
hubungan antara variabel tersembunyi (topik) dan variabel

pengamatan (kata-kata dalam dokumen). Berikut adalah
representasi matematis dari Model LDA:

H. Variabel Tersembunyi:
1. Distribusi Topik Dokumen 0

p(Bila)=Dir(0i]a)
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01 adalah distribusi dari topik-topik dalam dokumen 1, diambil dari
distribusi Dirichlet dengan parameter a.

2. Distribusi Kata dalam Topik

p(BkIn)=Dir(Bkin)
Bk adalah distribusi dari kata-kata dalam topik k, diambil dari
distribusi Dirichlet dengan parameter 1.

Proses Generatif:
e Untuk setiap dokumen 1i:
o 0i~Dir(a)
Untuk setiap kata ke-j dalam dokumen i:
o ~zij~Multinomial(01)
o ~wij~Multinomial(pzij)
Penjelasan:
a adalah parameter prior untuk distribusi topik dokumen.
n adalah parameter prior untuk distribusi kata dalam topik.
01 adalah distribusi dari topik-topik dalam dokumen 1.
Bk adalah distribusi dari kata-kata dalam topik k.
zij adalah variabel tersembunyi yang menunjukkan topik
yang diatribusikan ke kata ke- j dalam dokumen 1i.
e wij adalah kata yang diamati ke-j dalam dokumen 1i.

Model LDA melakukan proses generatif untuk menghasilkan
dokumen-dokumen dengan cara mengambil distribusi topik dari
distribusi Dirichlet untuk setiap dokumen, kemudian memilih
topik dari distribusi topik dokumen untuk setiap kata dalam
dokumen tersebut, dan akhirnya memilih kata dari distribusi kata
dalam topik yang terkait dengan topik yang telah dipilih
sebelumnya.

I. Implementasi LDA
import zipfile
import pandas as pd

import os
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import zipfile: Ini mengimpor modul zipfile, yang memungkinkan
Anda untuk bekerja dengan file zip di Python. Dengan
menggunakan modul ini, Anda dapat mengekstrak file dari arsip
zip, membuat file zip, dan melakukan operasi terkait file zip
lainnya. import pandas as pd: Ini mengimpor modul pandas
dengan alias pd. Pandas adalah pustaka yang sangat populer dalam
Python untuk analisis data. Dengan menggunakan pd sebagai
alias, Anda bisa mengakses fungsi-fungsi dan objek-objek dari
pustaka pandas dengan menggunakan pd sebagai awalan. import
os: Ini mengimpor modul os, yang memberikan fungsionalitas
sistem operasi, seperti interaksi dengan sistem file, mengelola
variabel lingkungan, dan melakukan operasi terkait sistem operasi
lainnya di dalam program Python Anda.

from google.colab import drive
drive.mount (‘/content/drive')

Perintah from google.colab import drive digunakan dalam
lingkungan Google Colab, yang merupakan lingkungan
pengembangan berbasis cloud dari Google yang memungkinkan
Anda untuk menulis dan mengeksekusi kode Python di browser.
Perintah ini mengimpor fungsi drive dari modul google.colab.
Fungsi drive ini digunakan untuk melakukan mount atau
menghubungkan Google Drive ke sesi Colab Anda. Dengan cara
ini, Anda bisa mengakses file yang ada di Google Drive dari
lingkungan Colab untuk membaca, menulis, atau melakukan
operasi lainnya pada file tersebut melalui kode Python.

Pada perintah drive.mount('/content/drive"), drive.mount() adalah
panggilan fungsi yang memicu proses mount Google Drive ke sesi
Colab. Argument '/content/drive’ adalah path atau lokasi di mana
Google Drive akan di-mount di dalam lingkungan Colab. Setelah
menjalankan perintah ini, Colab akan meminta autentikasi dengan
akun Google Anda dan memberikan kode untuk autentikasi, yang
perlu di-copy-paste untuk mengotorisasi akses ke Google Drive
Anda. Setelah otorisasi berhasil, Google Drive akan di-mount ke
path yang telah ditentukan, dalam contoh ini ke '/content/drive'.
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#papers = pd.read_csv('drive/My
Drive/dataset/fintechP2P/2023/16ribu.csv') #lokasi file

papers = pd.read_csv('drive/My
Drive/dataset/fintechP2P/2023/dataset/12-feb-2023masterurut-
p2p.csv') #lokasi file

Perintah ini adalah contoh penggunaan dari pustaka pandas di
Python untuk membaca sebuah file CSV ke dalam variabel papers.
Dalam kode yang Anda berikan:

pd.read_csv() adalah fungsi dari pustaka pandas yang digunakan
untuk membaca file CSV. 'drive/My
Drive/dataset/fintechP2P/2023/dataset/12-feb-2023masterurut-
p2p.csv' adalah path atau lokasi dari file CSV yang akan dibaca.
Jadi, perintah membaca file CSV yang terletak pada path tersebut
dan menyimpannya ke dalam variabel papers. Setelah eksekusi
perintah ini, data dari file CSV tersebut akan dimuat ke dalam
variabel papers, yang kemudian bisa digunakan untuk analisis
lebih lanjut atau manipulasi data menggunakan pustaka pandas.

papers

Papers adalah sebuah variabel yang digunakan untuk menyimpan
data yang dibaca dari file CSV dengan menggunakan pustaka
pandas di Python. Dalam konteks ini, papers mungkin berisi
kumpulan data yang terdapat dalam file CSV yang telah dibaca
menggunakan fungsi pd.read csv().

Variabel ini bisa berupa DataFrame, struktur data yang sangat
berguna dari pustaka pandas. DataFrame memungkinkan untuk
menyimpan data dalam bentuk tabel dengan baris dan kolom,
mirip dengan spreadsheet. Setiap kolom dalam DataFrame
mungkin merepresentasikan jenis data atau atribut tertentu,
sedangkan setiap baris mungkin merepresentasikan entri atau
contoh dari data tersebut.
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Dengan menggunakan variabel papers, Anda bisa melakukan
berbagai operasi analisis data, seperti manipulasi data, pengolahan
statistik, visualisasi, dan banyak lagi, karena papers sekarang
berisi data dari file CSV yang telah dimuat menggunakan pustaka
pandas.

content @

E) 0 nama fet sroyer tolong hapus data banyak omon... m
1 uninstallkarenakan meminjam uang tolak mo...
2 zonk data tolong dihapus
3 zonk persyaratan hanya kip pengajuan tolak m...
4 zonk penipu mudah curi data doank
37137 apa udah ngisi data bener bener tolak tolong...
37138 ah ribet banget banget persyaratannya pinja...
37139 ah parah cairy
37140 akhiirnnyya coba kali acc pinjaman gara gar...

37141 a suka hanget proses gampang bgtsukses plus

37142 rows x 1 columns

Variabel papers merupakan sebuah DataFrame yang berisi data
teks atau komentar-komentar terkait dengan informasi tertentu.
DataFrame ini memiliki satu kolom dengan nama 'content' yang
berisi teks komentar.

