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KATA PENGANTAR 
 

 

Dengan bangga kami mempersembahkan buku Pengantar NLP 

dan Topik Model LDA, sebuah karya yang dirancang untuk 

menjembatani kesenjangan pengetahuan di bidang pemrosesan 

bahasa alami (Natural Language Processing/NLP) dan pemodelan 

topik. Dalam era digital yang semakin berkembang pesat, 

kemampuan untuk memahami dan mengolah data teks menjadi 

keterampilan yang sangat diperlukan. Buku ini hadir untuk 

memenuhi kebutuhan pembaca akan pemahaman yang mendalam 

dan praktis tentang bagaimana teknologi NLP dan model topik 

seperti Latent Dirichlet Allocation (LDA) bekerja. 

 

Buku ini disusun dengan alur yang sistematis, dimulai dari konsep 

dasar NLP hingga ke teknik pemodelan topik yang lebih 

kompleks. Setiap bab telah disusun dengan seksama untuk 

memberikan wawasan yang tidak hanya mendasar tetapi juga 

aplikatif, dengan berbagai contoh dan teknik yang relevan dengan 

kebutuhan analisis data modern. Kami berharap buku ini dapat 

memberikan manfaat yang luas bagi pembaca, baik yang baru 

memulai di dunia NLP maupun yang ingin memperdalam 

pengetahuan tentang pemodelan topik. 

 

Akhir kata, kami mengucapkan terima kasih kepada seluruh pihak 

yang telah berkontribusi dalam penyusunan buku ini. Semoga 

buku Pengantar NLP dan Topik Model LDA ini dapat menjadi 

sumber referensi yang berharga dan mendukung perkembangan 

ilmu pengetahuan di bidang analisis data dan kecerdasan buatan 

di Indonesia. 
 

Penulis 
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BAB 1 

PENDAHULUAN 
 

A. Definisi NLP 

 

Natural Language Processing (NLP) adalah cabang dari 

kecerdasan buatan yang berfokus pada interaksi antara komputer 

dan bahasa manusia yang alami. NLP memungkinkan komputer 

untuk memahami, menganalisis, memanipulasi, dan merespons 

bahasa manusia. Tujuannya adalah untuk memfasilitasi 

komunikasi yang mulus antara manusia dan mesin dengan 

menggunakan bahasa sehari-hari yang kita gunakan.  

 

Definisi NLP mencakup sejumlah teknologi dan algoritma yang 

memungkinkan komputer untuk: 

• Pemrosesan Teks: Memahami, menganalisis, dan 

menghasilkan teks bahasa manusia. Ini melibatkan segala 

hal mulai dari tokenisasi (memecah teks menjadi unit-unit 

yang lebih kecil), hingga analisis sintaksis dan semantik. 

• Pemahaman Bahasa: Memungkinkan komputer untuk 

memahami konteks dari suatu teks, termasuk arti dari kata-

kata, frasa, atau kalimat, serta makna yang lebih luas 

dalam sebuah konteks. 

• Generasi Bahasa: Menghasilkan teks yang terstruktur 

secara gramatikal dan bermakna, seperti dalam pembuatan 

teks oleh chatbots atau penghasilan konten otomatis. 

• Penerjemahan Bahasa: Menerjemahkan teks dari satu 

bahasa ke bahasa lain dengan mempertahankan arti dan 

konteksnya. 

NLP memanfaatkan pendekatan statistik, mesin pembelajaran, 

dan pemrosesan bahasa alami untuk mencapai tujuannya. Seiring 

dengan perkembangan teknologi, model NLP yang menggunakan 

deep learning seperti transformer-based models (misalnya, BERT, 

GPT) telah menjadi semakin dominan dalam mengatasi banyak 

tugas NLP kompleks. 
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Penerapan NLP sangat luas, mulai dari aplikasi sederhana seperti 

koreksi ejaan hingga sistem yang kompleks seperti analisis 

sentimen, pengenalan ucapan, dan pembuatan chatbot. Ini juga 

memiliki peran yang penting dalam berbagai industri seperti 

kesehatan, keuangan, pendidikan, dan lainnya untuk 

mengoptimalkan pemrosesan data yang berkaitan dengan bahasa 

manusia. 

 

NLP merupakan komponen penting dalam berbagai aplikasi 

perangkat lunak yang kita gunakan dalam kehidupan sehari-hari. 

Di bagian ini, kami akan memperkenalkan beberapa aplikasi 

utama dan juga melihat beberapa tugas umum yang akan Anda 

lihat di berbagai aplikasi NLP.  

 

Aplikasi inti: 

• Platform email, seperti Gmail, Outlook, dll., menggunakan 

NLP secara ekstensif untuk menyediakan serangkaian fitur 

produk, seperti klasifikasi spam, kotak masuk prioritas, 

ekstraksi acara kalender, pelengkapan otomatis, dll. 

• Asisten berbasis suara, seperti Apple Siri, Google 

Assistant, Microsoft Cortana, dan Amazon Alexa 

mengandalkan serangkaian teknik NLP untuk berinteraksi 

dengan pengguna, memahami perintah pengguna, dan 

merespons dengan tepat. 

• Mesin pencari modern, seperti Google dan Bing, yang 

merupakan landasan internet saat ini, banyak 

menggunakan NLP untuk berbagai subtugas, seperti 

pemahaman kueri, perluasan kueri, menjawab pertanyaan, 

pengambilan informasi, serta pemeringkatan dan 

pengelompokan hasil, untuk beberapa nama. 

• Layanan terjemahan mesin, seperti Google Translate, Bing 

Microsoft Translator, dan Amazon Translate semakin 

banyak digunakan di dunia saat ini untuk menyelesaikan 

berbagai skenario dan kasus penggunaan bisnis. 

 

Natural Language Processing (NLP) adalah cabang dari 

kecerdasan buatan yang memfokuskan pada interaksi antara 

komputer dan bahasa manusia, memungkinkan komputer untuk 



3 

memahami, menganalisis, dan merespon bahasa manusia dalam 

berbagai bentuknya. NLP mencakup sejumlah teknik dan 

algoritma untuk memproses teks dan ucapan, termasuk 

pemahaman bahasa, generasi bahasa, dan penerjemahan 

antarbahasa. Dalam hal ini, NLP berfungsi sebagai jembatan 

komunikasi antara manusia dan mesin, menggunakan bahasa 

sehari-hari yang kita gunakan. 

 

Sebagai cabang dari kecerdasan buatan, NLP memungkinkan 

komputer untuk memahami, menganalisis, memanipulasi, dan 

merespons bahasa manusia, memfasilitasi komunikasi antara 

manusia dan mesin menggunakan bahasa alami (Agarwal, 2019). 

Teknologi NLP mencakup pemrosesan teks, di mana komputer 

diberdayakan untuk memahami dan menghasilkan teks bahasa 

manusia, melibatkan proses dari tokenisasi hingga analisis 

sintaksis dan semantic (Kjell et al., 2023). 

 

Selain itu, pemahaman bahasa memungkinkan komputer untuk 

memahami konteks dari teks, termasuk makna kata, frasa, atau 

kalimat, serta makna yang lebih luas dalam konteks tertentu  

(Basha et al., 2023). Generasi bahasa merupakan aspek lain dari 

NLP, di mana komputer dapat menghasilkan teks yang terstruktur 

secara gramatikal dan bermakna, seperti yang digunakan oleh 

chatbots dan dalam penghasilan konten otomatis. Penerjemahan 

bahasa, sebagai bagian dari NLP, melibatkan menerjemahkan teks 

dari satu bahasa ke bahasa lain sambil mempertahankan makna 

dan konteksnya (Hirschberg & Manning, 2015) 

 

NLP menggunakan pendekatan statistik, mesin pembelajaran, dan 

deep learning, termasuk model berbasis transformer seperti BERT 

dan GPT, untuk mengatasi berbagai tugas NLP yang kompleks 

(Mishra, 2019). Dengan perkembangan teknologi, model NLP 

yang menggunakan deep learning seperti model berbasis 

transformer telah menjadi semakin dominan dalam mengatasi 

banyak tugas NLP yang kompleks, merevolusi cara komputer 

memahami bahasa manusia. 
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Berikut adalah kerangka umum untuk sebuah tulisan yang 

membahas tentang Natural Language Processing (NLP): 

 

B. Sejarah singkat NLP 

 

Sejarah Natural Language Processing (NLP) telah melalui 

serangkaian perkembangan yang menarik sejak awalnya. Inilah 

beberapa titik penting dalam sejarah NLP: 

 

Awal Pengembangan tahun 1950-an dan 1960-an: Awalnya, NLP 

muncul sebagai bagian dari kecerdasan buatan. Pada tahun 1950-

an, Alan Turing mengajukan pertanyaan dalam makalahnya yang 

terkenal, "Apakah mesin bisa berpikir?" yang membuka jalan bagi 

studi tentang kecerdasan buatan dan pemrosesan bahasa alami1. 

1954: George Zipf, seorang linguistik, memberikan kontribusi 

awal dengan hukum Zipf yang menggambarkan distribusi kata 

dalam bahasa alami. 1950-an dan 1960-an: Pada masa ini, NLP 

berfokus pada penerjemahan mesin dan pengembangan model 

untuk pemahaman dan generasi bahasa. 

 

Perkembangan Awal 1970-an hingga 1980-an: Era ini melihat 

peningkatan dalam penerapan aturan dan pendekatan statistik 

dalam NLP. Metode-metode seperti penguraian sintaksis berbasis 

aturan dan model statistik mulai digunakan. 1980-an: Munculnya 

sistem-sistem seperti SHRDLU (dikembangkan oleh Terry 

Winograd) yang memungkinkan komunikasi dengan komputer 

dalam bahasa alami, memberikan dorongan besar pada 

pengembangan NLP2. 

 

Era Statistik dan Mesin Pembelajaran: 1990-an hingga 2000-an: 

Perkembangan metode-metode statistik semakin mendominasi. 

Teknik-teknik seperti HMM (Hidden Markov Models) dan 

algoritma pembelajaran mesin lainnya diperkenalkan untuk tugas-

tugas NLP seperti pemodelan bahasa, penerjemahan, dan 

pengenalan ucapan. Akhir 2000-an: Dengan kemajuan komputasi 

 
1 https://www.britannica.com/biography/Alan-Turing 
2 https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence 
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dan pendekatan deep learning, NLP mengalami revolusi baru. 

Model-model seperti Word Embeddings (Word2Vec, GloVe) 

memungkinkan representasi kata yang lebih baik, sementara 

neural networks yang lebih dalam meningkatkan kinerja dalam 

tugas-tugas NLP (Vajjala et al., 2012). 

 

Era Transformer dan Model Bahasa Besar: 2010-an hingga saat 

ini: Transformer, sebuah arsitektur neural network yang 

memanfaatkan self-attention mechanism, mengubah lanskap 

NLP3. Model-model besar seperti BERT (Bidirectional Encoder 

Representations from Transformers) dari Google dan GPT 

(Generative Pre-Trained Transformer) dari OpenAI 

mendefinisikan tingkat kinerja baru dalam pemahaman bahasa 

dan tugas-tugas NLP lainnya (Vaswani et al., 2017). 

 

Seiring dengan perubahan teknologi, dataset yang lebih besar, dan 

kemajuan dalam algoritma, NLP terus berkembang pesat. 

Kemampuan untuk memahami, menghasilkan, dan berinteraksi 

dengan bahasa manusia semakin meningkat, memungkinkan 

penerapan NLP yang lebih luas dalam berbagai industri dan 

aplikasi sehari-hari. 

 

C. Relevansi dan penerapan NLP dalam kehidupan 

 

relevansi dan penerapan Natural Language Processing (NLP) 

dalam kehidupan sehari-hari memiliki dampak yang signifikan 

dalam berbagai konteks. Berikut adalah beberapa contoh konkret: 

 

1. Asisten Virtual dan Chatbot: Relevansi: Membantu dalam 

interaksi sehari-hari dengan teknologi. Contoh: Asisten 

pribadi seperti Siri, Google Assistant, atau Alexa 

memanfaatkan NLP untuk memahami perintah suara, 

menjadikan penggunaan perangkat teknologi lebih mudah. 

Chatbot yang terintegrasi dengan layanan pelanggan 

 
3 https://blog.research.google/2017/08/transformer-novel-neural-
network.html 
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online juga menggunakan NLP untuk merespons 

pertanyaan pelanggan. 

2. Pencarian Informasi: Relevansi: Mempercepat akses dan 

relevansi informasi. Contoh: Mesin pencari seperti Google 

menggunakan NLP untuk memahami pertanyaan 

pengguna dan menyajikan hasil pencarian yang relevan. 

Pemahaman konteks dan arti di balik pertanyaan 

memungkinkan hasil pencarian yang lebih akurat. 

3. Analisis Sentimen Media Sosial: Relevansi: Memahami 

pandangan publik terhadap suatu topik atau merek. 

Contoh: Penggunaan NLP dalam analisis sentimen 

membantu perusahaan memahami umpan balik pelanggan 

di platform media sosial. Misalnya, menganalisis tweet 

atau postingan Facebook untuk mengukur reaksi terhadap 

produk tertentu. 

4. Penerjemahan Bahasa: Relevansi: Memfasilitasi 

komunikasi lintas budaya. Contoh: Google Translate 

menggunakan teknologi NLP untuk menerjemahkan teks 

dari satu bahasa ke bahasa lain secara cepat dan akurat. Ini 

sangat membantu dalam komunikasi global di antara 

individu yang berbicara bahasa yang berbeda. 

5. Otomatisasi Pekerjaan: Relevansi: Meningkatkan efisiensi 

pekerjaan dan tugas-tugas rutin. Contoh: Penggunaan NLP 

dalam pengelompokan email, pemrosesan formulir, atau 

analisis dokumen membantu dalam mengotomatisasi 

tugas-tugas yang membutuhkan pemahaman bahasa alami. 

6. Sistem Pembelajaran Adaptif: Relevansi: Meningkatkan 

pengalaman belajar yang disesuaikan dengan individu. 

Contoh: Platform pembelajaran online menggunakan NLP 

untuk menyediakan materi yang disesuaikan dengan 

kebutuhan belajar masing-masing siswa. Ini 

memungkinkan pengalaman belajar yang lebih efektif. 

7. Pelayanan Kesehatan yang Lebih Baik: Relevansi: 

Meningkatkan diagnosis dan pengelolaan informasi 

medis. Contoh: NLP digunakan dalam analisis rekam 

medis dan dokumen kesehatan untuk membantu dokter 

dalam membuat diagnosis yang lebih cepat dan akurat, 

serta memantau perkembangan pasien. 
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8. Keamanan dan Penegakan Hukum: Relevansi: Mendeteksi 

ancaman potensial dan kegiatan kriminal. Contoh: 

Analisis teks pada platform online untuk mendeteksi 

ancaman atau kegiatan yang mencurigakan, membantu 

dalam keamanan siber dan penegakan hukum.  

 

Penerapan NLP dalam kehidupan sehari-hari telah mengubah cara 

kita berinteraksi dengan teknologi, membawa kemudahan dalam 

akses informasi, dan meningkatkan efisiensi dalam banyak aspek 

kehidupan (Tunstall et al., 2022). 

 

D. Tujuan 

 

Tujuan penulisan mengenai Natural Language Processing (NLP) 

adalah untuk menyampaikan pemahaman yang mendalam tentang 

konsep, perkembangan, penerapan, dan relevansi NLP dalam 

berbagai bidang kehidupan. Beberapa tujuan spesifiknya meliputi: 

1. Pemahaman Konsep NLP: menjelaskan tentang apa itu 

NLP, konsep dasar di baliknya, dan bagaimana komputer 

dapat memahami, memproses, dan menghasilkan bahasa 

manusia dengan bantuan teknologi. 

2. Menjelaskan Teknik dan Algoritma NLP: Memberikan 

pemahaman tentang teknik-teknik utama dalam NLP 

seperti tokenisasi, pengenalan entitas, penerjemahan, 

analisis sentimen, dan model-model seperti transformer-

based models. Tujuannya adalah agar pembaca memahami 

bagaimana NLP diimplementasikan dalam konteks yang 

berbeda. 

3. Penerapan dalam Berbagai Bidang: Menjelaskan 

penerapan NLP dalam industri, kesehatan, pendidikan, 

keamanan, dan bidang lainnya. Menyoroti kontribusi NLP 

dalam mengoptimalkan proses, meningkatkan efisiensi, 

dan menghadirkan solusi dalam setiap bidang ini. 

4. Tantangan dan Isu Etika: Membahas tantangan teknis 

dalam pengembangan NLP, seperti ambiguitas bahasa dan 

kurangnya data berkualitas, serta menyoroti isu-isu etika 

seperti privasi data, bias dalam model, dan tanggung jawab 

sosial dalam penggunaan teknologi NLP. 
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5. Edukasi dan Informasi Masyarakat: Memberikan 

pemahaman yang lebih luas kepada masyarakat umum 

tentang bagaimana NLP memengaruhi kehidupan sehari-

hari mereka, baik dalam penggunaan aplikasi yang dikenal 

seperti asisten virtual maupun implikasinya dalam industri 

dan pengembangan teknologi masa depan. 