Dari potongan data yang Anda tunjukkan, terdapat 37143 baris (0
sampai 37142) dan 1 kolom (‘content'). Isi dari kolom 'content' ini
tampaknya berupa komentar-komentar atau teks yang berkaitan
dengan suatu topik, mungkin terkait dengan pendapat atau ulasan
terhadap suatu layanan atau produk.
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Contoh beberapa baris dari data yang tersimpan dalam variabel
papers:

Baris ke-0: "nama fet sroyer tolong hapus data banyak omon..."
Baris ke-1: "uninstallkarenakan meminjam uang tolak mo..."
Baris ke-2: "zonk data tolong dihapus"

Baris ke-3: "zonk persyaratan hanya ktp pengajuan tolak m..."
Baris ke-4: "zonk penipu mudah curi data doank"

Setiap baris berisi komentar atau informasi yang mungkin dapat
dianalisis lebih lanjut, misalnya, untuk mengidentifikasi sentimen
atau pola-pola tertentu dalam teks tersebut menggunakan teknik
pemrosesan bahasa alami atau untuk melakukan analisis sentimen
terhadap pendapat-pendapat tersebut.

papers['word _count'] = papers['content'].str.split().map(len)

Perintah ini menambahkan kolom baru ke dalam DataFrame
papers dengan nama 'word_count'.

Mari kita bahas lebih rinci: papers['content']: Merujuk pada kolom
'content' dalam DataFrame papers. Ini adalah kolom yang berisi
teks atau komentar-komentar.

str.split(): Ini adalah metode dari objek Series di pandas yang
digunakan untuk membagi setiap teks dalam kolom 'content'
menjadi kata-kata (dengan menggunakan spasi sebagai pemisah).
Hasilnya adalah daftar kata-kata untuk setiap teks. .map(len):
Setelah kata-kata dipisahkan untuk setiap teks dalam kolom
'content', map(len) diaplikasikan pada setiap daftar kata-kata.
Fungsinya adalah untuk menghitung panjang dari setiap daftar
kata-kata, yang pada dasarnya adalah jumlah kata dalam setiap
teks. Dengan menggunakan map(len), dihitunglah panjang setiap
daftar kata-kata, yang sebenarnya adalah jumlah kata dalam setiap
baris.
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papers['word count']: Ini menugaskan hasil dari perhitungan
jumlah kata ke dalam kolom baru yang bernama 'word count' di
dalam DataFrame papers. Dengan demikian, setelah eksekusi
perintah ini, papers akan memiliki kolom tambahan yang
menampilkan jumlah kata dalam setiap teks yang ada di dalam
kolom 'content'.

37137

37138

37139

37140

37141

content word_count

nama fet sroyer tolong hapus data banyak omon...
uninstallkarenakan meminjam uang tolak mo...
zonk data tolong dihapus

zonk persyaratan hanya kip pengajuan tolak m...

zonk penipu mudah curi data doank

apa udah ngisi data bener bener tolak tolong...
ah ribet banget banget persyaratannya pinja...
ah parah cairy

akhiirnnyya coba kali acc pinjaman gara gar...

a suka banget proses gampang bgtsukses plus

37142 rows x 2 columns

9

11

4

18

22

12

18

£
il

Tabel in1 menunjukkan hasil dari penghitungan jumlah kata dalam
setiap teks yang terdapat dalam kolom 'content' dari DataFrame
papers. Kolom baru yang diberi nama 'word count' menampilkan
jumlah kata dalam setiap baris teks yang sesuai.

Contohnya, untuk beberapa baris tertentu:
1. Baris pertama ('nama fet sroyer tolong hapus data banyak
omon..."): Memiliki 9 kata.
2. Baris kedua (‘uninstallkarenakan meminjam uang tolak mo..."):
Memiliki 11 kata.

[98)

. Baris ketiga ('zonk data tolong dihapus'): Memiliki 4 kata.

4. Baris keempat ('zonk persyaratan hanya ktp pengajuan tolak
m..."): Memiliki 18 kata.
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5. Baris kelima ('zonk penipu mudah curi data doank'): Memiliki
6 kata.

6. Baris terakhir ('a suka banget proses gampang bgtsukses plus'):
Memiliki 7 kata.

Jadi, kolom 'word count' ini memberikan informasi tentang
jumlah kata yang ada dalam setiap baris teks yang ada di dalam
kolom 'content' DataFrame papers. Informasi ini bisa berguna
untuk analisis statistik atau pemahaman lebih lanjut tentang
panjang atau kompleksitas teks dalam dataset tersebut.

papers = papers[papers['word_count'] > 4]

Perintah papers = papers[papers['word_count'] > 4] adalah contoh

dari penggunaan filter di dalam Python dengan menggunakan

pustaka pandas untuk DataFrame papers. Mari kita bahas langkah-
langkahnya:

1. papers['word _count'] > 4: Ini adalah sebuah kondisi yang
diterapkan pada kolom 'word count' di dalam DataFrame
papers. Kondisi ini mengevaluasi setiap baris dalam kolom
'word_count' dan menghasilkan nilai True jika nilai dalam baris
tersebut lebih besar dari 4, dan False jika tidak.

2. papers[papers['word count']| > 4]: Ini adalah teknik filter
DataFrame di dalam pandas. Menggunakan kondisi di atas,
perintah ini memilih hanya baris-baris dari DataFrame papers
di mana kondisi papers['word count'] > 4 bernilai True.
Dengan kata lain, hanya baris-baris yang memiliki jumlah kata
lebih dari 4 yang akan tetap ada dalam DataFrame yang baru.
DataFrame yang dihasilkan akan berisi hanya baris-baris
tersebut.

Dengan menggunakan perintah ini, DataFrame papers diubah
sedemikian rupa sehingga hanya menyertakan baris-baris di mana
jumlah kata dalam teks (diwakili oleh kolom 'word count') lebih
dari 4. Ini memungkinkan untuk memfilter data berdasarkan
kriteria tersebut, membuang baris-baris yang tidak memenuhi
syarat tersebut.
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#menghapus duplikasi data
papers.drop_duplicates(subset ="content" keep = False, inplace =
True)

Perintah papers.drop duplicates(subset="content", keep=False,
inplace=True) digunakan untuk menghapus baris-baris duplikat
dari DataFrame papers berdasarkan kolom 'content'.

Mari kita bahas detailnya:

1. papers: Merujuk pada DataFrame yang sedang dioperasikan.

2. .drop_duplicates(): Ini adalah metode dari pandas yang
digunakan untuk menghapus baris-baris yang merupakan
duplikat dari DataFrame.

3. subset="content": Parameter subset menentukan kolom mana
yang akan diperiksa untuk mendeteksi duplikat. Di sini, kita
menggunakan kolom 'content’, yang berisi teks atau komentar-
komentar.

4. keep=False: Parameter keep menentukan bagaimana
mempertahankan hasil penghapusan. Nilai False berarti semua
baris yang memiliki nilai yang sama di kolom yang ditentukan
akan dihapus, termasuk baris pertama dan yang kedua (semua
duplikat).

5. inplace=True: Parameter inplace menentukan apakah
perubahan akan diterapkan pada DataFrame itu sendiri atau
apakah hasilnya akan disimpan dalam DataFrame baru.
Dengan nilai True, perubahan akan diterapkan pada papers
tanpa membuat DataFrame baru.

Jadi, setelah eksekusi perintah ini, baris-baris yang memiliki nilai
yang sama dalam kolom 'content' akan dihapus dari DataFrame
papers. Hal ini membantu memastikan bahwa setiap baris dalam
DataFrame tersebut memiliki nilai yang unik dalam kolom
'content'. Dari proses menghapus data yang duplikasi dan data
yang digunakan yang lebih dari 4 hata maka dihasilkan data
sebagai berikut:

Tabel yang Anda sertakan menunjukkan DataFrame setelah
operasi penghapusan duplikat dan setelah melakukan filter untuk

baris-baris di mana jumlah kata (kolom 'word count') lebih besar
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dari 4. Kolom 'content' berisi teks atau komentar-komentar,
sementara kolom 'word count' berisi jumlah kata dalam teks
tersebut.

Contohnya:

1. Baris pertama (‘nama fet sroyer tolong hapus data banyak
omon...") memiliki 9 kata.

2. Baris kedua (‘uninstallkarenakan meminjam uang tolak mo...")
memiliki 11 kata.

3. Baris ketiga ('zonk persyaratan hanya ktp pengajuan tolak m...")
memiliki 18 kata.

4. Baris keempat ('zonk penipu mudah curi data doank') memiliki
6 kata.

5. Baris kelima ('zonk kali repot membayar tanggal mei jatuh ...")
memiliki 39 kata.

6. Baris terakhir ('a suka banget proses gampang bgtsukses plus')
memiliki 7 kata.

Tabel tersebut menampilkan baris-baris unik (tanpa duplikat), di
mana setiap baris memiliki jumlah kata lebih besar dari 4, seperti
yang telah dijelaskan sebelumnya. Jumlah total baris dalam
DataFrame yang ditampilkan setelah operasi filter tersebut adalah
29505.

papers.to_csv('./drive/My
Drive/dataset/fintechP2P/2023/20februari-bersih.csv',
index=False)

Perintah diatas merupakan sebuah perintah dalam Python
menggunakan pustaka pandas untuk menyimpan DataFrame
papers ke dalam format file CSV.

1. papers: Merujuk pada DataFrame yang ingin disimpan.

2. .to _csv(): Ini adalah metode dari pustaka pandas yang
digunakan untuk menyimpan DataFrame ke dalam format
file CSV.

3. '/drive/My  Drive/dataset/fintechP2P/2023/20februari-
bersih.csv': Ini adalah path atau lokasi file di mana
DataFrame papers akan disimpan sebagai file CSV. Dalam
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kasus ini, file tersebut akan disimpan di lokasi yang
ditentukan dengan nama file "20februari-bersih.csv'.

4. index=False: Parameter index digunakan untuk
menentukan apakah indeks dari DataFrame juga akan
disimpan sebagai kolom dalam file CSV. Dengan nilai
False, indeks tidak akan disertakan dalam file CSV yang
dihasilkan.

Jadi, perintah ini akan menyimpan DataFrame papers ke dalam
file CSV dengan nama '20februari-bersih.csv' di lokasi yang
ditentukan. File CSV yang dihasilkan akan berisi data dari
DataFrame papers, dan indeks DataFrame tidak akan disertakan
dalam file CSV tersebut.

Tahap 2: Data Cleaning
papers = papers.sample(10000)

Perintah papers = papers.sample(10000) adalah perintah yang
digunakan pada DataFrame dalam pustaka pandas di Python untuk
mengambil sampel acak sejumlah 10.000 baris dari DataFrame
papers.

papers: Merujuk pada DataFrame yang sedang dioperasikan.
.sample(): Ini adalah metode dari pustaka pandas yang digunakan
untuk mengambil sampel acak dari DataFrame. 10000: Argumen
ini menunjukkan jumlah baris yang ingin diambil sebagai sampel
dari DataFrame. Dalam hal ini, dipilih untuk mengambil 10.000
baris sebagai sampel acak dari DataFrame papers.

Ketika perintah ini dieksekusi, DataFrame papers akan berisi
10.000 baris yang diambil secara acak dari data aslinya. Sampel
tersebut dapat digunakan untuk analisis yang lebih cepat atau
untuk mengurangi ukuran data yang digunakan tanpa kehilangan
representasi signifikan dari keseluruhan data.

papers|['paper_text'] = papers['content'].str.lower()
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1. Perintah papers['paper_text'] = papers['content'].str.lower()
digunakan untuk membuat kolom baru dalam DataFrame
papers dengan nama 'paper_text', yang berisi teks dari kolom
'content' yang telah diubah menjadi huruf kecil (lowercase).

2. papers['content']: Merujuk pada kolom 'content' dalam
DataFrame papers. Kolom ini berisi teks atau komentar-
komentar.

3. .str.lower(): Ini adalah metode dari objek Series di pandas yang
digunakan untuk mengonversi setiap teks dalam kolom
'content' menjadi huruf kecil atau lowercase.

4. papers['paper_text']: Ini adalah penugasan hasil dari konversi
teks menjadi huruf kecil ke dalam kolom baru dengan nama
'paper_text' di dalam DataFrame papers.

Jadi, setelah perintah ini dieksekusi, DataFrame papers akan
memiliki kolom baru 'paper text' yang berisi teks dari kolom
'content' dengan semua huruf diubah menjadi huruf kecil. Hal ini
sering digunakan untuk mempermudah pemrosesan dan analisis
teks, karena mengubah teks menjadi lowercase membantu untuk
konsistensi dalam pencarian dan pengelompokan teks dalam
analisis data.

1. Menghapus tanda baca/huruf kecil

Selanjutnya, mari kita lakukan prapemrosesan pada konten kolom
paper text agar lebih mudah dianalisis dan hasilnya dapat
diandalkan. Untuk melakukannya, kami akan menggunakan
ekspresi reguler untuk menghapus tanda baca apa pun, lalu huruf
kecil pada teksnya

# Load the regular expression library
import re

# Remove punctuation

papers['paper_text processed'] =
papers|['paper_text'].map(lambda x: re.sub('[,\.!?]', ", X))
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# Convert the titles to lowercase
papers['paper_text processed'] =
papers['paper_text processed'].map(lambda x: x.lower())

# Print out the first rows of papers
papers['paper_text processed'].head()

Perintah ini adalah bagian dari proses pra-pemrosesan teks di
dalam DataFrame papers menggunakan modul re (regular
expression) dan pustaka pandas di Python. import re: Ini adalah
perintah untuk memuat modul regular expression (re) yang
memungkinkan penggunaan ekspresi reguler untuk manipulasi
teks.

papers['paper_text processed'] =papers['paper_text'].map(lambda
x: re.sub('[,\.!?]", ", x)): Perintah ini menghapus tanda baca dari
teks di dalam kolom 'paper text' di DataFrame papers. Ini
dilakukan dengan menggunakan ekspresi reguler untuk mengganti
(substitusi) tanda baca seperti koma, titik, tanda seru, dan tanda
tanya dengan string kosong ("). Fungsi lambda digunakan di sini
untuk menerapkan perubahan ini ke setiap baris di kolom
'paper_text'.

papers['paper_text processed'|= papers['paper_text processed']
.map(lambda x: x.lower()): Setelah menghapus tanda baca,
perintah  ini  mengonversi teks di dalam  kolom
'paper_text processed’ menjadi huruf kecil (lowercase). Ini
dilakukan menggunakan fungsi lambda untuk menerapkan operasi
lowercase ke setiap baris teks di kolom 'paper text processed'.
papers|['paper_text processed'].head(): Perintah ini mencetak
beberapa baris pertama dari kolom 'paper text processed' dari
DataFrame papers, menampilkan teks yang telah melalui proses
penghapusan tanda baca dan konversi ke huruf kecil.

Dengan demikian, proses ini adalah bagian dari tahap pra-

pemrosesan teks yang umum dilakukan sebelum melakukan
analisis teks lebih lanjut, seperti pemodelan atau pemrosesan
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lanjutan untuk tujuan tertentu seperti analisis sentimen atau
pemodelan bahasa alami.