6. Mendorong Pengembangan dan Penelitian Lanjutan: 

Merangsang minat dan keingintahuan pembaca untuk 

terlibat dalam pengembangan lebih lanjut dalam bidang 

NLP, serta mendorong penelitian yang lebih mendalam 

dalam pengembangan teknologi bahasa. 

7. Menggugah Kesadaran akan Potensi dan Tantangan: 

Memberikan pemahaman yang utuh tentang potensi luar 

biasa NLP dalam merubah cara kita berinteraksi dengan 

teknologi, sambil menyadari tantangan teknis dan etika 

yang terkait. 

 

 

Tujuan utama dari penulisan tentang NLP adalah untuk 

memberikan pemahaman menyeluruh tentang konsep ini, 

memberikan wawasan tentang peran dan pengaruhnya dalam 

kehidupan sehari-hari, serta menyampaikan tantangan dan 

peluang yang terkait dengan penggunaan teknologi bahasa ini. 
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BAB II 

DASAR-DASAR NLP 
 

 

A. Pengertian dasar tentang bahasa alami 

 

Bahasa alami adalah bahasa yang digunakan oleh manusia untuk 

berkomunikasi sehari-hari. Bahasa alami bersifat kompleks dan 

fleksibel, dan dapat digunakan untuk berbagai tujuan, seperti 

menyampaikan informasi, mengekspresikan emosi, dan 

membangun hubungan. Ini adalah cara alami di mana manusia 

menyampaikan ide, emosi, informasi, dan instruksi kepada orang 

lain menggunakan kata-kata, frasa, kalimat, dan struktur bahasa 

yang kompleks(Tunstall et al., 2022). 

 

Bahasa alami terdiri dari berbagai komponen, antara lain: 

• Morfologi adalah cabang linguistik yang mempelajari 

bentuk kata. Morfologi meliputi pembentukan 

kata, seperti proses pengimbuhan, pengulangan, dan 

penggabungan. 

• Sintaksis adalah cabang linguistik yang mempelajari 

struktur kalimat. Sintaksis meliputi aturan-aturan yang 

mengatur bagaimana kata-kata dapat digabungkan 

menjadi kalimat yang bermakna. 

• Semantik adalah cabang linguistik yang mempelajari 

makna kata dan kalimat. Semantik meliputi hubungan 

antara kata dan dunia nyata. 

• Pragmatik adalah cabang linguistik yang mempelajari 

penggunaan bahasa dalam konteks tertentu. Pragmatik 

meliputi cara penggunaan bahasa untuk menyampaikan 

maksud dan tujuan tertentu. 

Perbedaan bahasa alami dan bahasa formal: Bahasa alami berbeda 

dengan bahasa formal, seperti bahasa pemrograman. Bahasa 

formal memiliki aturan yang ketat dan tidak fleksibel, sedangkan 

bahasa alami memiliki aturan yang lebih longgar dan fleksibel. 

Bahasa formal digunakan untuk tujuan-tujuan tertentu, seperti 

menulis program komputer, sedangkan bahasa alami digunakan 
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untuk berbagai tujuan, seperti berkomunikasi, mengekspresikan 

emosi, dan membangun hubungan. 

 

Penerapan bahasa alami:  Bahasa alami diterapkan dalam berbagai 

bidang, antara lain: Bahasa alami digunakan dalam berbagai 

produk dan layanan teknologi, seperti mesin penerjemah, asisten 

virtual, dan chatbot. Bahasa alami digunakan untuk membuat 

konten pembelajaran yang lebih menarik dan interaktif, serta 

untuk memberikan umpan balik yang lebih personal kepada siswa. 

Bahasa alami digunakan untuk mendiagnosis penyakit, untuk 

memberikan layanan kesehatan yang lebih personal, dan untuk 

meningkatkan penelitian medis. Bahasa alami digunakan untuk 

meningkatkan layanan pelanggan, untuk meningkatkan 

pemasaran, dan untuk membuat keputusan bisnis yang lebih baik. 

Bahasa alami adalah alat komunikasi yang penting bagi manusia. 

Bahasa alami memiliki berbagai komponen dan digunakan dalam 

berbagai bidang. 

 

Beberapa aspek penting dalam pengertian dasar tentang bahasa 

alami meliputi: 

• Kompleksitas dan Struktur: Bahasa alami memiliki 

struktur kompleks yang terdiri dari unsur-unsur seperti 

fonem (unit bunyi), morfem (unit makna terkecil), kata-

kata, frasa, kalimat, dan aturan sintaksis yang 

mempengaruhi arti dari teks atau ucapan. 

• Kekayaan dan Produktivitas: Bahasa alami memiliki sifat 

kekayaan yang memungkinkan pembicara untuk 

menghasilkan kombinasi yang tak terbatas dari kata-kata 

dan kalimat untuk menyampaikan pesan yang berbeda 

dalam situasi yang berbeda. 

• Makna dan Konteks: Makna dalam bahasa alami sangat 

bergantung pada konteks penggunaannya. Kata atau frase 

dapat memiliki makna yang berbeda-beda tergantung pada 

situasi dan bagaimana mereka digunakan dalam kalimat 

atau percakapan. 

• Ambiguitas: Bahasa alami sering kali mengandung 

ambiguitas, di mana satu kata atau frasa dapat memiliki 

beberapa makna yang berbeda. Ini dapat menjadi 
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tantangan dalam pemrosesan bahasa alami karena 

memerlukan pemahaman yang tepat dari konteksnya. 

• Perubahan dan Variasi: Bahasa alami terus berkembang 

dan bervariasi dari waktu ke waktu serta antar komunitas 

bahasa. Perubahan ini dapat terjadi dalam kosakata, tata 

bahasa, atau penggunaan kata-kata yang baru. 

Dalam konteks Natural Language Processing (NLP), pemahaman 

tentang bahasa alami menjadi dasar utama. Mesin atau komputer 

yang memproses bahasa alami harus mampu memahami 

kompleksitas struktur bahasa, mengatasi ambiguitas, dan 

memperhitungkan konteks dalam rangka melakukan tugas-tugas 

seperti pemrosesan teks, analisis sentimen, penerjemahan, dan 

lainnya. Menciptakan model dan algoritma yang dapat memahami 

dan memanipulasi bahasa alami dengan baik adalah inti dari 

pengembangan dalam NLP. 

 

B. Teknik-teknik dasar dalam NLP 

 

Teknik-teknik dasar dalam Natural Language Processing (NLP) 

adalah fondasi penting untuk memproses, menganalisis, dan 

memahami bahasa manusia. Berikut adalah beberapa teknik dasar 

yang sering digunakan dalam NLP(Atkinson-Abutridy, 2022): 

• Tokenisasi: Proses memecah teks menjadi unit-unit yang 

lebih kecil, seperti kata-kata, frasa, atau kalimat. Contoh: 

Mengubah kalimat menjadi kumpulan kata-kata 

individual. 

• Stopword Removal: Menghapus kata-kata umum yang 

tidak memberikan nilai tambah dalam analisis teks, seperti 

"dan", "atau", "di", dll. Dalam analisis sentimen, kata-kata 

ini sering dihapus karena kurangnya kontribusi terhadap 

penilaian keseluruhan. 

• Stemming dan Lemmatisasi: Stemming: Proses mengubah 

kata-kata menjadi bentuk dasar atau akar kata dengan 

menghilangkan imbuhan. Lemmatisasi: Proses mengubah 

kata-kata ke bentuk dasarnya (kata baku) berdasarkan 

kamus atau aturan linguistik. Contoh: Mengubah kata-kata 
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"berlari", "lari", dan "lari-lari" menjadi bentuk dasarnya 

"lari". 

• Part-of-Speech (POS) Tagging: Mengidentifikasi dan 

menandai jenis kata dalam sebuah kalimat, seperti kata 

benda, kata kerja, kata sifat, dan lain-lain. Contoh: 

Menandai kata "makan" sebagai kata kerja dan "rumah" 

sebagai kata benda. 

• Named Entity Recognition (NER): Mendeteksi dan 

menandai entitas penting dalam teks seperti nama orang, 

tempat, tanggal, organisasi, dll. Contoh: Mengidentifikasi 

"Bill Gates" sebagai nama orang atau "Microsoft" sebagai 

nama perusahaan. 

• Word Embeddings dan Word Vectors: Representasi vektor 

yang menyandikan makna kata-kata dalam bentuk 

numerik, memungkinkan model untuk memahami 

hubungan antar kata. Contoh: Model Word2Vec atau 

GloVe menghasilkan vektor yang merepresentasikan kata-

kata dan maknanya dalam ruang vektor. 

• Analisis Sintaksis dan Semantik: Sintaksis: Menganalisis 

struktur gramatikal dari kalimat, seperti hubungan antara 

kata-kata dalam sebuah kalimat. Semantik: Memahami 

makna dari kalimat atau teks, termasuk hubungan makna 

antara kata-kata. 

• Analisis Sentimen: Mengidentifikasi, mengekstrak, atau 

menganalisis sentimen dari teks, seperti apakah sebuah 

ulasan bersifat positif, negatif, atau netral. Contoh: Menilai 

apakah sebuah ulasan produk di platform e-commerce 

adalah positif atau negatif. Teknik-teknik ini membentuk 

dasar dalam pengolahan bahasa alami. Dalam kombinasi 

dengan model-model machine learning atau deep learning, 

teknik-teknik ini memungkinkan mesin untuk memahami, 

menganalisis, dan menghasilkan teks dalam cara yang 

semakin mirip dengan cara manusia. 

 

1. Tokenisasi 

Tokenisasi adalah proses memecah teks menjadi unit-unit yang 

lebih kecil, seperti kata-kata, frasa, atau kalimat yang disebut 

token. Setiap token mewakili bagian terpisah dari teks yang dapat 
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dianggap sebagai unit yang berarti. Proses tokenisasi sangat 

penting dalam Natural Language Processing (NLP) karena 

membantu dalam analisis, pemrosesan, dan pemahaman teks oleh 

mesin. 

 

Konsep Tokenisasi: Unit Token: Token bisa berupa kata, frasa, 

kalimat, atau bahkan karakter tergantung pada kebutuhan analisis 

atau pemrosesan yang dilakukan. Pemisahan: Teks dapat 

dipisahkan menjadi token berdasarkan spasi (untuk kata-kata), 

tanda baca, atau aturan tertentu seperti tokenisasi berdasarkan 

kata. Pembersihan dan Normalisasi: Tokenisasi dapat melibatkan 

pembersihan teks dari karakter khusus, tanda baca, dan 

normalisasi huruf menjadi huruf kecil atau huruf besar untuk 

konsistensi. Berikut teknik untuk Melakukan Tokenisasi: 

 

Tokenisasi Berdasarkan Spasi: 

Pemisahan teks menjadi token berdasarkan spasi antara kata-kata. 

 

Contoh: "Saya sedang belajar NLP." akan menjadi token: ["Saya", 

"sedang", "belajar", "NLP", "."] 

Tokenisasi Berdasarkan Kata: 

 

Memisahkan teks berdasarkan aturan kata, mengabaikan tanda 

baca atau spasi. 

 

Contoh: "Dia tidak suka berjalan-jalan." akan menjadi token: 

["Dia", "tidak", "suka", "berjalan-jalan", "."] 

 

Tokenisasi Berdasarkan Frasa atau Kalimat: 

Memisahkan teks menjadi token berdasarkan frasa atau kalimat. 

 

Contoh: "Saya belajar NLP. Ini menarik!" akan menjadi token 

kalimat: ["Saya belajar NLP.", "Ini menarik!"] 

 

Tokenisasi dengan Penggunaan Algoritma Khusus: 

Menggunakan aturan linguistik atau algoritma yang lebih 

kompleks untuk memisahkan teks menjadi token.  
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Contoh: Algoritma seperti WordPunctTokenizer dalam Python 

yang membagi teks menjadi kata-kata dan tanda baca sebagai 

token terpisah. Langkah-langkah dalam Proses Tokenisasi: 

a) Pemisahan Teks: Pisahkan teks menjadi unit-unit yang 

relevan berdasarkan jenis token yang diinginkan (kata, 

frasa, kalimat). 

b) Pembersihan: Hilangkan karakter khusus, normalisasikan 

huruf, dan lakukan pre-processing lainnya jika diperlukan. 

c) Representasi dalam Bentuk Token: Hasil tokenisasi 

diwakili dalam bentuk daftar atau struktur data lainnya 

yang menyimpan token-token tersebut. 

d) Pentingnya Tokenisasi: Memungkinkan mesin untuk 

memproses teks dalam format yang dapat dipahami dan 

diolah. Dasar untuk langkah-langkah pemrosesan NLP 

lainnya seperti analisis sintaksis, pembangunan model, 

atau analisis sentimen. Membantu dalam mempersiapkan 

data untuk berbagai tugas NLP seperti machine translation, 

analisis teks, dan lainnya. Tokenisasi merupakan langkah 

penting dalam pemrosesan teks dalam NLP yang 

membantu dalam memahami dan memanipulasi bahasa 

manusia secara efisien oleh komputer atau mesin. 

 

2. Stopword removal 

 

Stopword removal adalah proses menghilangkan kata-kata umum 

yang tidak memberikan kontribusi signifikan terhadap makna 

dalam analisis teks. Kata-kata semacam ini, seperti "dan", "atau", 

"di", "yang", dan lainnya, sering muncul dalam teks tetapi 

cenderung tidak memiliki nilai informasi yang besar dalam 

pemrosesan atau analisis teks. Proses penghapusan stopwords 

sangat penting dalam tahap pra-pemrosesan dalam NLP untuk 

meningkatkan kualitas analisis dan model yang dibangun. Berikut 

adalah konsep Stopword Removal: 

a) Kata-kata Umum: Stopwords adalah kata-kata umum yang 

sering ditemukan dalam bahasa namun jarang membawa 

makna khusus atau signifikan dalam analisis teks.  

b) Mengurangi Noise: Penghapusan stopwords membantu 

mengurangi noise dalam data teks. Ini memungkinkan 
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fokus pada kata-kata yang lebih penting dalam 

pemrosesan.  

c) Pembersihan Teks: Proses ini melibatkan menghapus 

stopwords dari teks, meninggalkan hanya kata-kata yang 

dianggap lebih relevan dalam analisis. 

 

3. Stemming dan Lemmatisasi 

 

Stemming dan lemmatisasi adalah dua teknik dalam pemrosesan 

bahasa alami yang bertujuan untuk mengubah kata-kata menjadi 

bentuk dasar atau kata baku agar lebih mudah dianalisis atau 

dipahami oleh mesin. 

 

Stemming: 

Konsep: Stemming adalah proses menghilangkan imbuhan atau 

akhiran kata untuk mendapatkan bentuk dasar atau stem dari 

sebuah kata. Tujuan: Mengurangi kata-kata ke bentuk dasarnya 

sehingga kata-kata yang memiliki akar kata yang sama dapat 

dianggap sebagai bentuk yang sama. Teknik: Stemming 

menggunakan aturan sederhana untuk menghapus imbuhan kata. 

Namun, hasil stemming tidak selalu merupakan kata yang benar 

dalam bahasa yang sesungguhnya.  Contoh: "Berlari", "lari", "lari-

lari" akan diubah menjadi bentuk dasarnya "lar". 

 

Lemmatisasi: 

Konsep: Lemmatisasi adalah proses mengubah kata-kata menjadi 

bentuk dasar atau kata baku berdasarkan kamus atau aturan 

linguistik. Tujuan: Menghasilkan kata yang merupakan bentuk 

dasar kata dalam bahasa yang tepat. Teknik: Lemmatisasi 

menggunakan kamus kata-kata yang telah didefinisikan dan 

aturan linguistik untuk mengubah kata-kata menjadi bentuk dasar. 

Contoh: "Berlari", "lari", "lari-lari" akan diubah menjadi bentuk 

dasarnya "lari". 

 

Perbandingan Antara Stemming dan Lemmatisasi: 

Stemming: Lebih sederhana karena hanya menghapus imbuhan 

untuk mendapatkan akar kata yang mungkin tidak selalu benar. 
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Lemmatisasi: Lebih kompleks karena memerlukan pengetahuan 

tentang kamus dan struktur bahasa untuk mengubah kata menjadi 

bentuk yang benar secara linguistik. 

 

Langkah-langkah dalam Stemming dan Lemmatisasi: 

Tokenisasi: Pemecahan teks menjadi token (kata-kata). 

Proses Stemming atau Lemmatisasi: Penggunaan algoritma atau 

aturan linguistik untuk mengubah kata-kata menjadi bentuk dasar. 

Pentingnya Stemming dan Lemmatisasi: Normalisasi Teks: 

Membantu dalam normalisasi teks untuk analisis yang lebih 

akurat. Reduksi Redundansi: Mengurangi redundansi kata-kata 

yang memiliki akar yang sama. Baik stemming maupun 

lemmatisasi digunakan untuk menyederhanakan kata-kata 

menjadi bentuk dasar atau kata baku untuk memfasilitasi analisis 

teks dalam NLP. Meskipun tidak sempurna, keduanya membantu 

dalam memproses dan memahami teks dalam analisis bahasa 

alami. 