2. Tokenize words and further clean-up text

Let’s tokenize each sentence into a list of words, removing
punctuations and unnecessary characters altogether.

import gensim
from gensim.utils import simple preprocess

def sent to words(sentences):
for sentence in sentences:
yield(gensim.utils.simple preprocess(str(sentence),
deacc=True)) # deacc=True removes punctuations

data = papers.paper_text processed.values.tolist()
data_words = list(sent_to_words(data))

print(data_words[:1][0][:30])

Kode menggunakan pustaka gensim dalam Python, yang
umumnya digunakan untuk pemodelan teks dan pemrosesan
bahasa alami. import gensim: Ini adalah perintah untuk memuat
pustaka gensim, yang memiliki alat dan fungsi untuk pemodelan
teks dan pemrosesan bahasa alami.

from gensim.utils import simple preprocess: Ini mengimpor
fungsi simple preprocess dari gensim.utils. Fungsi ini berguna
untuk memproses teks secara sederhana, seperti membagi teks
menjadi kata-kata kecil (lowercase) dan menghapus aksara.

def sent to words(sentences): ...: Ini adalah definisi dari sebuah
fungsi bernama sent to words. Fungsi ini menerima daftar
kalimat atau teks (sentences) dan memprosesnya menjadi kata-
kata kecil tanpa aksara (punctuation) menggunakan
simple preprocess. Fungsi ini menggunakan generator (yield)
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untuk menghasilkan kata-kata dari setiap kalimat yang diberikan
ke fungsi.

3. Pemodelan Frase: Model Bigram dan Trigram

Bigram adalah dua kata yang sering muncul bersamaan dalam
dokumen. Trigram adalah 3 kata yang sering muncul. Beberapa
contoh dalam contoh kita adalah: 'back bumper', 'oil leakage',
'maryland college park' dll. Model Frase Gensim dapat
membangun dan mengimplementasikan bigram, trigram,
quadgram, dan lainnya. Dua argumen penting pada Frase adalah
min_count dan ambang batas. Semakin tinggi nilai param ini,
semakin sulit kata-kata untuk digabungkan.

data = papers.paper_text processed.values.tolist(): Ini mengambil
kolom 'paper text processed' dari DataFrame papers dan
mengonversinya ke dalam bentuk daftar (list). Kolom ini berisi
teks yang telah diolah sebelumnya.

data_words = list(sent_to words(data)): Fungsi sent to words
yang telah didefinisikan sebelumnya diterapkan ke data (kolom
'paper_text processed') untuk memproses teks menjadi daftar
kata-kata kecil tanpa aksara. Hasilnya disimpan dalam variabel
data_words.

print(data_words[:1][0][:30]):

Perintah ini mencetak 30 kata pertama dari hasil pemrosesan teks
(data_words) untuk satu baris teks pertama yang telah diproses
sebelumnya. Jadi, keseluruhan kode ini digunakan untuk
mengubah teks yang terdapat dalam kolom 'paper text processed'
dari DataFrame papers menjadi daftar kata-kata kecil tanpa aksara
(punctuation) menggunakan pustaka gensim dan fungsi
simple preprocess untuk analisis teks lebih lanjut.

Kode ini menggunakan pustaka gensim untuk mengidentifikasi
dan membentuk bigram (pasangan dua kata) dan trigram

(pasangan tiga kata) dari daftar kata-kata yang telah diproses
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sebelumnya dalam variabel data words. Mari kita bahas langkah-
langkahnya:

bigram = gensim.models.Phrases(data words, min count=5,
threshold=100):

Di sini, gensim.models.Phrases digunakan untuk membentuk
bigram dari data_words. Parameter min_count mengontrol jumlah
minimum kemunculan kata dalam teks agar menjadi bigram,
sedangkan threshold adalah nilai yang menentukan seberapa
sering pasangan kata harus muncul agar dianggap sebagai bigram.
Semakin tinggi nilai threshold, semakin sedikit bigram yang
dihasilkan.

trigram = gensim.models.Phrases(bigram[data words],
threshold=100):

Langkah ini menggunakan bigram yang telah dibuat sebelumnya
sebagai dasar untuk membentuk trigram. Dengan menggunakan
bigram[data words], kita menggunakan bigram yang telah
dihitung sebelumnya sebagai acuan untuk menemukan trigram. Ini
membantu dalam pembentukan trigram berdasarkan bigram yang
telah dibentuk sebelumnya.

bigram_mod = gensim.models.phrases.Phraser(bigram): Untuk
mempercepat proses pembentukan bigram,
gensim.models.phrases.Phraser digunakan untuk membuat objek
bigram_mod dari bigram yang telah dibuat sebelumnya. Objek
bigram mod ini dapat digunakan untuk menerapkan bigram ke
teks.

trigram_mod = gensim.models.phrases.Phraser(trigram): Sama
seperti langkah sebelumnya, trigram yang telah dihitung
sebelumnya dikonversi menjadi objek trigram_mod menggunakan
gensim.models.phrases.Phraser. Ini memungkinkan penggunaan
trigram dalam pemrosesan teks.

Dengan menggunakan langkah-langkah ini, bigram dan trigram
diidentifikasi dari daftar kata-kata, dan objek bigram mod dan
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trigram_mod dapat digunakan untuk menerapkan bigram dan
trigram tersebut pada teks dengan cepat dan efisien. Ini berguna
dalam pemodelan teks atau analisis berikutnya yang memerlukan
penggunaan bigram dan trigram.

4. Remove Stopwords, Make Bigrams and Lemmatize

The phrase models are ready. Let’s define the functions to remove
the stopwords, make trigrams and lemmatization and call them
sequentially.

# NLTK Stop words

import nltk
nltk.download('stopwords')

from nltk.corpus import stopwords

#stop_words = stopwords.words('english')
stop_words = stopwords.words('indonesian')
#stop_words.extend(['from’, 'subject', 're
stop_words.extend(["yg", "dg", "rt", "dgn", "ny", "d", 'klo',
'sy','saya’,'kalo', 'amp’, 'biar', 'bikin',

'pen’, 'u', 'nan', 'loh’, 'rt', '&amp', 'yah'])

Kode ini menggunakan pustaka Natural Language Toolkit
(NLTK) di Python untuk mengunduh dan menggunakan kata-kata
stop (stop words) dalam bahasa Indonesia untuk pemrosesan teks
lebih lanjut.

import nltk: Ini mengimpor pustaka NLTK, pustaka yang sering
digunakan dalam pemrosesan bahasa alami di Python.

nltk.download('stopwords'): Ini adalah perintah untuk mengunduh
dataset kata-kata stop dari NLTK. Dataset ini berisi daftar kata-
kata yang umumnya dianggap tidak memiliki makna penting
dalam analisis teks karena mereka sangat umum dan sering
muncul dalam bahasa tertentu.
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from nltk.corpus import stopwords: Setelah dataset stop words
diunduh, kita mengimpor modul stopwords dari corpus NLTK.
Modul ini berisi daftar kata-kata stop dalam berbagai bahasa.

stop words = stopwords.words('indonesian'): Di sini, kita
menggunakan daftar kata-kata stop dalam bahasa Indonesia yang
telah diunduh dari NLTK. Variabel stop words akan berisi daftar
kata-kata tersebut, yang akan digunakan untuk menghapus kata-
kata ini dari teks dalam proses pra-pemrosesan.

stop_words.extend([...]):  Baris ini  digunakan  untuk
menambahkan kata-kata tambahan ke dalam daftar stop words.
Dalam contoh ini, terdapat beberapa kata tambahan yang
ditambahkan ke dalam daftar stop words bahasa Indonesia seperti
"yg", "dg", "rt", dan lain-lain. Ini bisa dilakukan untuk
menyesuaikan daftar kata-kata stop sesuai dengan kebutuhan
analisis atau pemrosesan teks yang sedang dilakukan.

Jadi, kode ini membantu untuk memuat daftar kata-kata stop
dalam bahasa Indonesia dan menambahkan beberapa kata
tambahan ke dalam daftar tersebut agar dapat digunakan dalam
proses pra-pemrosesan teks. Hal ini berguna untuk menghilangkan
kata-kata yang tidak relevan atau yang biasanya tidak memberikan
informasi penting dalam analisis teks.