 

4. Part-of-Speech (POS) Tagging 

 

Part-of-Speech (POS) tagging adalah proses yang dilakukan 

dalam Natural Language Processing (NLP) untuk 

mengidentifikasi jenis kata dalam sebuah kalimat, seperti kata 

benda, kata kerja, kata sifat, kata tanya, dan lainnya. Ini penting 

dalam pemahaman makna dan struktur kalimat dalam bahasa 

alami. 

 

Konsep POS Tagging: 

Jenis Kata: Setiap kata dalam sebuah kalimat memiliki peran atau 

fungsi tertentu dalam kalimat tersebut, misalnya sebagai subjek, 

predikat, atau objek. 

Tujuan: POS tagging bertujuan untuk mengidentifikasi peran atau 

fungsi setiap kata dalam kalimat untuk memahami struktur dan 

makna kalimat. 

 

Teknik untuk Melakukan POS Tagging: 

Menggunakan Model Statistik: Memanfaatkan model statistik 

seperti Hidden Markov Models (HMM) atau Conditional Random 
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Fields (CRF) untuk memprediksi jenis kata berdasarkan konteks 

kalimat. 

 

Pemanfaatan Kamus Kata: Menggunakan kamus kata-kata yang 

sudah diberi label jenis kata untuk mengidentifikasi tipe kata. 

Penggunaan Algoritma Berbasis Aturan: Penggunaan aturan 

linguistik dan struktur bahasa untuk menentukan jenis kata dalam 

konteks kalimat. 

 

Langkah-langkah dalam Proses POS Tagging: 

Tokenisasi: Pemisahan kata-kata dalam kalimat menjadi token. 

Ekstraksi Fitur: Mendapatkan fitur-fitur dari kata-kata yang dapat 

membantu dalam prediksi jenis kata, seperti kata sebelumnya atau 

kata-kata yang terkait dalam kalimat. 

 

Pemodelan: Menggunakan model (statistik atau berbasis aturan) 

untuk memprediksi jenis kata untuk setiap token dalam kalimat. 

Labeling: Memberikan label atau tag untuk setiap kata dalam 

kalimat berdasarkan jenis kata yang diprediksi. 

Contoh POS Tagging: 

 

Dalam kalimat "Ani membaca buku di perpustakaan," hasil POS 

taggingnya mungkin seperti: 

"Ani" -> Noun (Kata benda) 

"membaca" -> Verb (Kata kerja) 

"buku" -> Noun (Kata benda) 

"di" -> Preposition (Kata depan) 

"perpustakaan" -> Noun (Kata benda) 

 

Pentingnya POS Tagging: 

Pemahaman Struktur Kalimat: Memahami struktur kalimat dan 

hubungan antara kata-kata dalam konteks kalimat. 

Pemrosesan Bahasa yang Lebih Lanjut: Membantu dalam 

berbagai tugas NLP seperti analisis sintaksis, parsing, dan 

terjemahan. 

 

POS Tagging membantu dalam memahami makna dan struktur 

kalimat, yang merupakan langkah penting dalam analisis dan 
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pemrosesan teks dalam NLP. Ini memungkinkan mesin untuk 

memahami peran dan hubungan antar kata-kata dalam konteks 

kalimat. 

 

5. Named Entity Recognition (NER) 

Named Entity Recognition (NER) adalah proses dalam Natural 

Language Processing (NLP) yang bertujuan untuk 

mengidentifikasi dan menandai entitas penting dalam teks seperti 

nama orang, tempat, tanggal, organisasi, dan lainnya. Tujuannya 

adalah untuk mengenali dan mengekstrak informasi yang relevan 

dari teks yang dapat dianggap sebagai entitas (Li et al., 2022). 

 

NER adalah teknik penting dalam NLP karena memungkinkan 

pengenalan dan penandaan entitas penting dalam teks, yang 

mendukung berbagai tugas pemrosesan bahasa alami dan analisis 

teks yang lebih lanjut. Named Entity Recognition (NER) 

merupakan salah satu tugas dasar dalam Natural Language 

Processing (NLP). NER bertujuan untuk mengidentifikasi dan 

mengklasifikasikan entitas bernama dalam teks, seperti nama 

orang, nama organisasi, lokasi, tanggal, dan waktu. 

 

Pengenalan entitas dinamis telah berkembang secara signifikan 

dalam dekade terakhir, dengan penelitian terbaru yang semakin 

banyak mengadopsi pembelajaran mendalam, pembelajaran 

transfer, basis pengetahuan, dan metode lainnya. Penelitian NER 

untuk bahasa-bahasa sumber daya rendah juga meningkat pesat 

(Sun et al., 2018). Salah satu tantangan utama dalam NER adalah 

mengatasi entitas bersarang dan tumpang tindih, di mana token 

yang sama bisa menjadi bagian dari lebih dari satu kategori entitas. 

Strategi baru yang diusulkan melibatkan memformalkan tugas 

ekstraksi entitas sebagai tugas pemahaman bacaan berbasis kueri, 

di mana tugas mengekstraksi entitas dengan PER diformalkan 

sebagai menjawab pertanyaan "orang mana yang disebutkan 

dalam teks?" (Meng et al., 2019). 

 

Dalam hal pengembangan model NER, telah diperkenalkan S-

NER, model NER berbasis rentang yang terlebih dahulu membagi 

teks mentah menjadi rentang teks dan menganggapnya sebagai 
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kandidat entitas. Ini kemudian langsung memperoleh jenis rentang 

dengan melakukan klasifikasi jenis entitas pada representasi 

semantik rentang, yang menghilangkan kebutuhan akan 

ketergantungan label (Yu et al., 2022). Metode yang diusulkan ini 

telah menunjukkan peningkatan signifikan dalam performa NER, 

terutama dalam menangani jumlah contoh pendukung yang 

rendah, yang menyoroti pentingnya mengadaptasi strategi NER 

untuk domain dan tantangan baru  (Ziyadi et al., 2020). Dengan 

terus berkembangnya metode dan pendekatan baru dalam NER, 

penelitian di bidang ini tetap menjadi area yang aktif dan penting 

dalam pemrosesan bahasa alami, memberikan kontribusi 

signifikan terhadap berbagai aplikasi NLP yang bergantung pada 

pemahaman teks yang akurat dan mendalam (Hannon et al., 2024) 

 

Konsep Named Entity Recognition (NER): 

Entitas Nama: Dalam sebuah teks, entitas nama adalah segmen 

yang merujuk kepada orang, tempat, tanggal, organisasi, dan 

entitas penting lainnya yang memiliki makna spesifik dalam 

konteks yang diberikan. Tujuannya untuk Mengidentifikasi dan 

menandai entitas penting ini dalam teks untuk menggali informasi 

yang berguna. Teknik untuk Melakukan Named Entity 

Recognition (NER), Pemodelan Berbasis Aturan: Menggunakan 

aturan linguistik atau pola tertentu untuk mengidentifikasi entitas 

nama dalam teks. 

 

Pemanfaatan Machine Learning: Menerapkan pendekatan 

machine learning seperti Conditional Random Fields (CRF) atau 

deep learning menggunakan model seperti Recurrent Neural 

Networks (RNN) atau Transformer untuk mengidentifikasi 

entitas. 

 

Langkah-langkah dalam Proses Named Entity Recognition 

(NER): 

1. Tokenisasi: Pemisahan teks menjadi token atau kata-kata. 

2. POS Tagging: Identifikasi jenis kata-kata dalam teks 

menggunakan Part-of-Speech tagging. 

3. Feature Extraction: Ekstraksi fitur yang relevan, seperti kata 

sebelumnya, jenis kata, atau pola tertentu dalam teks. 
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4. Pemodelan dan Prediksi: Menggunakan model machine 

learning atau aturan tertentu untuk memprediksi dan menandai 

entitas dalam teks. 

 

Contoh Named Entity Recognition (NER): 

Dalam kalimat "Mark Zuckerberg mendirikan Facebook pada 

tahun 2004 di Harvard University," hasil NER-nya mungkin 

seperti: 

"Mark Zuckerberg" -> Nama Orang (Person) 

"Facebook" -> Organisasi (Organization) 

"2004" -> Tanggal (Date) 

"Harvard University" -> Lokasi (Location) 

 

Pentingnya Named Entity Recognition (NER): 

Ekstraksi Informasi: Membantu dalam mengekstrak informasi 

penting dari teks seperti nama, tempat, atau tanggal. 

Analisis Data: Memungkinkan pemrosesan lebih lanjut untuk 

analisis data seperti analisis sentimen, klasifikasi teks, dan 

lainnya. 

 

Entitas bernama adalah frasa benda (noun phrase) yang memiliki 

tipe spesifik. Misalnya, "John Doe" adalah nama orang, 

"Microsoft" adalah nama organisasi, "Jakarta" adalah lokasi, 

"2023-12-13" adalah tanggal, dan "10:00" adalah waktu. Teknik 

untuk melakukan NER. Ada dua pendekatan utama untuk 

melakukan NER, yaitu pendekatan berbasis aturan dan 

Pendekatan berbasis pembelajaran mesin.  

1. Pendekatan berbasis aturan: Pendekatan berbasis aturan 

menggunakan serangkaian aturan untuk mengidentifikasi dan 

mengklasifikasikan entitas bernama. Aturan-aturan ini 

biasanya dibuat oleh ahli bahasa berdasarkan pengetahuan 

mereka tentang bahasa. 

2. Keuntungan dari pendekatan berbasis aturan: Efektif untuk 

kasus-kasus yang sederhana dan terdefinisi dengan baik. Dapat 

digunakan untuk bahasa yang tidak memiliki data pelatihan 

yang besar 

3. Kerugian dari pendekatan berbasis aturan: Sulit untuk 

membuat aturan yang lengkap dan akurat untuk semua kasus. 
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Sulit untuk mengadaptasi aturan untuk bahasa yang baru atau 

berubah. 

 

Pendekatan berbasis pembelajaran mesin. Pendekatan berbasis 

pembelajaran mesin menggunakan model pembelajaran mesin 

untuk mengidentifikasi dan mengklasifikasikan entitas bernama. 

Model pembelajaran mesin dilatih pada data pelatihan yang berisi 

contoh entitas bernama. Keuntungan dari pendekatan berbasis 

pembelajaran mesin: Dapat menangani kasus-kasus yang 

kompleks dan tidak terdefinisi dengan baik. Dapat beradaptasi 

dengan data pelatihan yang baru atau berubah. 

 

Kerugian dari pendekatan berbasis pembelajaran mesin: 

Membutuhkan data pelatihan yang besar. Dapat menghasilkan 

hasil yang tidak akurat jika data pelatihan tidak representative. 

Kombinasi pendekatan berbasis aturan dan pembelajaran mesin. 

Pendekatan berbasis aturan dan pembelajaran mesin dapat 

dikombinasikan untuk meningkatkan akurasi NER. Misalnya, 

pendekatan berbasis aturan dapat digunakan untuk 

mengidentifikasi entitas bernama yang umum, dan pendekatan 

berbasis pembelajaran mesin dapat digunakan untuk 

mengidentifikasi entitas bernama yang tidak umum. Pencarian 

informasi. NER dapat digunakan untuk mengidentifikasi entitas 

bernama dalam dokumen teks. Misalnya, NER dapat digunakan 

untuk mengidentifikasi nama orang, nama organisasi, dan lokasi 

dalam dokumen berita. Pemrosesan bahasa alami. NER dapat 

digunakan untuk berbagai tugas pemrosesan bahasa alami, seperti: 

 

* **Peringkasan teks** 

* **Pertanyaan jawab** 

* **Pemahaman bahasa alami** 

Aplikasi bisnis: NER dapat digunakan untuk berbagai aplikasi 

bisnis, seperti: 

* **Analisis sentimen** 

* **Pencegahan penipuan** 

* **Pemasarkan** 
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Named Entity Recognition (NER) adalah tugas dasar dalam 

Natural Language Processing (NLP). NER bertujuan untuk 

mengidentifikasi dan mengklasifikasikan entitas bernama dalam 

teks. Ada dua pendekatan utama untuk melakukan NER, yaitu: 

Pendekatan berbasis aturan dan Pendekatan berbasis pembelajaran 

mesin. Pendekatan berbasis aturan efektif untuk kasus-kasus yang 

sederhana dan terdefinisi dengan baik, sedangkan pendekatan 

berbasis pembelajaran mesin dapat menangani kasus-kasus yang 

kompleks dan tidak terdefinisi dengan baik. Pendekatan berbasis 

aturan dan pembelajaran mesin dapat dikombinasikan untuk 

meningkatkan akurasi NER. NER memiliki berbagai penerapan, 

antara lain: Pencarian informasi. Pemrosesan bahasa alami. 

Aplikasi bisnis 

 

6. Word Embeddings dan Word Vectors 

 

Word Embeddings dan Word Vectors adalah teknik penting dalam 

Natural Language Processing (NLP) yang digunakan untuk 

merepresentasikan kata-kata dalam bentuk vektor numerik dalam 

ruang dimensi yang lebih rendah. Representasi ini memungkinkan 

mesin untuk memahami dan memanipulasi makna kata-kata 

dalam pemrosesan bahasa alami. 

 

Word embeddings dan word vectors dalam Natural Language 

Processing (NLP) memiliki peran penting karena kemampuan 

mereka untuk mengkodekan hubungan antar kata dalam ruang 

vektor. Hal ini bermanfaat untuk berbagai tugas pemrosesan 

bahasa, dari komponen dalam sistem NLP hingga alat untuk 

analisis linguistik dalam studi bahasa dan literatur. 

Menginterpretasikan embeddings dan memahami hubungan 

gramatikal dan semantik yang dikodekan di dalamnya berguna 

namun menantang. Visualisasi dapat membantu dalam interpretasi 

embeddings tersebut (Heimerl & Gleicher, 2018). 

 

Word embeddings merupakan teknik pembelajaran fitur yang 

memetakan kata-kata dari kosakata ke dalam vektor bilangan riil 

dalam ruang berdimensi rendah. Dengan memanfaatkan korpus 

teks tanpa label yang besar, representasi ruang kontinu ini dapat 
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dihitung untuk menangkap informasi sintaktis dan semantik 

tentang kata-kata. Ketika digunakan sebagai representasi input 

dasar, word embeddings telah terbukti menjadi aset besar untuk 

berbagai tugas NLP. Teknik-teknik terkini untuk mendapatkan 

word embeddings sebagian besar berbasis pada model bahasa 

neural network (NNLM), di mana vektor kata diinisialisasi secara 

acak dan kemudian dilatih untuk memprediksi konteks di mana 

kata-kata yang bersangkutan cenderung muncul (Gavhane et al., 

2022). 

 

Dalam pemrosesan Bahasa Gujarati, yang merupakan bahasa 

dengan sumber daya rendah, word2vec dan fastText merupakan 

beberapa teknik word embeddings yang paling umum. Sementara 

banyak pekerjaan telah dilakukan untuk mendapatkan embeddings 

dalam bahasa dengan sumber daya kaya seperti Bahasa Inggris, 

masih ada pekerjaan yang harus dilakukan untuk bahasa dengan 

sumber daya rendah. Fokus pada pengembangan vektor kata untuk 

bahasa Gujarati dan penyiapan dataset tes analogi untuk 

mengevaluasi akurasi embeddings yang diperoleh telah dilakukan. 

Kinerja model juga dibandingkan dengan model Gujarati pra-latih 

yang sudah tersedia (Joshi et al., 2019). 

 

Word embeddings (representasi vektor kata yang didistribusikan) 

telah menjadi komponen penting dalam banyak tugas pemrosesan 

bahasa alami (NLP) seperti terjemahan mesin, analisis sentimen, 

analogi kata, pengenalan entitas bernama, dan kesamaan kata. 

Meskipun demikian, pekerjaan terkini hanya menyediakan vektor 

kata untuk bahasa Hausa yang dilatih menggunakan fastText, 

terdiri dari hanya beberapa vektor kata. Penelitian ini menyajikan 

model embeddings kata menggunakan model Continuous Bag of 

Words (CBoW) dan Skip Gram dari Word2Vec. Model-model ini, 

hauWE (Hausa Words Embedding), lebih besar dan lebih baik dari 

model sebelumnya, membuatnya lebih berguna dalam tugas-tugas 

NLP. Untuk membandingkan model, mereka digunakan untuk 

memprediksi 10 kata yang paling mirip dengan 30 kata Hausa 

yang dipilih secara acak. hauWE CBoW dengan akurasi prediksi 

88,7% dan hauWE SG dengan 79,3% jauh melampaui performa 

model [1] dengan 22,3% (Abdulmumin & Galadanci, 2019). 
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Konsep Word Embeddings dan Word Vectors: 

1. Representasi Numerik: Kata-kata dalam teks diubah menjadi 

vektor numerik dalam ruang dimensi yang lebih rendah. 

2. Makna dan Hubungan: Vektor kata-kata yang serupa atau 

terkait secara semantik ditempatkan lebih dekat satu sama lain 

dalam ruang vektor. 