5. Transformasi data: Korpus dan Kamus

Dua masukan utama pada model topik LDA adalah kamus
(id2word) dan korpus. Mari kita buat.

import gensim.corpora as corpora

# Create Dictionary

#id2word = corpora.Dictionary(data lemmatized)

id2word = corpora.Dictionary(data words)

# Create Corpus

texts = data_words
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# Term Document Frequency
corpus = [id2word.doc2bow(text) for text in texts]

# View
print(corpus[:1][0][:30])

Kode ini menggunakan pustaka Gensim di Python untuk
membangun representasi numerik dari teks yang disebut "Bag-of-
Words" (BoW). BoW mengubah teks ke dalam representasi vektor
di mana setiap kata diwakili sebagai fitur, dan nilai di setiap fitur
menunjukkan jumlah kemunculan kata tersebut dalam teks.
import gensim.corpora as corpora: Ini mengimpor modul corpora
dari pustaka Gensim, yang berguna untuk membangun model-
madel teks.

id2word = corpora.Dictionary(data words): Di sini, sebuah
kamus (dictionary) dibuat menggunakan Dictionary dari modul
corpora. Dictionary ini memetakan kata-kata dalam data_words ke
indeks numerik. Setiap kata dalam data words akan diberikan
sebuah ID numerik yang unik.

texts = data_words: Data yang telah di-preprocess (data_words)
disimpan dalam variabel texts.

corpus = [1d2word.doc2bow(text) for text in texts]: Langkah ini
membangun representasi BoW dari teks yang telah dipreprocess
(texts). Metode doc2bow dari objek id2word digunakan untuk
mengonversi setiap dokumen (teks) dalam texts menjadi
representasi BoW. BoW ini terdiri dari tupel (word id,
word_frequency), yang menunjukkan ID kata dan frekuensi kata
dalam teks.

print(corpus[:1][0][:30]): Perintah ini mencetak 30 elemen
pertama dari representasi BoW dari teks pertama yang telah

dihasilkan sebelumnya.

Jadi, keseluruhan kode ini bertujuan untuk membuat representasi
BoW dari teks yang telah dipreprocess dan membangun corpus
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BoW vyang siap digunakan untuk model-topik atau analisis
lanjutan lainnya menggunakan pustaka Gensim.

J. Model Dasar

Kami memiliki semua yang diperlukan untuk melatih model LDA
dasar. Selain korpus dan kamus, Anda juga perlu menyediakan
jumlah topik. Selain itu, alpha dan eta merupakan hyperparameter
yang mempengaruhi ketersebaran topik. Menurut dokumen
Gensim, keduanya default ke 1.0/num_topics sebelumnya (kami
akan menggunakan default untuk model dasar).

chunksize mengontrol berapa banyak dokumen yang diproses
sekaligus dalam algoritma pelatihan. Meningkatkan ukuran
potongan akan mempercepat pelatihan, setidaknya selama
potongan dokumen tersebut mudah masuk ke dalam memori.
pass mengontrol seberapa sering kita melatih model di seluruh
korpus (disetel ke 10). Kata lain untuk pass mungkin adalah
"zaman". iterasi agak bersifat teknis, namun pada dasarnya ini
mengontrol seberapa sering kita mengulangi perulangan tertentu
pada setiap dokumen. Penting untuk menetapkan jumlah "pass"
dan "iterasi" yang cukup tinggi.

# Build LDA model

lda_model = gensim.models.LdaMulticore(corpus=corpus,
id2word=1d2word,
num_topics=10,
random_state=100,
chunksize=100,
passes=10,
per_word_topics=True)

Perintah ini menggunakan pustaka Gensim di Python untuk
membangun model LDA (Latent Dirichlet Allocation) yang
merupakan metode untuk menemukan topik-topik tersembunyi
dalam koleksi dokumen.
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lda model =  gensim.models.LdaMulticore(corpus=corpus,
id2word=id2word, num_topics=10, random_state=100,
chunksize=100, passes=10, per word_topics=True)

gensim.models.LdaMulticore: Ini adalah metode untuk membuat
model LDA dengan implementasi multicore yang memungkinkan
penggunaan beberapa core CPU untuk pelatihan yang lebih cepat.

corpus=corpus: Parameter ini adalah representasi BoW dari
dokumen yang telah disiapkan sebelumnya dengan menggunakan
fungsi corpora.Dictionary dan id2word.doc2bow.

id2word=id2word: Parameter ini adalah kamus (dictionary) yang
telah dibuat untuk memetakan kata-kata ke indeks numerik.
num_topics=10: Ini adalah jumlah topik yang ingin diidentifikasi
dalam model LDA. Dalam contoh ini, model diatur untuk mencari
10 topik tersembunyi dalam koleksi dokumen.

random_state=100: Parameter ini mengatur nilai awal untuk
pengacakan yang memastikan hasil yang konsisten saat model
dilatih ulang.

chunksize=100: Ukuran blok untuk pemrosesan paralel dalam
model multicore.

passes=10: Jumlah iterasi untuk melatith model pada seluruh
corpus.

per word topics=True: Parameter 1ini mengatur untuk
menghasilkan informasi topik untuk setiap kata dalam dokumen,
bukan hanya topik utama dari dokumen itu sendiri.

Perintah ini akan membuat sebuah model LDA yang akan
mencoba mengidentifikasi 10 topik tersembunyi dalam koleksi
dokumen berdasarkan representasi BoW yang telah dibuat
sebelumnya. Model ini kemudian dapat digunakan untuk
mengeksplorasi dan menganalisis topik dalam dokumen-dokumen
tersebut.
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Model LDA di atas dibangun dengan 10 topik berbeda dimana
setiap topik merupakan kombinasi kata kunci dan setiap kata
kunci memberikan kontribusi bobot tertentu pada topik.

Anda dapat melihat kata kunci untuk setiap topik dan bobot
(pentingnya) setiap kata kunci menggunakan
lda_model.print_topics()

from pprint import pprint

# Print the Keyword in the 10 topics
pprint(lda_model.print_topics())
doc _lda =1da_model[corpus]

Perintah ini menggunakan pustaka pprint untuk mencetak topik-
topik yang telah ditemukan oleh model LDA (Latent Dirichlet
Allocation) yang telah dilatih sebelumnya.

from pprint import pprint: Ini mengimpor fungsi pprint dari
pustaka pprint. pprint (pretty-print) digunakan untuk mencetak
output dengan tata letak yang lebih baik dan lebih mudah dibaca
daripada fungsi print biasa.

pprint(lda_model.print topics()): Perintah ini mencetak topik-
topik yang telah ditemukan oleh model LDA yang telah dilatih
sebelumnya. Fungsi print topics() pada objek model LDA
mengembalikan daftar topik dengan kata-kata kunci yang paling
berkaitan dengan setiap topik.

doc lda = lda_model[corpus]: Ini adalah cara untuk menerapkan
model LDA yang telah dilatih pada seluruh dataset (corpus) yang
telah digunakan sebelumnya untuk melatih model. Hasilnya
disimpan dalam variabel doc_lda. Ini akan memberikan distribusi
topik untuk setiap dokumen dalam corpus, yaitu, seberapa kuat
setiap dokumen terhubung dengan setiap topik.

Dengan menggunakan pprint(lda_model.print_topics()), kita
mendapatkan tampilan yang terstruktur dan mudah dibaca tentang

kata-kata kunci yang paling berkaitan dengan setiap topik yang
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ditemukan oleh model LDA. Ini membantu dalam memahami
topik-topik yang mungkin ada dalam koleksi dokumen yang telah
diproses menggunakan model LDA tersebut.