 

Teknik untuk Melakukan Word Embeddings: 

 

Word2Vec: Salah satu teknik paling terkenal yang mempelajari 

representasi vektor kata-kata dengan memanfaatkan jaringan saraf 

tiruan. GloVe (Global Vectors for Word Representation): Teknik 

lain yang menggabungkan informasi dari matriks co-occurrence 

kata-kata dalam corpus untuk menghasilkan representasi vektor 

kata. Langkah-langkah dalam Proses Word Embeddings: 

1. Pra-Pemrosesan: Pra-pemrosesan teks seperti tokenisasi, 

penghapusan stopwords, stemming, atau lemmatisasi. 

2. Pembuatan Model: Pembuatan model Word2Vec atau GloVe 

dengan menggunakan data teks yang besar. 

3. Pelatihan Model: Melatih model pada teks yang digunakan 

untuk membuat representasi vektor kata-kata. 

4. Contoh Word Embeddings: Misalkan representasi vektor untuk 

kata-kata "king" dan "queen". Dalam ruang vektor, mereka 

mungkin memiliki hubungan yang serupa dengan kata "royal" 

atau "throne" karena keterkaitan semantiknya. 

5. Pentingnya Word Embeddings: Semantik yang Lebih Dalam: 

Memungkinkan mesin untuk memahami hubungan dan makna 

antara kata-kata dalam konteks. 

6. Pemrosesan Bahasa yang Lebih Baik: Meningkatkan kinerja 

model dalam berbagai tugas NLP seperti analisis sentimen, 

penerjemahan, dan klasifikasi teks. 

Word Embeddings menjadi kunci dalam NLP karena 

memungkinkan representasi kata-kata dalam ruang vektor 

numerik yang memperhitungkan hubungan semantik dan makna. 

Representasi ini memperkaya pemahaman mesin terhadap bahasa 

manusia dan mendukung kinerja model dalam berbagai tugas 

NLP. 
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Ada berbagai teknik yang dapat digunakan untuk melakukan word 

embeddings dan word vectors. Beberapa teknik yang umum 

digunakan adalah: Skip-gram, Continuous Bag-of-Words 

(CBOW), Glove, Word2Vec 

 

Skip-gram adalah teknik yang menggunakan model pembelajaran 

mesin untuk memprediksi kata-kata di sekitar kata tertentu. 

Misalnya, model skip-gram akan dilatih untuk memprediksi kata 

"makan" jika kata "nasi" muncul di sekitarnya. CBOW adalah 

teknik yang menggunakan model pembelajaran mesin untuk 

memprediksi kata tertentu berdasarkan kata-kata di sekitarnya. 

Misalnya, model CBOW akan dilatih untuk memprediksi kata 

"nasi" jika kata "makan" dan "ayam" muncul di sekitarnya. Glove 

adalah teknik yang menggunakan metode statistik untuk 

menghitung representasi vektor dari kata-kata. Metode Glove 

menghitung representasi vektor dari kata-kata berdasarkan 

frekuensi kemunculan kata-kata dalam dokumen teks. 

 

Word2Vec adalah teknik yang menggabungkan teknik skip-gram 

dan CBOW. Teknik Word2Vec dapat menghasilkan representasi 

vektor dari kata-kata yang lebih akurat daripada teknik skip-gram 

atau CBOW saja. Word embeddings dan word vectors adalah 

representasi vektor dari kata-kata dalam bahasa alami. Word 

embeddings dan word vectors dapat digunakan untuk berbagai 

tugas pemrosesan bahasa alami. Ada berbagai teknik yang dapat 

digunakan untuk melakukan word embeddings dan word vectors. 

Beberapa teknik yang umum digunakan adalah skip-gram, 

CBOW, Glove, dan Word2Vec. 
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C. Algoritma dan Model dalam NLP 

 

Algoritma dan model dalam NLP dapat diklasifikasikan menjadi 

dua kategori utama, yaitu: Algoritma berbasis aturan dan 

Algoritma berbasis pembelajaran mesin. 

Algoritma berbasis aturan 

Algoritma berbasis aturan menggunakan serangkaian aturan untuk 

menyelesaikan tugas NLP. Aturan-aturan ini biasanya dibuat oleh 

ahli bahasa berdasarkan pengetahuan mereka tentang bahasa. 

Beberapa contoh algoritma berbasis aturan dalam NLP adalah: 

1. Algoritma part-of-speech tagging 

2. Algoritma named entity recognition 

3. Algoritma sentiment analysis 

4. Algoritma berbasis pembelajaran mesin 

 

Algoritma berbasis pembelajaran mesin menggunakan model 

pembelajaran mesin untuk menyelesaikan tugas NLP. Model 

pembelajaran mesin dilatih pada data pelatihan yang berisi contoh 

input dan output. Algoritma machine translation, Algoritma 

summarization, Algoritma question answering. Selain itu, ada 

beberapa algoritma dan model NLP yang khusus untuk tugas 

tertentu, seperti: 

 

Algoritma speech recognition, Algoritma natural language 

generation, Algoritma natural language understanding. Berikut 

adalah penjelasan lebih rinci tentang beberapa algoritma dan 

model NLP yang umum digunakan: Algoritma part-of-speech 

tagging, Algoritma part-of-speech tagging (POS tagging) adalah 

algoritma yang digunakan untuk menentukan kelas kata (part-of-

speech) dari setiap kata dalam kalimat. Kelas kata menentukan 

fungsi kata dalam kalimat. Beberapa contoh kelas kata adalah: 

 

Nama (noun) 

Kata kerja (verb) 

Kata sifat (adjective) 

Kata keterangan (adverb) 

Kata ganti (pronoun) 
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Algoritma POS tagging dapat digunakan untuk berbagai tugas 

NLP, seperti: 

 

Pencarian informasi, Pemahaman bahasa alami, Pertanyaan 

jawab, Algoritma named entity recognition. Algoritma named 

entity recognition (NER) adalah algoritma yang digunakan untuk 

mengidentifikasi dan mengklasifikasikan entitas bernama dalam 

teks. Entitas bernama adalah frasa benda (noun phrase) yang 

memiliki tipe spesifik, seperti nama orang, nama organisasi, 

lokasi, tanggal, dan waktu. Beberapa contoh entitas bernama 

adalah: 

 

John Doe (nama orang) 

Microsoft (nama organisasi) 

Jakarta (lokasi) 

2023-12-13 (tanggal) 

10:00 (waktu) 

Algoritma NER dapat digunakan untuk berbagai tugas NLP, 

seperti: Pencarian informasi, Pemahaman bahasa alami, Aplikasi 

bisnis. Algoritma machine translation: Algoritma machine 

translation (MT) adalah algoritma yang digunakan untuk 

menerjemahkan teks dari satu bahasa ke bahasa lain. Algoritma 

MT menggunakan model pembelajaran mesin untuk mempelajari 

hubungan antara kata dan frasa dalam dua bahasa. Algoritma MT 

dapat digunakan untuk berbagai keperluan, seperti: Penerjemahan 

dokumen, Penerjemahan percakapan, Penerjemahan situs web 

Algoritma summarization: Algoritma summarization adalah 

algoritma yang digunakan untuk membuat ringkasan dari teks. 

Algoritma summarization menggunakan model pembelajaran 

mesin untuk mengidentifikasi informasi yang penting dalam teks 

dan untuk menyusun informasi tersebut menjadi ringkasan yang 

ringkas dan informatif. Algoritma summarization dapat digunakan 

untuk berbagai keperluan, seperti: Pencarian informasi, 

Pemahaman bahasa alami, Layanan pelanggan 
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Algoritma question answering: Algoritma question answering 

(QA) adalah algoritma yang digunakan untuk menjawab 

pertanyaan tentang teks. Algoritma QA menggunakan model 

pembelajaran mesin untuk memahami pertanyaan dan untuk 

mencari jawaban yang relevan dalam teks. Algoritma QA dapat 

digunakan untuk berbagai keperluan, seperti: Pendidikan, 

Pencarian informasi, Layanan pelanggan. Terdapat banyak 

algoritma dan model yang digunakan dalam Natural Language 

Processing (NLP) untuk berbagai tugas analisis bahasa. Berikut 

adalah beberapa di antaranya: 

Naive Bayes: Digunakan dalam klasifikasi teks atau analisis 

sentimen berdasarkan probabilitas dan teorema Bayes. Support 

Vector Machines (SVM): Model pembelajaran yang digunakan 

untuk klasifikasi teks dan pembedaan antara kelas-kelas yang 

berbeda dalam data teks. Hidden Markov Models (HMM): 

Digunakan dalam pemodelan urutan kata-kata atau kata-kata 

tersembunyi dalam konteks seperti tugas NER atau POS tagging. 

Conditional Random Fields (CRF): Algoritma yang digunakan 

dalam tugas NER, POS tagging, atau labeling urutan berdasarkan 

ketergantungan kondisional antara elemen dalam urutan. 

Model dalam NLP: 

Transformer: Model yang revolusioner dalam NLP, seperti 

BERT, GPT (Generative Pre-trained Transformer), dan lainnya. 

Mereka menggunakan self-attention mechanism untuk 

memproses teks dan menghasilkan representasi yang lebih baik. 

Recurrent Neural Networks (RNN): Model yang memproses 

data urutan seperti teks dan menghasilkan output berdasarkan 

pemahaman konteks sebelumnya. Variannya seperti LSTM dan 

GRU sering digunakan dalam NLP. Word2Vec: Model yang 

menghasilkan representasi vektor kata-kata dalam ruang vektor 

berdasarkan kemunculan kata-kata dalam konteks tertentu. GloVe 

(Global Vectors for Word Representation): Model yang 

menghasilkan representasi vektor kata-kata berdasarkan matriks 

co-occurrence kata-kata dalam teks. BERT (Bidirectional 
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Encoder Representations from Transformers): Model yang 

menggunakan transformer dan pelatihan unsupervised learning 

pada teks besar untuk memahami konteks dan menyediakan 

representasi yang lebih baik untuk kata-kata. CNN 

(Convolutional Neural Networks): Meskipun awalnya 

digunakan dalam pengolahan citra, varian CNN juga digunakan 

dalam NLP untuk tugas seperti klasifikasi teks dan analisis 

sentiment (Tunstall et al., 2022). 

Pendekatan Hybrid: 

Beberapa model NLP menggabungkan berbagai elemen dari 

model-model yang berbeda atau menggunakan strategi ensemble 

untuk meningkatkan kinerja dan kemampuan dalam pemrosesan 

bahasa alami. Setiap algoritma dan model memiliki keunggulan 

dan kelemahan tertentu, dan pemilihan yang tepat tergantung pada 

tugas spesifik dalam NLP yang akan dijalankan serta ketersediaan 

data yang tersedia. Kombinasi model dan pendekatan tertentu 

sering kali memberikan kinerja yang lebih baik dalam berbagai 

konteks pengolahan bahasa alami. 

1. Naive Bayes 

Naive Bayes merupakan algoritma klasifikasi yang menggunakan 

Teorema Bayes untuk menentukan probabilitas kelas suatu sampel 

data berdasarkan fitur-fitur yang diamati. Meskipun sering 

digunakan dalam konteks klasifikasi teks atau analisis sentimen, 

Naive Bayes juga diterapkan dalam berbagai masalah klasifikasi 

di bidang Machine Learning. 

Konsep Naive Bayes: Teorema Bayes: Mendasarkan diri pada 

Teorema Bayes yang menyatakan hubungan antara probabilitas 

posterior (kemungkinan kejadian setelah melihat data baru) 

dengan probabilitas prior (kejadian sebelum melihat data baru) 

dan likelihood (kemungkinan data yang diamati jika kelas 

tertentu). 
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Klasifikasi dengan Probabilitas: Naive Bayes memprediksi kelas 

suatu sampel data berdasarkan perhitungan probabilitas kelas 

tersebut dengan mengasumsikan independensi antara fitur-fitur 

yang diamati (yang sering disebut "naive" karena asumsi ini). 

Proses Naive Bayes dalam Klasifikasi Teks atau Analisis 

Sentimen: Pra-Pemrosesan: Tahap ini melibatkan tokenisasi teks, 

penghapusan stopwords, dan representasi fitur-fitur teks dalam 

bentuk vektor (misalnya, TF-IDF atau Bag-of-Words). 

Penghitungan Probabilitas: Menghitung probabilitas masing-

masing kelas (positif, negatif, atau kelas lainnya) berdasarkan 

kemunculan kata-kata atau fitur-fitur yang diamati dalam data 

pelatihan. Teorema Bayes: Memanfaatkan Teorema Bayes untuk 

menghitung probabilitas posterior dari kelas berdasarkan fitur-

fitur yang diamati dalam data uji. Klasifikasi: Memilih kelas 

dengan probabilitas posterior tertinggi sebagai prediksi kelas 

untuk sampel data yang diamati. 

 

Keunggulan dan Keterbatasan Naive Bayes: Keunggulan: Cepat 

dalam pembelajaran dan prediksi, bahkan dengan dataset yang 

besar. Efektif dalam klasifikasi teks dengan fitur yang besar. 

Keterbatasan: Asumsi naif tentang independensi fitur bisa tidak 

realistis dalam konteks nyata. Kinerjanya dapat terpengaruh jika 

ada ketergantungan antara fitur-fitur yang diamati. 

 

Aplikasi Naive Bayes dalam NLP: Analisis Sentimen: Klasifikasi 

teks berdasarkan sentimen (positif, negatif, atau netral).  

Klasifikasi Teks: Pengelompokan teks ke dalam kategori tertentu 

seperti klasifikasi berita, spam detection, dan lainnya. Naive 

Bayes, meskipun memiliki asumsi naif tentang independensi fitur, 

tetap menjadi salah satu algoritma klasifikasi yang cukup populer 

dalam NLP karena kemampuannya dalam menangani klasifikasi 

teks dengan baik, terutama ketika dataset besar dan fitur-fitur teks 

yang kompleks terlibat. 
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2. Support Vector Machines (SVM) 

Support Vector Machines (SVM) merupakan salah satu model 

pembelajaran yang umum digunakan dalam klasifikasi, termasuk 

dalam konteks analisis teks dalam Natural Language Processing 

(NLP). SVM digunakan untuk memisahkan dan 

mengklasifikasikan data ke dalam kelas-kelas yang berbeda 

dengan mencari hyperplane terbaik yang memisahkan antara 

kelas-kelas tersebut di dalam ruang fitur. 

 

Konsep SVM: 

Hyperplane: SVM mencari hyperplane (bidang dalam kasus dua 

dimensi) yang memisahkan data ke dalam kelas-kelas yang 

berbeda. Pemisahan ini dilakukan sedemikian rupa sehingga jarak 

(marginal) antara hyperplane dan titik-titik data (yang disebut 

support vectors) dari kedua kelas adalah maksimum. 

 

Pemisahan Non-linear: SVM dapat mengatasi masalah 

pemisahan yang tidak linier dengan menggunakan fungsi kernel 

yang dapat mentransformasi data ke dalam dimensi yang lebih 

tinggi, memungkinkan pembuatan hyperplane yang lebih 

kompleks untuk pemisahan yang lebih baik. 

 

Proses SVM dalam Klasifikasi Teks: 

1. Pra-Pemrosesan: Mirip dengan langkah pra-pemrosesan 

untuk model lainnya dalam NLP, seperti tokenisasi, 

penghapusan stopwords, dan pembuatan vektor fitur seperti 

TF-IDF atau Bag-of-Words. 

2. Pemilihan Hyperplane: SVM akan mencari hyperplane 

terbaik yang memisahkan antara kelas-kelas dalam ruang fitur 

berdasarkan vektor fitur teks. 

3. Penentuan Margin Terbesar: SVM berusaha menemukan 

hyperplane yang memiliki margin terbesar, yaitu jarak terbesar 

antara support vectors dan hyperplane tersebut. 

4. Penentuan Kelas: Setelah mendapatkan hyperplane terbaik, 

SVM dapat mengklasifikasikan data baru ke dalam kelas yang 

sesuai berdasarkan posisi relatifnya terhadap hyperplane. 
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Keunggulan dan Keterbatasan SVM: Keunggulan: Efektif dalam 

ruang fitur berdimensi tinggi, mampu menangani dataset yang 

kompleks, dan dapat berkinerja baik bahkan dengan jumlah fitur 

yang lebih besar. Keterbatasan: Rentan terhadap overfitting jika 

hyperparameter tidak disesuaikan dengan baik. Membutuhkan 

pemrosesan yang memakan waktu untuk pemilihan parameter 

yang tepat. 

 

Aplikasi SVM dalam NLP yaitu Klasifikasi Teks: Klasifikasi 

dokumen, analisis sentimen, deteksi spam, kategorisasi teks, dan 

lainnya. Pengelompokan Teks: SVM digunakan untuk 

mengelompokkan teks-teks dengan karakteristik yang serupa. 

SVM merupakan algoritma yang kuat dalam klasifikasi teks dan 

telah banyak digunakan dalam berbagai tugas NLP karena 

kemampuannya dalam menangani pemisahan antar kelas dalam 

ruang fitur dengan baik, bahkan pada dataset dengan dimensi yang 

tinggi atau kompleks. SVM (Support Vector Machine) adalah 

algoritma klasifikasi yang bertujuan untuk menemukan 

hyperplane terbaik yang memisahkan antara kelas-kelas dalam 

data dengan margin terbesar. Dalam kasus klasifikasi biner (dua 

kelas), rumus untuk SVM dengan hyperplane linier dapat 

dijelaskan sebagai berikut: 

 

Hyperplane Linier: 

Misalkan kita memiliki data pelatihan dengan vektor fitur xi yang 

terdiri dari n fitur, dan label kelasnya adalah yi (dengan yi=1 atau 

yi=−1). Fungsi hipotesis untuk SVM dapat ditulis sebagai:  

 

f(x)=wTx+b 

 

di mana: 

w adalah vektor bobot normal ke hyperplane, 

x adalah vektor fitur, 

b adalah bias. 

Persamaan untuk Hyperplane: 

Hyperplane dipilih untuk memiliki margin terbesar antara kelas 

yang dipisahkan. Jarak dari titik data ke hyperplane adalah 
1

||𝑤||
. 
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Maksimalkan margin dengan meminimalkan ∥w∥ (norma 

Euclidean dari w) yang setara dengan meminimalkan 1/2∥w∥2, 

dengan mempertimbangkan pembatasan: yi(wTxi+b)≥1 untuk 

semua titik data yang merupakan support vectors. Fungsi Objektif 

(Objective Function): Objektif utama dari SVM adalah 

meminimalkan fungsi objektif berikut: 

 

minw,b 1/2∥w∥2 

 

dengan pembatasan:  

 

yi(wTxi+b)≥1 

 

 
 

Metode Lagrange: 

 

 
 

Solusi SVM ditemukan dengan mencari nilai minimum dari fungsi 

Lagrange tersebut. Solusi ini menghasilkan hyperplane terbaik 

yang memisahkan antara kelas dengan margin terbesar di antara 

support vectors. 
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Rumus-rumus ini mencerminkan dasar dari bagaimana SVM 

bekerja dalam menemukan hyperplane terbaik untuk pemisahan 

kelas dalam data. Dalam prakteknya, untuk kasus-kasus yang 

lebih kompleks, seperti SVM non-linier, digunakan kernel untuk 

memungkinkan pemisahan yang lebih kompleks dalam ruang fitur 

yang lebih tinggi. 

3. Recurrent Neural Networks (RNN) 

Jaringan Saraf Rekurensial (RNN) adalah jenis arsitektur jaringan 

saraf yang dirancang khusus untuk memproses data urutan atau 

data yang terstruktur secara sekuensial, seperti teks, audio, atau 

data deret waktu. Konsep dasar RNN: Memori Jangka Pendek: 

RNN memiliki kemampuan untuk menyimpan informasi dalam 

keadaan internal atau "memori jangka pendek". Ini 

memungkinkannya untuk mengingat informasi sebelumnya saat 

memproses elemen berikutnya dalam urutan. Keterkaitan Antar 

Elemen: Setiap elemen dalam urutan diolah secara berurutan, dan 

informasi dari elemen sebelumnya digunakan untuk memproses 

elemen berikutnya. 

 

Arsitektur RNN: RNN memiliki struktur yang mengizinkan 

informasi untuk mengalir mundur melalui jaringan, 

memungkinkan koneksi siklus atau rekurensi. Setiap langkah 

waktu (time step) dalam urutan diproses oleh lapisan yang sama 

dari jaringan. Jenis-jenis RNN: One-to-One: Input tunggal 

menghasilkan output tunggal, seperti dalam jaringan saraf biasa 

(feedforward). One-to-Many: Satu input menghasilkan 

serangkaian output, seperti menghasilkan kalimat dari gambar 

tunggal. Many-to-One: Serangkaian input menghasilkan output 

tunggal, seperti klasifikasi teks dari urutan kata-kata. Many-to-

Many: Urutan input dihubungkan dengan urutan output, seperti 

terjemahan mesin atau POS tagging. 

 

Keunggulan RNN: 

Penanganan Data Urutan: Cocok untuk data yang memiliki 

struktur sekuensial, seperti teks, audio, atau data deret waktu. 

Memori Jangka Pendek: Kemampuan untuk "mengingat" 
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informasi dari langkah-langkah sebelumnya dalam urutan. 

Keterbatasan RNN: Masalah Pelatihan: Rentan terhadap masalah 

menghilangnya atau meledaknya gradien, yang mempengaruhi 

kemampuannya untuk memahami hubungan jarak jauh dalam 

urutan panjang. Komputasi yang Lambat: Keterkaitan antar 

elemen membuat proses komputasi RNN cenderung lambat dalam 

pengolahan data yang panjang. 

 

Penggunaan RNN dalam NLP: RNN sering digunakan dalam NLP 

untuk tugas-tugas seperti: Analisis Sentimen: Mengklasifikasikan 

sentimen dalam teks. Penerjemahan Mesin: Menerjemahkan teks 

dari satu bahasa ke bahasa lain. Generasi Teks: Menghasilkan teks 

yang baru, seperti pembuatan cerita atau artikel. RNN adalah alat 

yang berguna dalam NLP karena kemampuannya untuk 

memproses data teks secara sekuensial dan mempertahankan 

memori jangka pendek, yang memungkinkannya untuk 

menghadapi tugas-tugas kompleks dalam analisis bahasa alami. 

Tahapan dalam Recurrent Neural Networks (RNN) melibatkan 

proses yang berurutan dari pengolahan data urutan di setiap 

langkah waktu (time step). Berikut adalah tahapan-tahapan utama 

dalam RNN: 

 

1. Input Data: 

Data Urutan: Seperti teks, data deret waktu, atau data yang 

memiliki struktur sekuensial. Misalnya, urutan kata-kata dalam 

kalimat. 

 

2. Representasi Data: 

Tokenisasi: Pemecahan data urutan menjadi unit-unit terpisah 

(token), misalnya, pemecahan kalimat menjadi kata-kata atau 

karakter. Pembuatan Vektor Fitur: Representasi data dalam 

bentuk vektor fitur seperti Bag-of-Words atau word embeddings 

(misalnya, Word2Vec, GloVe). 

 

3. Pembuatan Arsitektur RNN: 

Inisialisasi: Pembuatan model RNN dengan menentukan jumlah 

neuron, lapisan, dan jenis RNN yang akan digunakan (misalnya, 

SimpleRNN, LSTM, atau GRU). Pengaturan Hiperparameter: 
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Penyesuaian hyperparameter seperti jumlah neuron, jumlah 

lapisan, learning rate, dan jenis fungsi aktivasi. 

 

4. Pelatihan (Training): 

Pengolahan Data Langkah per Langkah: Pengolahan data 

langkah per langkah (time step) dalam urutan. Pembelajaran 

Bobot: Pembelajaran parameter bobot dalam jaringan dengan 

menggunakan algoritma seperti backpropagation melalui waktu 

(Backpropagation Through Time - BPTT). 

 

5. Validasi dan Evaluasi: 

Validasi Model: Menggunakan data validasi untuk mengevaluasi 

performa model dan menyesuaikan hyperparameter jika 

diperlukan. Evaluasi Performa: Menggunakan metrik evaluasi 

seperti akurasi, F1-score, atau perplexity untuk mengevaluasi 

kinerja model. 

 

6. Prediksi dan Penggunaan Model: 

Prediksi: Menggunakan model yang telah dilatih untuk membuat 

prediksi pada data baru atau untuk tugas yang ditentukan, seperti 

klasifikasi, generasi teks, atau penerjemahan. 

 

7. Penyesuaian dan Peningkatan Model: 

Optimisasi: Peningkatan model dengan penyesuaian 

hyperparameter, pemilihan arsitektur yang lebih kompleks, atau 

teknik regularisasi. 

 

Catatan: Backpropagation Through Time (BPTT): Penting 

dalam RNN karena memungkinkan propagasi gradien dari 

langkah waktu ke langkah waktu, membantu dalam pembelajaran 

parameter bobot. Overfitting: RNN rentan terhadap overfitting 

pada data urutan yang panjang. Oleh karena itu, pemilihan model 

yang tepat dan teknik regularisasi seperti dropout atau batch 

normalization dapat membantu mengurangi masalah ini. Tahapan-

tahapan ini membentuk proses umum dalam penggunaan dan 

pengolahan data menggunakan Recurrent Neural Networks dalam 

berbagai tugas dalam pemrosesan bahasa alami dan pengenalan 

pola dalam data sekuensial. 
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4. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) adalah jenis arsitektur 

jaringan saraf yang dirancang khusus untuk pemrosesan dan 

pengenalan pola dalam data grid, seperti gambar. CNN sangat 

efektif dalam mengekstraksi fitur-fitur spasial dari data dan telah 

menjadi alat yang kuat dalam pengolahan citra dan pengenalan 

pola. 

 

Konsep dasar CNN: Konvolusi: CNN menggunakan operasi 

konvolusi untuk mengekstraksi fitur-fitur dari gambar. Ini 

melibatkan pergerakan filter (kernel) ke seluruh gambar untuk 

mendeteksi pola-pola visual seperti tepi, sudut, atau tekstur. 

Pooling: Operasi pooling seperti max pooling digunakan untuk 

mereduksi dimensi dari fitur yang diekstraksi, mempertahankan 

informasi penting dan mengurangi kompleksitas model. 

 

Struktur CNN: 

Convolutional Layer: Lapisan konvolusi terdiri dari filter yang 

memindai gambar untuk mengekstraksi fitur-fitur. Pooling Layer: 

Lapisan pooling yang mengurangi dimensi spasial dari fitur yang 

diekstraksi oleh lapisan konvolusi. Fully Connected Layer: 

Lapisan-lapisan terhubung sepenuhnya yang menggabungkan 

fitur-fitur yang diekstraksi untuk klasifikasi akhir. 

 

Keunggulan CNN: 

Ekstraksi Fitur Otomatis: Kemampuan untuk secara otomatis 

mengekstraksi fitur-fitur hierarkis dari data gambar. Invariansi 

Spatial: Invariansi terhadap pergeseran dan transformasi kecil 

dalam gambar. Aplikasi CNN dalam Computer Vision: Klasifikasi 

Gambar: Mengenali objek atau kelas dari gambar. Deteksi Objek: 

Menemukan dan menandai lokasi objek dalam gambar. 

Segmentasi Gambar: Memisahkan objek dari latar belakang. 

 

Perkembangan Terkini: Transfer Learning: Pemanfaatan model-

model yang sudah dilatih sebelumnya untuk tugas-tugas spesifik 

dalam gambar atau domain lain. Architectural Advancements: 

Pengembangan arsitektur yang lebih kompleks seperti ResNet, 
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Inception, atau EfficientNet untuk kinerja yang lebih baik dalam 

pengenalan gambar. 

 

CNN telah menjadi landasan dalam bidang Computer Vision dan 

telah membawa kemajuan signifikan dalam berbagai aplikasi, 

mulai dari pengenalan wajah hingga mobil otonom. 

Kemampuannya dalam mengekstraksi fitur dari gambar dan 

merangkai informasi spasial membuatnya sangat efektif dalam 

memahami data visual. Convolutional Neural Networks (CNN) 

pada awalnya dikembangkan untuk memproses data grid seperti 

gambar. Namun, beberapa penelitian terbaru telah mencoba 

menerapkan konsep dasar CNN dalam pemrosesan data teks 

dengan perubahan dalam representasi dan pemrosesan. 

Penerapan CNN untuk data teks melibatkan transformasi data teks 

menjadi matriks atau tensor yang dapat diproses oleh CNN. 

Berikut adalah cara umum dalam menggunakan CNN untuk 

pemrosesan data teks: 

 

1. Representasi Data Teks: 

Word Embeddings: Mengubah kata-kata dalam teks menjadi 

vektor numerik, seperti Word2Vec, GloVe, atau FastText. One-

Hot Encoding: Representasi biner dari kata-kata dalam bentuk 

matriks yang besar (sering kali digunakan dalam kasus yang lebih 

sederhana). 

 

2. Convolutional Layer: 

Convolution: Konvolusi diterapkan pada representasi vektor kata 

atau matriks berukuran kelompok kata-kata yang disebut filter 

(kernel) untuk mengekstraksi fitur-fitur dari urutan kata-kata. 

Misalnya, filter 1 akan mendeteksi fitur-fitur seperti kata-kata 

yang berdekatan, filter 2 mungkin mendeteksi pola khusus 

lainnya. 

 

3. Max Pooling Layer: 

Pooling: Operasi pooling (misalnya, max pooling) digunakan 

untuk mereduksi dimensi vektor hasil konvolusi, 

mempertahankan fitur-fitur penting sambil mengurangi 

kompleksitas. 
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4. Fully Connected Layer: 

Layer Terhubung Penuh: Fitur-fitur yang diekstraksi oleh CNN 

kemudian digabungkan ke dalam lapisan-lapisan terhubung penuh 

untuk klasifikasi akhir atau tugas-tugas lainnya seperti analisis 

sentimen atau klasifikasi teks. 

 

Keunggulan dan Penggunaan dalam NLP: Ekstraksi Fitur: CNN 

dapat mempelajari representasi hierarkis dari teks, mengenali pola 

seperti kata-kata yang berdekatan, frasa, atau makna tertentu 

dalam teks. Analisis Sentimen: Penerapan CNN pada data teks 

untuk analisis sentimen atau klasifikasi teks. Pemrosesan Bahasa: 

Meskipun RNN dan Transformer lebih umum dalam NLP, CNN 

telah digunakan dalam tugas-tugas seperti pemrosesan bahasa dan 

generasi teks. Catatan Penting: Ukuran Jendela (Window Size): 

Penting untuk memilih ukuran jendela yang sesuai untuk filter 

dalam CNN agar dapat menangkap pola yang relevan dalam teks. 

 

Penggunaan Bersama dengan Model Lain: Pada beberapa kasus, 

CNN digunakan bersama dengan arsitektur lain seperti LSTM 

atau dilakukan fine-tuning pada model pre-trained untuk kinerja 

yang lebih baik. Meskipun awalnya CNN dirancang untuk data 

grid seperti gambar, adaptasi terbaru telah memperluas 

penggunaannya dalam pemrosesan data teks dengan mengubah 

representasi teks menjadi format yang dapat diproses oleh CNN. 

Meskipun RNN dan Transformer masih dominan dalam NLP, 

CNN tetap menjadi area penelitian yang menarik dalam 

pemrosesan bahasa alami. Tahapan Convolutional Neural 

Networks (CNN) untuk pengolahan data teks melibatkan 

serangkaian langkah yang mirip dengan penggunaan CNN pada 

data gambar, namun dengan representasi data teks yang berbeda. 

Berikut tahapan-tahapan utama: 

 

1. Preprocessing Data Teks: 

Tokenisasi: Pemecahan teks menjadi token, seperti kata-kata atau 

karakter. Pembuatan Sequence: Membentuk urutan dari token-

token yang terbagi dalam suatu urutan (kalimat atau teks). 
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2. Representasi Data Teks: 

Word Embeddings: Mengonversi token-token teks menjadi vektor 

numerik menggunakan Word Embeddings seperti Word2Vec, 

GloVe, atau FastText. Ini mengubah kata-kata menjadi 

representasi vektor dalam ruang dimensi yang lebih kecil. 

One-Hot Encoding: Representasi biner dari kata-kata dalam 

bentuk matriks yang besar. Sering kali digunakan dalam 

eksperimen awal atau dalam kasus dengan dataset yang lebih 

sederhana. 

 

3. Convolutional Layer: 

Convolution: Lapisan konvolusi diterapkan pada representasi 

vektor kata atau matriks berukuran kelompok kata-kata yang 

disebut filter (kernel) untuk mengekstraksi fitur-fitur dari urutan 

kata-kata. Filter akan "memindai" sekuens dan menemukan pola 

yang relevan. 

 

4. Pooling Layer: 

Pooling: Operasi pooling (misalnya, max pooling) digunakan 

untuk mereduksi dimensi vektor hasil konvolusi, 

mempertahankan fitur-fitur penting sambil mengurangi 

kompleksitas dan ukuran data. 

 

5. Fully Connected Layer: 

Layer Terhubung Penuh: Fitur-fitur yang diekstraksi oleh CNN 

kemudian digabungkan ke dalam lapisan-lapisan terhubung penuh 

untuk klasifikasi akhir atau tugas lain seperti analisis sentimen, 

klasifikasi teks, atau generasi teks. 

 

6. Output Layer: 

Layer Output: Lapisan terakhir yang menghasilkan output yang 

cocok dengan tugas spesifik yang dijalankan, seperti klasifikasi 

kategori teks atau nilai sentimen. 