Hasilnya sebagai berikut:
[0,

'0.075*"bayar" + 0.048*"udah" + 0.034*"tempo" +
0.031*"pinjam" +'

'0.031*"limit" + 0.027*"jatuh" + 0.024*"kecewa" +
0.023*"telat" +'

'0.023*"pengajuan" + 0.022*"pembayaran™'),

(1,

'0.134*"data" + 0.061*"tolong" + 0.047*"hapus" +
0.039*"mohon" +'

'0.038*"nama" + 0.032*"pengajuan" + 0.031*"pinjaman" +
0.030*"tolak" +"

'0.022*"uninstall" + 0.021*"saya""),

2,

'0.050*"sistem" + 0.048*"lunas" + 0.031*"ngajuin" +
0.020*"perbaikan" +'

'0.019*"kaya" + 0.019*"telepon" + 0.019*"pundi" +
0.018*"skor" +'

'0.018*"kirim" + 0.017*"chat""),

3,

'0.055*"pinjaman" + 0.035*"semoga" + 0.035*"cepat" +
0.033*"acc" +'

'0.033*"kredit" + 0.031*"membantu” + 0.024*"mudah" +
0.022*"pengajuan" +'

'0.022*"dana" + 0.022*"proses""),

(4,

'0.048*"bank" + 0.047*"bunganya" + 0.030*"cicilan" +
0.029*"tenor" +'

'0.026*"bunga" + 0.024*"sulit" + 0.023*"kebutuhan" +
0.022*"tunggu" +'

'0.022*"selesai" + 0.016*"kridit""),

(5,

'0.031*"ajukan" + 0.028*"tanggal" + 0.027*"pakai" +
0.024*"aman" +'
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'0.019*"suruh" + 0.019*"melunasi" + 0.018*"menit" +
0.018*"sekarang" +'

'0.018*"knp" + 0.016*"upgrade""),

(6,

'0.038*"susah" + 0.028*"tolong" + 0.027*"bukti" +
0.025*"meng" + 0.021*"wa" '

'+ 0.021*"nomor" + 0.021*"masukan" + 0.021*"nomer" +
0.017*"hp" +"'

'0.016*"kembalikan"'),

(7,

'0.125*"bintang" + 0.057*"acc" + 0.033*"download" +
0.020*"ngajuin" +'

'0.019*"coba" + 0.016*"parah" + 0.013*"di" + 0.013*"dr" +
0.012*"sudah" +'

'0.012*"menunggu"'),

(8,

'0.034*"disetujui" + 0.032*"rb" + 0.029*"dah" + 0.027*"trus" +
0.020*"gitu" '

'+ 0.019*"topup" + 0.018*"limitnya" + 0.018*"sehari" +
0.015*"ngisi" +'

'0.014*"eror""),

O,

'0.053*"masuk" + 0.033*"gagal" + 0.026*"email" +
0.025*"uang" + 0.023*"akun" '

'+ 0.021*"pake" + 0.021*"rekening" + 0.018*"saldo" +
0.017*"cs" +'

'0.017*"maret"")]

Compute Model Perplexity and Coherence Score
from gensim.models import CoherenceModel

# Compute Coherence Score

coherence model lda = CoherenceModel(model=lda _model,
texts=data words, dictionary=id2word, coherence='c_v")
coherence lda = coherence model 1da.get coherence()
print('Coherence Score: ', coherence Ida)
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Perintah ini digunakan untuk menghitung skor koherensi
(coherence score) dari model Latent Dirichlet Allocation (LDA)
yang telah dilatih sebelumnya. Skor koherensi memberikan
gambaran tentang seberapa koheren atau terkait topik-topik yang
dihasilkan oleh model.

from gensim.models import CoherenceModel: Ini mengimpor
CoherenceModel dari pustaka Gensim. CoherenceModel
digunakan untuk menghitung koherensi dari model topic
modeling.

coherence model lda = CoherenceModel(model=lda_model,
texts=data words, dictionary=id2word, coherence='c v'): Ini
membuat objek coherence _model lda menggunakan

CoherenceModel. Parameter-parameter yang digunakan adalah:
model=lda_model: Merujuk pada model LDA yang telah dilatih
sebelumnya.

texts=data words: Merupakan teks yang telah diproses
sebelumnya, dalam bentuk daftar kata-kata.

dictionary=id2word: Kamus yang memetakan kata-kata ke indeks
numerik.

coherence='c_v': Jenis koherensi yang digunakan. Dalam hal ini,
'c_v' adalah metode koherensi yang dikenal sebagai Coherence
'c V.

coherence lda = coherence model lda.get coherence(): Langkah
ini menghitung skor koherensi dengan menggunakan metode
get_coherence() dari objek coherence_model lda. Skor koherensi
akan memberikan gambaran tentang seberapa baik topik-topik
yang dihasilkan oleh model LDA.

print('Coherence Score: ', coherence Ida): Perintah ini mencetak
skor koherensi yang telah dihitung sebelumnya.
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Dengan menggunakan skor koherensi, kita mendapatkan ukuran
kualitas dari topik-topik yang dihasilkan oleh model. Semakin
tinggi skor koherensi, semakin baik atau lebih terkait topik-topik
yang dihasilkan oleh model tersebut.

K. Penyetelan tuning hyper parameter

Pertama, mari kita bedakan antara hyperparameter model dan
parameter model:

Hyperparameter model dapat dianggap sebagai pengaturan untuk
algoritma pembelajaran mesin yang disetel oleh data scientist
sebelum pelatihan. Contohnya adalah jumlah pohon di hutan acak,
atau dalam kasus kami, jumlah topik K. Parameter model dapat
dianggap sebagai apa yang dipelajari model selama pelatihan,
seperti bobot setiap kata dalam topik tertentu. Sekarang kita
memiliki skor koherensi dasar untuk model LDA default, mari kita
lakukan serangkaian uji sensitivitas untuk membantu menentukan
hyperparameter model berikut:

Jumlah Topik (K), Dirichlet hyperparameter alpha: Kepadatan
Topik Dokumen, Hyperparameter beta Dirichlet: Kepadatan
Topik Kata

Kami akan melakukan pengujian ini secara berurutan, satu
parameter pada satu waktu dengan menjaga parameter lainnya
tetap konstan dan menjalankannya pada dua set korpus validasi
perbedaan. Kami akan menggunakan C v sebagai metrik pilihan
kami untuk perbandingan kinerja

# supporting function
def compute coherence values(corpus, dictionary, k, a, b):
lda_model = gensim.models.LdaMulticore(corpus=corpus,
id2word=dictionary,
num_topics=k,
random_state=100,
chunksize=100,
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passes=10,
alpha=a,
eta=b)
coherence model lda = CoherenceModel(model=lda_model,
texts=data words, dictionary=id2word, coherence='c_v")

return coherence model Ida.get coherence()

Fungsi ini digunakan untuk menghitung skor koherensi
(coherence score) dari model LDA (Latent Dirichlet Allocation)
yang dibangun dengan berbagai nilai alpha dan eta. Fungsi ini
membantu dalam mengevaluasi bagaimana nilai-nilai parameter
ini mempengaruhi kualitas topik-topik yang dihasilkan oleh
model.

Argumen-argumen dalam fungsi compute coherence values:
corpus: Representasi Bag-of-Words (BoW) dari dokumen yang
akan digunakan untuk melatih model.

dictionary: Kamus yang memetakan kata-kata ke indeks numerik.

k: Jumlah topik yang diuji.