 

Catatan Penting: Hyperparameter Tuning: Pemilihan filter size, 

jumlah filter, tingkat dropout, dan learning rate adalah kunci untuk 

meningkatkan performa CNN pada data teks. 
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Penyesuaian dengan Arsitektur: Beberapa penelitian 

menggunakan CNN bersama dengan arsitektur lain seperti LSTM 

atau menggunakan fine-tuning pada model pre-trained untuk hasil 

yang lebih baik. Dimensi Data: Representasi vektor kata-kata dari 

Word Embeddings atau matriks one-hot encoding mempengaruhi 

dimensi data masukan dan proses konvolusi. Penerapan CNN 

pada data teks mengharuskan pengubahan representasi teks 

menjadi format yang dapat diproses oleh CNN, dan meskipun 

CNN lebih sering digunakan dalam pengolahan gambar, terdapat 

penelitian dan aplikasi yang menarik dalam penggunaannya pada 

data teks. 

 

5. Transformer-based models (seperti BERT, GPT, dll.) 

Transformer-based models adalah model pembelajaran mesin 

yang menggunakan arsitektur Transformer. Transformer adalah 

arsitektur jaringan saraf tiruan yang dirancang untuk menangani 

data berurutan, seperti teks, audio, dan video. Transformer 

memiliki kemampuan untuk memahami hubungan antara input 

dan output, sehingga membuatnya lebih cocok untuk tugas-tugas 

yang membutuhkan pemahaman kontekstual. 

 

Model berbasis Transformer merupakan pendekatan revolusioner 

dalam pemrosesan bahasa alami yang menghilangkan 

ketergantungan pada urutan (sequence dependency) dan 

menggabungkan mekanisme self-attention untuk memahami 

konteks dari kata-kata atau token dalam teks. Ini memungkinkan 

model untuk memperoleh pemahaman yang lebih baik tentang 

hubungan antara kata-kata dalam teks. Konsep dasar Transformer: 

Self-Attention Mechanism: Transformer menggunakan self-

attention untuk menimbang hubungan antara semua token dalam 

kalimat secara sekaligus. Ini memungkinkan model untuk 

memberikan bobot yang tepat untuk setiap token berdasarkan 

hubungannya dengan token lain dalam kalimat tersebut. Multi-

Head Attention: Transformer memiliki beberapa head attention 

yang beroperasi secara independen, memungkinkan model untuk 

mempelajari hubungan yang lebih kompleks di berbagai sudut 

pandang. 
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Encoder-Decoder Architecture: Transformer umumnya terdiri 

dari blok encoder untuk memproses input dan blok decoder untuk 

menghasilkan output dalam tugas seperti penerjemahan bahasa. 

 

Komponen-komponen Transformer: Positional Encoding: Karena 

Transformer tidak mempertahankan urutan token seperti RNN, 

positional encoding diperkenalkan untuk memperkenalkan 

informasi urutan ke dalam representasi vektor token. Encoder 

Layers: Setiap layer dalam blok encoder memiliki modul self-

attention dan modul feed-forward neural network. Decoder 

Layers: Mirip dengan encoder, blok decoder memiliki self-

attention, ditambah attention terhadap output dari encoder (untuk 

tugas penerjemahan). 

 

Keunggulan Transformer: Paralelisme yang Lebih Baik: 

Transformer memungkinkan perhitungan paralel yang lebih 

efisien dibandingkan dengan RNN atau LSTM, mempercepat 

pelatihan model. Kemampuan untuk Memahami Konteks yang 

Lebih Luas: Mekanisme self-attention memungkinkan model 

untuk memahami hubungan antara kata-kata yang jauh dalam 

teks. 

 

Aplikasi Transformer-based Models: Penerjemahan Bahasa: 

Model Transformer seperti GPT (Generative Pre-trained 

Transformer) dan BERT telah digunakan untuk penerjemahan 

bahasa dan pemahaman teks yang lebih baik. Generasi Teks: 

Transformer juga digunakan untuk menghasilkan teks yang lebih 

lancar dan realistis dalam tugas generasi teks.  Analisis Sentimen: 

Penggunaan Transformer dalam tugas analisis sentimen telah 

meningkatkan akurasi dan pemahaman konteks sentimen dalam 

teks. 

 

Contoh Model Transformer: BERT (Bidirectional Encoder 

Representations from Transformers): Model yang dilatih secara 

pre-trained untuk pemahaman konteks bahasa. GPT (Generative 

Pre-Trained Transformer): Model yang berfokus pada generasi 

teks yang lebih baik berdasarkan pemahaman konteks bahasa. 

Transformer-based models telah mengubah lanskap dalam 
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pemrosesan bahasa alami dengan meningkatkan kemampuan 

memahami konteks dan urutan kata-kata dalam teks, dan mereka 

terus menjadi fokus penelitian dan pengembangan dalam NLP. 

Arsitektur Transformer: Arsitektur Transformer terdiri dari dua 

bagian utama, yaitu encoder dan decoder. Encoder bertanggung 

jawab untuk menganalisis input, sedangkan decoder bertanggung 

jawab untuk menghasilkan output. Encoder terdiri dari beberapa 

layer self-attention. Self-attention adalah teknik yang digunakan 

untuk menghitung hubungan antara setiap input. Self-attention 

memungkinkan Transformer untuk memahami hubungan antara 

input yang berdekatan dan input yang jauh. 

Decoder juga terdiri dari beberapa layer self-attention. Selain itu, 

decoder juga memiliki layer feedforward. Feedforward adalah 

teknik yang digunakan untuk mengubah representasi vektor dari 

input. 

Keunggulan Transformer-based models. Transformer-based 

models memiliki beberapa keunggulan dibandingkan dengan 

model-model sebelumnya, seperti RNN dan CNN. Keunggulan-

keunggulan tersebut antara lain: 

1. Kemampuan untuk memahami hubungan: Transformer dapat 

memahami hubungan antara input dan output, sehingga 

membuatnya lebih cocok untuk tugas-tugas yang 

membutuhkan pemahaman kontekstual. 

2. Efisiensi: Transformer lebih efisien daripada RNN dan 

CNN, terutama untuk tugas-tugas yang membutuhkan 

pemahaman jangka panjang. 

3. Keakuratan: Transformer dapat menghasilkan akurasi yang 

lebih tinggi daripada RNN dan CNN untuk berbagai 

tugas, seperti terjemahan mesin, pengenalan bahasa alami, dan 

klasifikasi teks. 
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4. Aplikasi Transformer-based models Transformer-based 

models telah digunakan untuk berbagai tugas pemrosesan data 

berurutan, seperti: 

5. Terjemahan mesin: Transformer telah menjadi standar de facto 

untuk terjemahan mesin. Transformer dapat menghasilkan 

terjemahan yang lebih akurat dan alami daripada model-model 

sebelumnya. 

6. Pemahaman bahasa alami: Transformer telah digunakan untuk 

berbagai tugas pemrosesan bahasa alami, seperti pengenalan 

entitas, klasifikasi teks, dan sentiment analysis. 

7. Pengenalan suara: Transformer telah digunakan untuk 

meningkatkan akurasi pengenalan suara. 

8. Komposisi musik: Transformer telah digunakan untuk 

menghasilkan musik yang mirip dengan musik yang sudah ada. 

Transformer-based models adalah model pembelajaran mesin 

yang kuat dan serbaguna yang dapat digunakan untuk berbagai 

tugas pemrosesan data berurutan. Transformer telah menjadi 

standar de facto untuk beberapa tugas, seperti terjemahan mesin. 
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BAB III 

PENERAPAN NLP 
 

 

A. NLP dalam Industri 

1. Customer Service 

Penerapan Natural Language Processing (NLP) dalam layanan 

pelanggan (Customer Service) telah menjadi kunci dalam 

meningkatkan pengalaman pelanggan, efisiensi operasional, dan 

pemahaman yang lebih baik terhadap kebutuhan pelanggan. 

Berikut adalah rincian tentang bagaimana NLP digunakan dalam 

layanan pelanggan: 

1. Chatbot dan Asisten Virtual: Automatisasi Respon: Chatbot 

menggunakan NLP untuk memahami pertanyaan atau masalah 

pelanggan dan memberikan respons yang relevan secara 

otomatis. Mereka dapat membantu dalam menjawab 

pertanyaan umum, memberikan informasi produk, atau 

menyelesaikan masalah tertentu. Pemahaman Bahasa Alami: 

Melalui NLP, chatbot dapat memahami pertanyaan dalam 

bahasa alami, bahkan dengan variasi atau frasa yang berbeda. 

2. Analisis Sentimen: Pemantauan Sentimen: NLP digunakan 

untuk menganalisis sentimen dari ulasan atau feedback 

pelanggan di media sosial, forum, atau platform lainnya. Ini 

membantu perusahaan memahami perasaan pelanggan 

terhadap produk atau layanan mereka. Deteksi Masalah: 

Dengan menganalisis sentimen, perusahaan dapat mendeteksi 

masalah atau keluhan yang muncul dari pelanggan secara cepat 

dan meresponnya dengan tepat waktu. 

3. Analisis Percakapan Pelanggan: Pemrosesan Transkripsi: 

NLP digunakan untuk menganalisis percakapan telepon, chat, 

atau email dengan pelanggan untuk mengekstrak informasi 

penting seperti masalah umum, kebutuhan, atau keluhan. 
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Peningkatan Layanan: Analisis NLP pada percakapan 

pelanggan dapat membantu dalam mengidentifikasi area di 

mana layanan dapat ditingkatkan atau masalah yang perlu 

diselesaikan. 

4. Klasifikasi dan Pemrosesan Permintaan Pelanggan: Klasifikasi 

Permintaan: NLP digunakan untuk mengklasifikasi 

permintaan pelanggan ke dalam kategori yang tepat. Ini 

membantu dalam menentukan prioritas dan menanggapi 

dengan lebih cepat. Pemrosesan Otomatis: Dengan 

pemahaman NLP terhadap permintaan pelanggan, beberapa 

tugas dapat diproses secara otomatis, seperti pembuatan tiket 

layanan atau pengiriman pesan balasan awal. 

5. Personalisasi Layanan: Analisis Riwayat: NLP membantu 

menganalisis riwayat interaksi pelanggan untuk memahami 

preferensi, kebutuhan, dan pola perilaku. Ini memungkinkan 

perusahaan untuk memberikan layanan yang lebih personal dan 

relevan. 

6. Implementasi NLP di Platform Layanan Pelanggan: Integrasi 

dalam CRM: Integrasi NLP dalam perangkat lunak 

manajemen hubungan pelanggan (CRM) membantu dalam 

pemrosesan dan pengelolaan data pelanggan untuk 

memberikan layanan yang lebih baik. Penggunaan API: 

Penggunaan API (Application Programming Interface) NLP 

dari penyedia layanan dapat memperkaya fungsionalitas 

platform layanan pelanggan dengan kemampuan bahasa alami. 

Penerapan NLP dalam layanan pelanggan membantu 

perusahaan dalam memahami dan merespons kebutuhan 

pelanggan dengan lebih efisien, meningkatkan interaksi, dan 

memberikan pengalaman pelanggan yang lebih baik secara 

keseluruhan. 

2. Analisis Sentimen 

Penerapan Natural Language Processing (NLP) dalam analisis 

sentimen bertujuan untuk memahami dan mengekstrak sentimen, 

opini, atau perasaan dari teks yang dihasilkan oleh pengguna, 
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konsumen, atau pemangku kepentingan. Berikut adalah rincian 

tentang bagaimana NLP digunakan dalam analisis sentimen: 

1. Preprocessing Data Teks: Tokenisasi: Pemecahan teks menjadi 

token, seperti kata-kata, frasa, atau karakter. Stopword 

Removal: Penghapusan kata-kata umum yang tidak 

memberikan makna penting dalam analisis sentimen. 

Stemming atau Lemmatisasi: Normalisasi kata-kata menjadi 

bentuk dasar mereka untuk mengurangi variasi dalam teks. 

2. Representasi Data Teks: Word Embeddings: Mengubah teks 

menjadi vektor numerik menggunakan teknik Word 

Embeddings seperti Word2Vec, GloVe, atau FastText. TF-IDF 

(Term Frequency-Inverse Document Frequency): Menghitung 

bobot kata-kata dalam teks berdasarkan frekuensi kemunculan 

kata-kata tersebut dalam dokumen dan seberapa umum kata-

kata tersebut dalam korpus keseluruhan. 

3. Analisis Sentimen: Pendekatan Supervised Learning: 

Menggunakan metode klasifikasi (misalnya, Support Vector 

Machines, Naive Bayes, atau Neural Networks) yang dilatih 

dengan data yang dilabeli untuk mengklasifikasikan teks ke 

dalam kategori sentimen tertentu (positif, negatif, atau netral).  

Unsupervised Learning: Menggunakan teknik Clustering atau 

analisis topik untuk mengelompokkan teks ke dalam kelompok 

sentimen berdasarkan kesamaan topik atau karakteristik. 

4. Emotion Analysis: Deteksi Emosi: Menerapkan NLP untuk 

mengidentifikasi emosi atau perasaan tertentu dalam teks 

seperti kegembiraan, kemarahan, atau kecemasan. 

5. Aspect-Based Sentiment Analysis: Analisis Berbasis Aspek: 

Memahami sentimen terkait dengan aspek-aspek tertentu 

dalam teks, seperti produk dalam ulasan, fitur spesifik, atau 

layanan yang disediakan. 

6. Pengembangan Model Sentiment Analysis: Fine-tuning Model 

Pre-trained: Menggunakan model yang telah dilatih 

sebelumnya dalam bahasa alami (seperti BERT, GPT, atau 

Transformer) dan menyesuaikannya dengan tugas analisis 

sentimen tertentu. 
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7. Evaluasi Model: Menggunakan Metrics: Menggunakan metrik 

evaluasi seperti akurasi, F1-score, atau Confusion Matrix untuk 

mengukur kinerja model dalam memprediksi sentimen dengan 

benar. 

 

Penerapan NLP dalam analisis sentimen memungkinkan 

perusahaan untuk memahami perasaan pelanggan, umpan balik 

produk, atau sentimen pasar secara luas. Hal ini membantu dalam 

pengambilan keputusan yang lebih baik, penyesuaian strategi 

bisnis, dan meningkatkan interaksi dengan pelanggan berdasarkan 

pemahaman yang lebih baik tentang sentimen yang terkandung 

dalam teks. 

3. Pencarian Informasi 

Penerapan Natural Language Processing (NLP) dalam pencarian 

informasi membantu dalam pemrosesan, pemahaman, dan 

relevansi pencarian terhadap teks yang dimasukkan pengguna. 

Berikut adalah rincian tentang bagaimana NLP digunakan dalam 

pencarian informasi: 

 

1. Query Understanding: Analisis Pencarian: NLP digunakan 

untuk memahami query atau pertanyaan pengguna yang 

dimasukkan ke dalam mesin pencarian, memecahnya menjadi 

token dan mengidentifikasi kata kunci penting. Pemrosesan 

Bahasa Alami: Memahami makna atau intent di balik query, 

termasuk penanganan variasi frasa atau pertanyaan yang mirip 

namun memiliki struktur yang berbeda. 

2. Pengindeksan Informasi: Tokenisasi dan Representasi: 

Dokumen-dokumen atau konten yang akan diindeks dianalisis 

menggunakan NLP untuk tokenisasi, mengubah teks menjadi 

representasi vektor, dan menghitung bobot kata-kata (TF-IDF) 

untuk membangun indeks yang mempercepat proses pencarian. 

Entity Recognition: Mengidentifikasi entitas seperti nama 

orang, tempat, atau organisasi dalam teks untuk meningkatkan 

akurasi pencarian. 

3. Relevansi Pencarian: Matching dan Ranking: NLP digunakan 

untuk mencocokkan query pengguna dengan dokumen yang 
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relevan dan memberi peringkat pada hasil pencarian 

berdasarkan relevansi. Pemahaman Konteks: 

Memperhitungkan konteks dalam pencarian, memastikan hasil 

yang diberikan sesuai dengan kebutuhan pengguna. 

4. Pencarian Semantik: Analisis Semantik: Menggunakan NLP 

untuk memahami arti sebenarnya dari query atau dokumen, 

bukan hanya kata-kata yang digunakan, melainkan juga konsep 

yang terkandung dalam teks. Pemrosesan Teks yang Lebih 

Lanjut: Penggunaan teknik seperti Word Embeddings atau 

Transformer untuk pemahaman yang lebih dalam tentang 

hubungan antar kata-kata atau makna di balik teks. 

5. Personalisasi Pencarian: Pemahaman User Intent: NLP 

membantu dalam memahami intent atau tujuan pengguna yang 

berbeda, memungkinkan sistem untuk memberikan hasil yang 

lebih relevan berdasarkan histori pencarian atau profil 

pengguna. 

6. Evaluasi dan Peningkatan Sistem: Analisis Feedback: 

Menggunakan NLP untuk menganalisis umpan balik pengguna 

terhadap hasil pencarian untuk meningkatkan relevansi dan 

kualitas hasil. 

4. Fine-tuning Model 

Meningkatkan model pencarian berbasis pada informasi dari 

evaluasi dan umpan balik untuk meningkatkan performa dan 

akurasi. Penerapan NLP dalam pencarian informasi membantu 

dalam meningkatkan akurasi, relevansi, dan kecepatan pencarian, 

memastikan bahwa pengguna mendapatkan informasi yang 

mereka cari dengan lebih efisien dan sesuai dengan kebutuhan 

mereka. 

1. Chatbots dan Virtual Assistants: Penerapan Natural Language 

Processing (NLP) dalam Chatbots dan Virtual Assistants 

memungkinkan sistem untuk memahami, memproses, dan 

merespons bahasa manusia secara efektif. Berikut adalah 

rincian tentang bagaimana NLP digunakan dalam Chatbots dan 

Virtual Assistants: 

2. Pengenalan dan Pemahaman Bahasa Manusia: Pemrosesan 

Bahasa Alami: NLP digunakan untuk memahami perintah, 
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pertanyaan, atau masukan pengguna dalam bahasa alami. Ini 

melibatkan pemecahan kalimat, tokenisasi, dan pemahaman 

intent di balik permintaan. Entity Recognition: Identifikasi 

entitas seperti nama orang, lokasi, tanggal, atau objek tertentu 

dalam teks untuk memberikan respon yang lebih tepat. 

3. Pembangunan Chatbots yang Responsif: Generasi Respon: 

NLP membantu dalam menghasilkan respon yang relevan dan 

kontekstual berdasarkan pemahaman terhadap permintaan 

pengguna. Ini melibatkan pembuatan respon yang sesuai 

dengan konteks, bahasa yang ramah, dan pilihan kata yang 

tepat. Personalisasi Respon: Sistem dapat menyesuaikan 

respon berdasarkan informasi pengguna atau sejarah interaksi 

sebelumnya. 

4. Pengelolaan Dialog dan Konteks: Memahami Konteks: NLP 

membantu dalam mempertahankan konteks percakapan dan 

memastikan Chatbot atau Virtual Assistant dapat mengingat 

percakapan sebelumnya untuk memberikan respon yang lebih 

baik. Dialog State Management: Manajemen status 

percakapan yang memungkinkan sistem untuk menanggapi 

permintaan yang berurutan atau berkelanjutan. 

5. Integrasi dengan Pengetahuan dan Informasi Tambahan: Akses 

ke Informasi: NLP memungkinkan Chatbot untuk mengakses 

basis pengetahuan, database, atau sumber informasi lainnya 

untuk memberikan jawaban yang lebih lengkap dan akurat. 

6. Evaluasi dan Peningkatan Kualitas Respon: Analisis 

Sentimen: Menggunakan NLP untuk memahami sentimen 

pengguna terhadap respon yang diberikan oleh Chatbot dan 

mengadaptasi respons berdasarkan umpan balik. Peningkatan 

Model: Penggunaan umpan balik pengguna dan analisis 

performa untuk meningkatkan model Chatbot, termasuk fine-

tuning model berbasis NLP. 

7. Pengembangan Multilingual Chatbots: Penerapan Bahasa 

Lain: NLP digunakan untuk mendukung chatbot dalam bahasa 

yang berbeda, memungkinkan sistem untuk beroperasi dalam 

lingkungan multilingual. Penerapan NLP dalam Chatbots dan 

Virtual Assistants membantu dalam memberikan pengalaman 

interaktif yang lebih manusiawi, efisien, dan responsif bagi 

pengguna. Kemampuan sistem untuk memahami bahasa 
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manusia secara alami merupakan inti dari efektivitas Chatbot 

dalam memberikan layanan yang berguna dan informatif 

kepada pengguna. 

 

B. NLP dalam Kesehatan 

 

1. Analisis data medis: Penerapan Natural Language Processing 

(NLP) dalam analisis data medis bertujuan untuk memahami, 

mengekstrak, dan mengelola informasi dari catatan medis, 

laporan laboratorium, dokumen kesehatan, atau literatur medis. 

Berikut adalah rincian tentang bagaimana NLP digunakan 

dalam analisis data medis: 

2. Pemrosesan Catatan Medis: Ekstraksi Informasi: NLP 

digunakan untuk mengekstrak informasi klinis seperti 

diagnosis, tindakan medis, gejala, atau riwayat penyakit dari 

catatan medis yang sering kali terstruktur atau tidak terstruktur. 

Named Entity Recognition (NER): Mengidentifikasi entitas 

medis seperti nama pasien, dokter, obat-obatan, atau prosedur 

medis dalam catatan medis. 

3. Klasifikasi dan Analisis Teks Medis: Diagnosis Otomatis: 

Penggunaan NLP dalam klasifikasi teks medis untuk 

mendukung diagnosa otomatis berdasarkan informasi yang 

terkandung dalam catatan medis. Analisis Sentimen 

Kesehatan: Menganalisis catatan medis untuk mengevaluasi 

sentimen pasien terhadap pengalaman perawatan atau prosedur 

medis tertentu. 

4. Penelitian dan Literatur Medis: Literature Review: NLP 

digunakan untuk memproses dan menganalisis literatur medis 

yang luas, membantu peneliti untuk mendapatkan wawasan 

dari artikel dan penelitian terbaru dalam bidang kesehatan. 

Pengelompokan Tema: Mengelompokkan artikel atau 

makalah medis berdasarkan tema tertentu menggunakan teknik 

pengelompokan topik. 

5. Pemahaman Bahasa Kesehatan: Terminologi Medis: 

Memahami istilah medis yang kompleks dan terminologi 

khusus yang digunakan dalam catatan medis atau literatur 

medis. Analisis Percakapan Medis: Memahami percakapan 
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antara dokter dan pasien dalam rekaman medis untuk 

meningkatkan pemahaman terhadap situasi kesehatan pasien. 

6. Prediksi Penyakit dan Perawatan: Prediksi Risiko: 

Menggunakan NLP untuk mengidentifikasi faktor risiko atau 

prediksi perjalanan penyakit berdasarkan informasi yang 

terdapat dalam catatan medis. 

7. Privasi dan Keamanan Data: Anonimisasi Data: Penggunaan 

NLP dalam menghapus atau mengaburkan informasi identitas 

pribadi dari catatan medis untuk menjaga keamanan dan privasi 

data. 

8. Pengembangan Sistem Berbasis NLP: Sistem Dukungan 

Keputusan: Membangun sistem NLP yang mendukung 

pengambilan keputusan klinis atau memberikan saran terhadap 

perawatan medis. 

Penerapan NLP dalam analisis data medis membuka potensi besar 

untuk meningkatkan pengelolaan data kesehatan, penelitian 

medis, pelayanan kesehatan, dan pengembangan sistem yang 

mendukung pengambilan keputusan klinis yang lebih baik. Ini 

juga memainkan peran penting dalam meningkatkan efisiensi, 

akurasi, dan pemahaman terhadap informasi kesehatan yang 

terkandung dalam dokumen medis. 

 

Penerapan Natural Language Processing (NLP) dalam pengenalan 

entitas medis (NER - Named Entity Recognition) adalah tentang 

mengidentifikasi dan mengekstrak entitas spesifik dalam teks 

medis seperti nama pasien, nama dokter, jenis penyakit, obat-

obatan, prosedur medis, tanggal, dan informasi penting lainnya. 

Berikut adalah rincian tentang penerapan NLP dalam NER untuk 

pengenalan entitas medis: 

1. Pemrosesan Teks Medis: Tokenisasi: Memecah teks medis 

menjadi token (kata-kata, frasa, atau bagian-bagian lain) untuk 

analisis lebih lanjut. Stopword Removal: Penghapusan kata-

kata umum yang tidak relevan dalam teks medis. 

2. Penggunaan Model NLP untuk Pengenalan Entitas Medis: 

Model Berbasis Aturan (Rule-Based): Menerapkan aturan 

linguistik atau peraturan manual untuk mengidentifikasi entitas 

medis. Contohnya, pengenalan nama orang berdasarkan pola 

penulisan nama manusia. Machine Learning-Based Models: 
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Penggunaan algoritma pembelajaran mesin seperti Conditional 

Random Fields (CRFs), Support Vector Machines (SVM), atau 

Deep Learning (misalnya, LSTM atau Transformer) yang telah 

dilatih pada data yang dilabeli untuk mengenali entitas medis. 

3. Pengembangan Anotasi dan Dataset: Anotasi Manual: 

Menandai atau memberi label entitas medis dalam teks medis 

oleh ahli manusia untuk membuat dataset pelatihan yang 

dilabeli. 

4. Feature Engineering: Penggunaan Fitur: Pemilihan fitur yang 

relevan seperti kata-kata sekitar, morfologi kata, atau konteks 

untuk membantu model dalam mengenali entitas medis dengan 

lebih akurat. 

5. Evaluasi dan Peningkatan Model: Cross-Validation: 

Menggunakan teknik cross-validation untuk mengukur kinerja 

model dalam mengenali entitas medis dan menghindari 

overfitting. Fine-Tuning Model: Memperbarui atau 

menyesuaikan model NER berdasarkan umpan balik dari 

evaluasi hasil model untuk meningkatkan akurasi. 

6. Penerapan dalam Aplikasi Kesehatan: Sistem Manajemen 

Kesehatan Elektronik: Menggunakan NER untuk 

mengekstrak dan mengelola informasi penting dalam catatan 

medis elektronik untuk memfasilitasi pencarian, analisis, dan 

perawatan pasien. Penelitian Klinis: Penerapan NER dalam 

analisis literatur medis untuk mengidentifikasi informasi 

penting dalam artikel penelitian atau makalah medis. 

Penerapan NLP dalam NER untuk pengenalan entitas medis 

merupakan langkah penting dalam pengelolaan data kesehatan, 

penelitian medis, dan perawatan pasien yang memungkinkan 

pengambilan informasi yang lebih cepat dan akurat dari teks 

medis yang besar dan kompleks. 

 

C. NLP dalam Pendidikan 

1. Evaluasi dan pembelajaran berbasis teks 

Penerapan Natural Language Processing (NLP) dalam evaluasi 

dan pembelajaran berbasis teks melibatkan analisis teks untuk 

mengukur kinerja, meningkatkan pemahaman, dan 
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mengembangkan sistem yang mendukung pendidikan dan 

evaluasi. Berikut adalah rincian tentang bagaimana NLP 

digunakan dalam konteks ini: 

1. Penilaian Otomatis: Analisis Jawaban Siswa: Penggunaan 

NLP dalam mengevaluasi jawaban siswa dalam bentuk teks, 

mengidentifikasi kesalahan atau kekurangan dalam jawaban 

mereka, serta memberikan umpan balik yang sesuai. Penilaian 

Tugas: NLP digunakan untuk memberikan penilaian otomatis 

terhadap tugas yang mencakup teks, seperti esai, tugas menulis, 

atau penugasan proyek. 

2. Analisis Sentimen dan Partisipasi: Pemantauan Sentimen: 

Menganalisis sentimen dari diskusi kelas, tanggapan siswa, 

atau umpan balik untuk memahami perasaan dan tingkat 

partisipasi. 

3. Pemahaman Konten: Ringkasan Otomatis: Menggunakan 

NLP untuk merangkum teks panjang, seperti materi pelajaran 

atau artikel, agar lebih mudah dipahami oleh siswa. 

Pemahaman Materi Pelajaran: Penerapan NLP untuk 

memahami pertanyaan siswa, memberikan informasi 

tambahan, atau menjelaskan konsep yang rumit dalam teks. 

4. Peningkatan Pengalaman Belajar: Personalisasi 

Pembelajaran: Memanfaatkan NLP untuk mempersonalisasi 

pengalaman belajar siswa berdasarkan kemajuan mereka, 

preferensi, dan kebutuhan individu. Rekomendasi Konten: 

Menyediakan rekomendasi materi pembelajaran berdasarkan 

minat dan kemajuan siswa. 

5. Analisis Diskusi Kelas dan Forum: Analisis Diskusi: 

Menggunakan NLP untuk menganalisis percakapan atau 

diskusi dalam forum online atau kelas virtual guna 

mengidentifikasi topik populer, pola partisipasi, atau 

pemahaman umum. 

6. Pengembangan Sistem Pendidikan: Sistem Tutor Cerdas: 

Membangun sistem tutor yang menggunakan NLP untuk 

memahami kebutuhan siswa, memberikan bantuan, dan 

menyesuaikan pembelajaran. Pengembangan Platform 

Pembelajaran: Integrasi NLP dalam platform pembelajaran 

daring untuk meningkatkan interaksi, pembelajaran adaptif, 

dan evaluasi. 
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Penerapan NLP dalam evaluasi dan pembelajaran berbasis teks 

memberikan peluang untuk meningkatkan efisiensi dalam 

penilaian, personalisasi pembelajaran, dan pemahaman konten 

secara lebih baik. Hal ini juga mendukung perkembangan sistem 

pendidikan yang lebih adaptif, interaktif, dan responsif terhadap 

kebutuhan individual siswa. 

2. Analisis plagiarism 

Penerapan Natural Language Processing (NLP) dalam analisis 

plagiarisme adalah tentang penggunaan teknologi bahasa alami 

untuk mendeteksi dan menganalisis kesamaan atau plagiarisme 

antara dokumen atau teks. Berikut adalah rincian tentang 

bagaimana NLP diterapkan dalam konteks ini: 

1. Preprocessing Teks: Tokenisasi dan Representasi: Mengubah 

teks ke dalam representasi numerik atau token untuk analisis 

lebih lanjut. Pembersihan Teks: Membersihkan teks dari 

informasi yang tidak relevan, seperti tanda baca, karakter 

khusus, atau formatting. 

2. Penggunaan Model NLP: Model Berbasis Aturan (Rule-

Based): Menerapkan aturan linguistik atau logika untuk 

mendeteksi kesamaan teks, terutama dalam dokumen panjang 

atau struktur kompleks. Machine Learning-Based Models: 

Penggunaan algoritma pembelajaran mesin (misalnya, 

Decision Trees, Support Vector Machines, atau Neural 

Networks) yang dilatih dengan data yang dilabeli untuk 

mengidentifikasi pola plagiarisme. 

3. Analisis Struktural Teks: Alignment dan Similarity 

Detection: Menggunakan NLP untuk menemukan kesamaan 

atau kemiripan antara teks, baik dalam frasa, kalimat, paragraf, 

atau struktur keseluruhan. Deteksi Plagiarisme Paragraf atau 

Dokumen: Menggunakan teknik seperti cosine similarity atau 

Levenshtein distance untuk mendeteksi plagiarisme pada 

tingkat dokumen atau paragraf. 

4. Analisis Konten dan Semantik: Kesamaan Makna: 

Menggunakan NLP untuk memahami makna di balik kata-kata 

atau frasa, bukan hanya kesamaan kata. Analisis Semantik: 
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Mengidentifikasi makna dan inti dari teks untuk 

membandingkan konten secara lebih mendalam. 

5. Pengembangan Algoritma Khusus: Fine-Tuning Model: 

Meningkatkan model NLP untuk deteksi plagiarisme, 

memastikan sensitivitas yang tinggi dan akurasi dalam 

mengidentifikasi kesamaan teks. 

6. Evaluasi Hasil: Pengukuran Similaritas: Mengukur tingkat 

kesamaan atau plagiarisme antara teks berdasarkan hasil 

analisis NLP. Umpan Balik dan Peningkatan: Menggunakan 

umpan balik untuk meningkatkan algoritma deteksi 

plagiarisme dan meningkatkan ketepatan serta ketelitian hasil. 

 

Penerapan NLP dalam analisis plagiarisme memiliki peran 

penting dalam memastikan keaslian dan integritas karya tulis. Ini 

membantu institusi pendidikan, editor, peneliti, atau penerbit 

untuk mengidentifikasi plagiarisme dengan lebih efisien dan 

akurat, serta menjaga kejujuran dalam publikasi karya. 
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BAB IV 

TANTANGAN DAN ISU ETIKA DALAM 

NLP 
 

A. Tantangan dalam NLP 

1. Polysemy dan Ambiguitas 

Dalam Natural Language Processing (NLP), terdapat sejumlah 

tantangan dan isu etika yang berkaitan dengan polisemi 

(polysemy) dan ambiguitas dalam bahasa: 

1. Polisemi dan Ambiguitas: Arti Ganda: Polisemi merujuk pada 

kata-kata atau frasa yang memiliki lebih dari satu arti yang sah. 

Ambiguitas mencakup situasi di mana kalimat atau teks 

memiliki arti yang tidak jelas atau lebih dari satu arti yang 

memungkinkan. 

2. Kesulitan dalam Pemahaman Konteks: Konteks yang 

Membingungkan: Penafsiran kata-kata atau frasa terkadang 

tergantung pada konteksnya. Meskipun NLP mungkin mampu 

mengenali variasi kata, memahami makna sebenarnya dalam 

konteks yang tepat bisa menjadi sulit. 

3. Tantangan dalam Pemrosesan Bahasa Alami: Disambiguasi: 

NLP harus mampu untuk mengatasi polisemi dan ambiguitas, 

memutuskan makna yang benar berdasarkan konteks yang 

diberikan. Ini sering kali menantang karena bahasa manusia 

penuh dengan kompleksitas dan nuansa. 

4. Isu Etika dalam Penggunaan Teknologi: Bias dan Penafsiran 

yang Salah: Ketika NLP menghadapi polisemi dan ambiguitas, 

ada risiko penafsiran yang salah atau bias dalam analisis, yang 

dapat memengaruhi hasil dan keputusan yang dibuat oleh 

sistem berbasis NLP. 