1. Parameter alpha yang digunakan dalam model LDA. Ini
mengontrol distribusi topik dalam dokumen. Nilai alpha yang
lebih tinggi menyebabkan dokumen memiliki distribusi topik
yang lebih merata.

2. Parameter eta yang digunakan dalam model LDA. Ini
mengontrol distribusi kata dalam topik. Nilai eta yang lebih
tinggi menyebabkan topik memiliki distribusi kata yang lebih
merata.

Langkah-langkahnya adalah sebagai berikut:
lda_model = gensim.models.LdaMulticore(...): Fungsi ini
menggunakan model LDA multicore dari Gensim untuk melatih

model LDA dengan parameter yang diberikan (corpus, dictionary,
num_topics=k, alpha=a, eta=b, dst).
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coherence model Ida = CoherenceModel(...): Langkah ini
membuat objek coherence model lda menggunakan
CoherenceModel dari Gensim dengan menggunakan model LDA
yang telah dilatih sebelumnya.

return coherence model lda.get coherence(): Fungsi
mengembalikan skor koherensi yang dihitung menggunakan
metode get coherence() dari objek coherence model lda. Ini
memberikan informasi tentang seberapa koheren topik-topik yang
dihasilkan oleh model dengan kombinasi parameter alpha dan eta
tertentu.

Dengan menggunakan fungsi ini, Anda dapat menguji dan
membandingkan berbagai nilai alpha dan eta untuk mengevaluasi
bagaimana hal itu mempengaruhi kualitas topik yang dihasilkan
oleh model LDA. memanggil fungsinya, dan ulangi pada rentang
nilai parameter topik, alfa, dan beta

#bagian 1
import numpy as np
import tqdm

arid = {}
grid['Validation_Set'] = {}

# Topics range

min_topics = 2

max_topics = 11

step_size =1

topics_range = range(min_topics, max_topics, step_size)

# Alpha parameter

alpha = list(np.arange(0.01, 1, 0.3))
alpha.append('symmetric')
alpha.append(‘asymmetric')

# Beta parameter
beta = list(np.arange(0.01, 1, 0.3))
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beta.append('symmetric')

# Validation sets
num_of docs = len(corpus)

corpus_sets = [gensim.utils.ClippedCorpus(corpus,
int(num_of docs*0.75)),
corpus]

corpus_title = ['75% Corpus', '100% Corpus']

model results = {'Validation_Set': [],

"Topics'": [],
'Alpha': [],
'‘Beta': [],
'Coherence': []
h

#Bagian 2

if1==1:

pbar =
tqgdm.tqdm(total=(len(beta)*len(alpha)*len(topics_range)*len(co
rpus_title)))

# iterate through validation corpuses
for 1 in range(len(corpus_sets)):
# iterate through number of topics
for k in topics_range:
# iterate through alpha values
for a in alpha:
# iterare through beta values
for b in beta:
# get the coherence score for the given parameters
cv =
compute coherence values(corpus=corpus_sets[i],
dictionary=id2word,
k=k, a=a, b=b)
# Save the model results
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model results['Validation Set'].append(corpus _title[

model results['Topics'].append(k)
model results['Alpha'].append(a)
model results['Beta'].append(b)

model results['Coherence'].append(cv)

pbar.update(1)
pd.DataFrame(model results).to csv('./drive/My
Drive/dataset/fintechP2P/2023/13feb tuning_results.csv',
index=False)
pbar.close()

Bagian 1 Ini adalah kode untuk menyiapkan berbagai parameter
yang akan digunakan dalam eksplorasi model LDA (Latent
Dirichlet Allocation) dengan menggunakan teknik grid search.
Import Numpy dan tqdm: Baris pertama mengimpor modul
NumPy untuk operasi numerik dan tqdm, sebuah modul yang
membantu membuat bar progres saat iterasi yang lama.

Variabel grid: Ini adalah wadah (dictionary) yang akan digunakan
untuk menyimpan hasil eksperimen.

Range Topik: Variabel min_topics, max_topics, dan step size
digunakan untuk menentukan rentang nilai topik yang akan
dieksplorasi dalam pencarian model LDA yang optimal.

Parameter Alpha dan Beta: alpha dan beta adalah daftar yang
berisi rentang nilai untuk parameter alpha dan beta yang akan
dieksplorasi dalam pencarian model LDA.

Validation Sets: Variabel num of docs, corpus sets, dan
corpus_title digunakan untuk menyiapkan data corpus yang akan
digunakan untuk validasi. num_of docs adalah jumlah dokumen
dalam corpus, corpus sets adalah persentase corpus yang akan
digunakan (75% dan 100%), dan corpus_title adalah label yang
sesuai dengan corpus yang digunakan.
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Model Results: Ini adalah wadah untuk menyimpan hasil evaluasi
berbagai parameter LDA, seperti nilai koherensi.

Kode ini adalah langkah pertama dalam proses eksperimen yang
melibatkan iterasi berbagai kombinasi parameter LDA untuk
menentukan parameter mana yang memberikan hasil terbaik
dalam hal koherensi topik pada model. Setelah parameter dan data
disiapkan seperti ini, dilakukan iterasi dalam eksperimen grid
search untuk mengevaluasi kombinasi parameter yang berbeda
terhadap kualitas model yang dihasilkan.

Bagian 2 ini adalah bagian yang melakukan iterasi melalui
kombinasi parameter LDA yang telah ditentukan sebelumnya
untuk mengevaluasi dan menyimpan skor koherensi untuk setiap
kombinasi tersebut.

if 1 == 1:: Ini adalah pernyataan yang selalu benar. Ini
menunjukkan bahwa iterasi yang dilakukan di bawahnya akan
dieksekusi.

pbar =
tqgdm.tqgdm(total=(len(beta)*len(alpha)*len(topics_range)*len(co
rpus_title))): Membuat progress bar menggunakan tqdm untuk
mengukur kemajuan dalam iterasi. Total jumlah iterasi yang
diharapkan dihitung berdasarkan jumlah kombinasi yang akan
dieksekusi.

Iterasi Loop Bersarang:

1. Loop pertama (for i in range(len(corpus_sets))): Melakukan
iterasi melalui berbagai dataset validasi.

2. Loop kedua (for k in topics_range): Melakukan iterasi melalui
rentang nilai topik.

3. Loop ketiga (for a in alpha): Melakukan iterasi melalui nilai
alpha yang telah ditentukan sebelumnya.

4. Loop keempat (for b in beta): Melakukan iterasi melalui nilai
beta yang telah ditentukan sebelumnya.

Dalam setiap iterasi kombinasi parameter yang berbeda (corpus,

dictionary, k, a, dan b), fungsi compute coherence values

dipanggil untuk menghitung skor koherensi (cv) dari model LDA
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yang dibuat berdasarkan parameter-parameter tersebut. Hasil skor
koherensi kemudian disimpan dalam model results sesuai dengan
kombinasi parameter yang digunakan. Setelah semua iterasi
selesai, hasil dari model results disimpan sebagai file CSV di
direktori yang ditentukan menggunakan
pd.DataFrame(model results).to csv('./drive/My
Drive/dataset/fintechP2P/2023/13feb tuning_results.csv',
index=False).

pbar.close(): Setelah proses iterasi selesai, progress bar ditutup.
Ini adalah langkah yang memakan waktu untuk mengevaluasi dan
mencari parameter terbaik yang memberikan skor koherensi yang
paling optimal untuk model LDA. Proses ini melibatkan berbagai
kombinasi parameter yang mungkin dan mengevaluasi setiap
kombinasi tersebut untuk memilih yang terbaik. Hasil perhitungan
dari script di atas adalah sebagai berikut:

No | Validation_Set Topics | Alpha Beta Coherence

1 100% Corpus 10 0.01 0.91 0.554553496
2 100% Corpus 3 0.91 0.91 0.554553496
3 100% Corpus 3 0.91 0.31 0.546011003
4 100% Corpus 3 0.91 symmetric | 0.546011003
5 100% Corpus 3 asymmetric 0.01 0.544522395
6 100% Corpus 3 0.61 0.61 0.541360905
7 100% Corpus 3 0.91 0.01 0.540641211
8 100% Corpus 3 0.61 symmetric | 0.536954678
9 100% Corpus 3 0.61 0.91 0.535848054
10 | 100% Corpus 3 0.61 0.31 0.534917947
11 100% Corpus 8 symmetric 0.91 0.532990744
12 | 75% Corpus 3 0.61 0.31 0.531145051
13 | 75% Corpus 3 0.91 0.61 0.531057059
14 | 75% Corpus 3 0.91 0.91 0.531057059
15 | 100% Corpus 3 0.61 0.01 0.527612144
16 | 75% Corpus 3 0.61 0.01 0.526229031
17 | 75% Corpus 3 0.61 symmetric 0.523419221
18 | 75% Corpus 3 0.91 symmetric | 0.52139985
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Dari hasil di atas dapat dilihat bahwa nilai coherence yang lebih
dari 0.50 terlihat dan terdapat pada 3 dan 8 topic. Yang perlu
diperhatikan adalah apakah dengan 8 topic masih mendapatkan
makna yang berbeda pada setiap topik, jika makanya berbeda
jumlah topik dapat di set menjadi 8 (nomor urut 11). Namun jika
banyak topik yang sama, maka dapat dipilih 10 topic dengan nilai
coherence tertinggi terlihat pada nomor urut 1.

Berdasarkan evaluasi eksternal (Kode akan ditambahkan dari
analisis berbasis Excel), mari kita latih model akhir dengan
parameter yang menghasilkan skor koherensi tertinggi.
num_topics = 10

lda_model = gensim.models.LdaMulticore(corpus=corpus,
id2word=1d2word,
num_topics=num_topics,
random_state=100,
chunksize=100,
passes=10,
# alpha='asymmetric',
alpha=0.01,
#eta=0.9
eta=0.91)

Perintah di atas adalah bagian dari proses pembentukan model
LDA (Latent Dirichlet Allocation) menggunakan pustaka Gensim
dalam Python. Ini digunakan untuk membuat model topik dari
data teks yang telah diubah menjadi representasi Bag-of-Words
(BoW).

num_topics = 10: Parameter ini menentukan jumlah topik yang
ingin ditemukan dalam korpus teks. Dalam kasus ini, ditetapkan
sebagai 10, artinya model akan berusaha menemukan 10 topik
yang berbeda dalam teks yang diberikan.
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gensim.models.LdaMulticore: Ini adalah fungsi untuk membuat
model LDA menggunakan teknik multicore dari pustaka Gensim.
corpus=corpus: Representasi BoW dari dokumen yang akan
digunakan untuk melatih model.

id2word=id2word: Kamus yang memetakan kata-kata ke indeks
numerik, digunakan untuk memahami representasi numerik kata-
kata dalam model.

random_state=100: Seed untuk inisialisasi bilangan acak. Ini
memastikan bahwa hasil dari model yang sama akan konsisten
ketika dijalankan kembali dengan seed yang sama.

chunksize=100: Jumlah dokumen yang akan digunakan dalam
satu batch selama proses pelatihan model. Ini mempengaruhi
efisiensi dan penggunaan memori saat pelatihan.

passes=10: Jumlah iterasi yang dilakukan oleh model saat melatih
dataset. Setiap iterasi melibatkan pembaruan bobot pada model.

alpha=0.01: Parameter alpha mengontrol seberapa banyak topik
yang ada dalam satu dokumen. Nilai yang lebih rendah seperti
0.01 mengindikasikan bahwa dokumen hanya akan memiliki
sedikit topik yang dominan.

eta=0.91: Parameter eta mengontrol seberapa banyak kata yang
terkait dengan satu topik tertentu. Nilai yang lebih tinggi seperti
0.91 menunjukkan bahwa setiap topik akan memiliki banyak kata
yang kuat terkait dengannya. Kombinasi dari parameter-parameter
ini membentuk model LDA yang akan menemukan 10 topik
dalam data teks, dengan distribusi yang dikendalikan oleh nilai
alpha dan eta yang telah ditetapkan.

from pprint import pprint

# Print the Keyword in the 10 topics
pprint(lda_model.print _topics())
doc lda =1da_model[corpus]
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Perintah ini menggunakan pustaka pprint untuk mencetak topik-
topik yang telah ditemukan oleh model LDA (Latent Dirichlet
Allocation) yang telah dilatih sebelumnya.

Langkah-langkahnya adalah sebagai berikut:

from pprint import pprint: Ini mengimpor fungsi pprint dari
pustaka pprint. pprint (pretty-print) digunakan untuk mencetak
output dengan tata letak yang lebih baik dan lebih mudah dibaca
daripada fungsi print biasa.

pprint(lda_model.print_topics()): Perintah ini mencetak topik-
topik yang telah ditemukan oleh model LDA yang telah dilatih
sebelumnya. Fungsi print topics() pada objek model LDA
mengembalikan daftar topik dengan kata-kata kunci yang paling
berkaitan dengan setiap topik.

doc lda = lda_model[corpus]: Ini adalah cara untuk menerapkan
model LDA yang telah dilatih pada seluruh dataset (corpus) yang
telah digunakan sebelumnya untuk melatih model. Hasilnya
disimpan dalam variabel doc_lda. Ini akan memberikan distribusi
topik untuk setiap dokumen dalam corpus, yaitu, seberapa kuat
setiap dokumen terhubung dengan setiap topik.
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Pengantar NLP dan Topik Model LDA adalah panduan
komprehensif yang menyelami dasar-dasar pemrosesan
bahasa alami (NLP) dan pemodelan topik menggunakan
Latent Dirichlet Allocation (LDA), dua bidang krusial yang
semakin penting di era data digital. Buku ini dirancang
untuk memberikan pembaca pemahaman menyeluruh
tentang konsep, algoritma, dan aplikasi praktis NLP,
sekaligus mengeksplorasi pendekatan pemodelan topik
untuk mengidentifikasi pola-pola tersembunyi dalam teks.
Pada bagian awal, buku ini memperkenalkan fondasi NLP
—meliputi definisi, sejarah, teknik dasar, dan relevansinya
di berbagai sektor seperti kesehatan, industri, dan
pendidikan. Setelah itu, pembaca diajak memahami
algoritma populer yang digunakan dalam NLP, seperti
Naive Bayes, SVM, dan jaringan saraf buatan, serta
tantangan yang dihadapi dalam penerapan teknologi ini.

vy

Buku ini kemudian beralih ke pembahasan Latent Dirichlet
Allocation, metode probabilistik yang kuat untuk
menemukan topik dalam kumpulan teks besar. Pembaca
diperkenalkan pada prinsip kerja LDA, termasuk
penyesuaian parameter dan langkah-langkah praktis dalam
membangun model topik. Dengan contoh-contoh
aplikatif, buku ini memudahkan pembaca dalam memahami
bagaimana NLP dan LDA bekerja di dunia nyata. Pengantar
NLP dan Topik Model LDA adalah sumber berharga bagi
mereka yang ingin memulai perjalanan di dunia NLP dan
pemodelan topik, serta bagi mereka yang ingin
memperdalam pemahaman mereka tentang penerapan
teknologi ini di berbagai bidang profesional dan penelitian
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