5. Dampak pada Aplikasi NLP: Ketepatan dalam Pemrosesan 

Teks: Polisemi dan ambiguitas dapat mengganggu ketepatan 

hasil analisis NLP, misalnya dalam kasus klasifikasi teks atau 

pemahaman konten. 
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6. Perlunya Penanganan yang Lebih Cermat: Peningkatan 

Algoritma: Diperlukan pengembangan algoritma NLP yang 

lebih canggih untuk menangani polisemi dan ambiguitas secara 

lebih efektif. 

 

Isu Etika Terkait: Transparansi dan Akuntabilitas: Penerapan 

NLP yang tidak mempertimbangkan polisemi atau ambiguitas 

bisa mengakibatkan kesalahan atau interpretasi yang salah, yang 

bisa menjadi isu etika jika hal itu memengaruhi keputusan penting 

atau menimbulkan bias. 

 

Privasi dan Keamanan: Ketika NLP digunakan dalam aplikasi 

yang melibatkan data sensitif, risiko salah tafsir atau manipulasi 

akibat polisemi atau ambiguitas bisa memengaruhi privasi atau 

keamanan data. Penanganan polisemi dan ambiguitas dalam NLP 

adalah tantangan penting karena memengaruhi tingkat akurasi, 

keandalan, dan interpretasi yang tepat dari teks dalam konteks 

yang berbeda. Isu etika terkait juga harus dipertimbangkan secara 

cermat untuk memastikan penggunaan NLP yang bertanggung 

jawab dan tepat. 

2. Kurangnya data yang berkualitas 

Salah satu tantangan utama dalam Natural Language Processing 

(NLP) adalah kurangnya data yang berkualitas. Hal ini bisa 

menjadi hambatan serius dalam mengembangkan model NLP 

yang baik. Berikut adalah penjelasan lebih rinci: 

1. Keterbatasan Dataset: Kurangnya Volume Data: Dalam 

beberapa kasus, dataset yang tersedia untuk pelatihan model 

NLP bisa sangat terbatas, terutama untuk bahasa yang kurang 

umum atau domain tertentu seperti medis atau hukum. 

Kualitas Data yang Buruk: Data yang tidak terstruktur, tidak 

terlabeli dengan baik, atau tidak terkumpul dengan baik dapat 

menghambat kemampuan model untuk belajar dengan baik. 

2. Tantangan Variasi Bahasa: Variasi Dialek dan Gaya Bahasa: 

Bahasa manusia sangat bervariasi, termasuk penggunaan 

dialek, slang, atau variasi dalam gaya penulisan. Ini 

membutuhkan data yang representatif untuk melatih model 
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agar mampu memahami variasi bahasa tersebut. Bahasa yang 

Kurang Dikenal: Bahasa-bahasa yang kurang umum atau 

kuno sering kali memiliki keterbatasan dalam data, membuat 

pengembangan model NLP yang akurat menjadi sulit. 

3. Biaya dan Waktu Pengumpsulan Data: Biaya Pengumpulan 

Data: Mengumpulkan dataset yang besar dan berkualitas 

memerlukan sumber daya yang signifikan, baik itu biaya 

maupun waktu. Keterbatasan Waktu: Dalam beberapa kasus, 

pembangunan model NLP yang baik membutuhkan waktu 

yang lama karena proses pengumpulan, pembersihan, dan 

anotasi data yang memadai. 

4. Ketergantungan pada Data Label: Ketergantungan pada Data 

yang Dilabeli: Model pembelajaran mesin sering kali 

memerlukan data yang sudah dilabeli dengan benar untuk 

melatih dan memvalidasi kinerja. Kurangnya data yang dilabeli 

bisa menjadi kendala. Cara Mengatasinya: Augmentasi Data: 

Menciptakan data tambahan dari data yang ada dengan teknik 

seperti penggandaan, translasi, atau penggabungan untuk 

meningkatkan jumlah dan variasi data. Transfer Learning: 

Memanfaatkan model yang sudah dilatih pada data yang besar 

(pre-trained models) dan menyesuaikannya dengan data yang 

tersedia dalam domain atau bahasa tertentu. Collaborative 

Efforts: Kerja sama dan pertukaran dataset antara lembaga, 

peneliti, atau komunitas dapat membantu mengatasi 

keterbatasan data. 

 

Kurangnya data yang berkualitas bisa menjadi tantangan utama 

dalam pengembangan model NLP yang akurat dan andal. Strategi 

pengumpulan data yang cerdas, teknik augmentasi data, dan 

pemanfaatan model yang sudah dilatih dapat membantu mengatasi 

sebagian dari kendala ini dalam mengembangkan model NLP 

yang lebih baik. 

3. Overfitting dan generalisasi 

Dalam konteks Natural Language Processing (NLP), overfitting 

dan generalisasi adalah dua konsep penting yang memengaruhi 
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kualitas dan performa model yang dikembangkan untuk 

pemrosesan bahasa alami. 

1. Overfitting: Definisi Overfitting: Overfitting terjadi ketika 

model terlalu "memorize" data pelatihan dan tidak mampu 

melakukan generalisasi dengan baik pada data baru atau data 

yang belum pernah dilihat sebelumnya. Penyebab Overfitting: 

Overfitting seringkali terjadi ketika model terlalu kompleks 

atau memiliki kapasitas yang berlebihan untuk mempelajari 

detail-detail kecil yang sebenarnya bersifat acak atau tidak 

relevan dalam data. Indikasi Overfitting: Biasanya, tanda-tanda 

overfitting termasuk performa model yang sangat baik pada 

data pelatihan tetapi performa yang buruk pada data validasi 

atau data uji. Strategi Penanggulangan: Menggunakan teknik 

regularisasi seperti dropout, pengurangan kompleksitas model, 

atau menggunakan teknik validasi silang untuk memvalidasi 

performa model. 

2. Generalisasi: Definisi Generalisasi: Generalisasi adalah 

kemampuan model untuk mengadopsi pola yang ditemukan 

dari data pelatihan dan menerapkannya dengan baik pada data 

baru atau data yang belum dilihat sebelumnya. Penyebab 

Generalisasi: Model yang mampu menangkap pola yang umum 

dan relevan dari data pelatihan tanpa terlalu fokus pada detail 

yang mungkin bersifat acak. Indikasi Generalisasi: Model yang 

baik dalam generalisasi akan menunjukkan performa yang 

konsisten pada data yang tidak pernah dilihat selama pelatihan. 

Strategi Peningkatan Generalisasi: Menggunakan teknik 

penambahan data, pengaturan yang tepat terkait kompleksitas 

model, dan menggunakan metode regularisasi yang tepat untuk 

mencegah overfitting. 

 

Relevansi dalam NLP: Dalam NLP, overfitting bisa terjadi saat 

model NLP terlalu "memorize" teks pelatihan dengan sangat baik, 

tetapi tidak bisa menerapkan pemahaman yang diperolehnya pada 

teks baru yang berbeda. Generalisasi yang baik dalam NLP 

menunjukkan kemampuan model untuk memahami bahasa secara 

umum tanpa terlalu terkait dengan detail-detail yang mungkin 

tidak relevan atau acak dalam teks. Tantangan dalam NLP adalah 

membangun model yang memiliki tingkat generalisasi yang tinggi 
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sehingga dapat memproses dan memahami beragam jenis teks 

dengan akurat, bahkan teks yang belum pernah dilihat 

sebelumnya. Memahami konsep overfitting dan generalisasi 

penting dalam mengembangkan model NLP yang handal dan 

efektif dalam memahami, memproses, dan menghasilkan hasil 

yang akurat dari teks dalam berbagai konteks dan jenis data. 

 

B. Isu Etika dalam NLP 

1. Privasi dan keamanan data 

Isu etika privasi dan keamanan data dalam Natural Language 

Processing (NLP) menjadi sangat penting karena penggunaan data 

teks yang melibatkan informasi pribadi atau sensitif dari individu 

atau kelompok. Berikut adalah beberapa poin terkait isu etika ini: 

1. Privasi Data: Penggunaan Informasi Pribadi: Penggunaan data 

teks yang mengandung informasi pribadi seperti riwayat medis, 

percakapan pribadi, atau informasi identitas individu 

menimbulkan kekhawatiran privasi. Risiko Identifikasi: Proses 

analisis NLP yang tidak memadai bisa mengungkap informasi 

sensitif yang dapat mengidentifikasi individu, bahkan jika 

nama tidak disebutkan. 

2. Keamanan Data: Kekhawatiran Keamanan: Data teks yang 

disimpan, diproses, atau ditransmisikan dalam sistem NLP 

rentan terhadap ancaman keamanan seperti peretasan atau 

akses tidak sah. Risiko Penyalahgunaan Informasi: Data teks 

yang tidak terlindungi dapat disalahgunakan untuk tujuan jahat 

seperti penipuan, pencurian identitas, atau penargetan individu. 

3. Isu Etika Terkait: Transparansi Penggunaan Data: Pentingnya 

memberikan informasi kepada pengguna terkait bagaimana 

data mereka digunakan dalam sistem NLP dan untuk tujuan 

apa. Konsentuasi dan Izin: Menghargai hak privasi dan 

mendapatkan izin atau persetujuan dari individu sebelum 

menggunakan atau memproses data teks mereka. Pemulihan 

dan Hapus Data: Menciptakan mekanisme untuk menghapus 

atau memulihkan data teks secara efektif jika diminta oleh 

individu terkait hak privasi mereka. 
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4. Penerapan Etika dalam Pengembangan Model NLP: 

Pengembangan Model yang Bertanggung Jawab: Pentingnya 

membangun model NLP dengan mempertimbangkan prinsip-

prinsip privasi dan keamanan, serta memastikan bahwa data 

sensitif diperlakukan dengan hati-hati. 

 

Enkripsi dan Perlindungan Data: Menggunakan teknologi enkripsi 

dan pengamanan data yang tepat untuk melindungi informasi yang 

disimpan dan diproses oleh sistem NLP. Kerangka Regulasi: 

Perlunya kerangka regulasi yang kuat untuk mengatur 

penggunaan data teks dalam NLP, memastikan perlindungan yang 

tepat terhadap privasi dan keamanan. Menyadari dan 

mempertimbangkan isu privasi dan keamanan data dalam 

pengembangan dan penerapan teknologi NLP sangat penting 

untuk memastikan penggunaan yang etis, aman, dan bertanggung 

jawab dari informasi teks yang sensitif atau pribadi. 

2. Bias dalam data dan model 

Isu etika tentang bias dalam data dan model dalam Natural 

Language Processing (NLP) mengacu pada ketidakseimbangan 

atau distorsi dalam data serta model yang dapat menyebabkan 

hasil yang tidak adil atau tidak representatif. Berikut adalah 

beberapa poin terkait isu etika ini: 

1. Bias dalam Data: Ketidakseimbangan Representasi: Data yang 

digunakan untuk melatih model NLP mungkin tidak 

mencerminkan keberagaman masyarakat, menyebabkan 

kurangnya representasi yang merata dari berbagai kelompok 

atau perspektif. Replikasi Bias Manusia: Data teks bisa 

mencerminkan bias yang ada dalam masyarakat, seperti 

gender, ras, atau kecenderungan budaya, yang dapat tercermin 

dalam model NLP. 

2. Bias dalam Model: Pengambilan Keputusan Tidak Adil: Model 

NLP yang dikenai bias dalam data latihnya dapat menghasilkan 

keputusan atau penilaian yang tidak adil atau diskriminatif. 

Perpetuasi Bias: Model NLP yang belajar dari data yang sudah 

terbias cenderung memperkuat atau memperpanjang bias 

tersebut dalam hasilnya. 
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3. Isu Etika Terkait: Keadilan dan Kesetaraan: Model NLP yang 

bias dapat memberikan keputusan atau prediksi yang tidak adil, 

memengaruhi kesetaraan akses atau perlakuan yang adil. 

Transparansi dan Akuntabilitas: Perlunya transparansi dalam 

proses pembangunan model dan pengambilan keputusan untuk 

memahami dan memeriksa bias yang ada. Keragaman dan 

Representasi: Pentingnya memastikan keberagaman dan 

representasi yang adil dari berbagai perspektif dalam data dan 

model NLP. 

4. Penanganan Bias dalam NLP: Pembersihan Data: Identifikasi, 

analisis, dan pembersihan data yang memiliki bias yang tidak 

diinginkan. Pengaturan Model: Menerapkan teknik seperti 

debiasing atau fine-tuning untuk mengurangi atau 

menghilangkan bias yang ditemukan dalam model. Monitoring 

dan Evaluasi Berkelanjutan: Melakukan evaluasi berkelanjutan 

terhadap model untuk mengidentifikasi dan mengatasi bias 

yang baru muncul. Pendekatan yang Berbasis Etika: 

Menggunakan pendekatan yang berbasis etika dalam 

pengembangan model untuk memastikan keadilan, 

transparansi, dan kesetaraan. Mengatasi isu bias dalam data dan 

model NLP sangat penting untuk memastikan bahwa teknologi 

ini diterapkan secara adil, transparan, dan menghormati 

keberagaman serta hak asasi manusia. Hal ini membantu 

mencegah model NLP menyebarkan atau memperkuat 

ketidaksetaraan yang ada dalam masyarakat. 
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BAB V 

TOPIK MODEL 
 

 

A. Topik Model LDA 

 

Dalam dunia yang dipenuhi dengan ledakan informasi, 

pengelolaan dan pemahaman terhadap teks telah menjadi 

tantangan besar. Bagaimana kita bisa mengurai ratusan, bahkan 

ribuan dokumen, untuk menemukan pola dan tema yang 

tersembunyi di dalamnya? Inilah di mana Model Latent Dirichlet 

Allocation (LDA) memasuki panggung sebagai alat penting dalam 

pemrosesan teks dan analisis topik. 

 

LDA, yang merupakan singkatan dari Latent Dirichlet Allocation, 

adalah sebuah model probabilistik yang memungkinkan kita untuk 

mengidentifikasi topik-topik yang tersembunyi di dalam sebuah 

koleksi besar dokumen. Konsep utama di balik LDA adalah ide 

bahwa setiap dokumen dalam koleksi tersebut merupakan 

kombinasi dari beberapa topik, sementara setiap topik sendiri 

adalah distribusi probabilitas atas sekelompok kata-kata. 

 

Mengapa LDA penting? Alat ini memungkinkan kita untuk 

menjelajahi teks dengan cara yang tidak terlalu langsung, dengan 

mengidentifikasi hubungan dan tema yang ada di antara kumpulan 

kata-kata yang mungkin tidak terlihat pada pandangan pertama. 

Dengan kemampuannya untuk menemukan pola tersembunyi, 

LDA telah diterapkan dalam berbagai bidang mulai dari analisis 

sentimen hingga klasifikasi dokumen, serta pemahaman yang 

lebih dalam terhadap tren dan opini dalam teks yang besar. 

 

Namun, seperti halnya alat analisis lainnya, LDA memiliki 

kelebihan dan batasannya sendiri. Penggunaannya yang efektif 

membutuhkan pemahaman yang baik akan parameter, proses 

preprocessing data yang teliti, serta interpretasi hasil yang tepat. 

Meskipun memberikan wawasan yang kuat, model ini juga 
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memerlukan penggunaan yang bijaksana dan penyesuaian yang 

cermat sesuai dengan konteks aplikasinya. 

 

Dalam buku ini, kami akan membawa Anda melalui perjalanan 

mendalam dari dasar-dasar probabilitas hingga implementasi 

praktis dari Model LDA. Kami akan membahas teori di balik 

model ini, langkah-langkah untuk menerapkannya secara efektif, 

strategi evaluasi, dan juga memperlihatkan berbagai studi kasus 

yang memperlihatkan aplikasi nyata dari model ini. Semoga buku 

ini membantu Anda memahami, menerapkan, dan mengambil 

manfaat dari kekuatan analisis teks yang ditawarkan oleh Model 

Latent Dirichlet Allocation. Selamat menikmati perjalanan Anda 

dalam mempelajari model yang luar biasa ini. Ruang lingkup dan 

tujuan dalam penggunaan Model Latent Dirichlet Allocation 

(LDA) sangat penting untuk memberikan pemahaman yang jelas 

kepada pembaca tentang apa yang dapat dicapai dengan model ini 

dan bagaimana mereka bisa menerapkannya secara praktis. 

Berikut penjelasan mengenai ruang lingkup dan tujuan LDA: 

 

B. Ruang Lingkup LDA 

 

Ruang lingkup LDA meliputi pemahaman tentang bagaimana 

model ini digunakan untuk menganalisis teks secara probabilistik. 

Dalam penggunaannya, LDA membantu dalam: 

1. Penemuan Topik Tersembunyi: LDA membantu 

mengidentifikasi pola dan topik yang tersembunyi di dalam 

kumpulan dokumen, memungkinkan kita untuk mengetahui 

topik apa saja yang sedang dibahas. 

2. Representasi Dokumen: Model ini memungkinkan dokumen 

direpresentasikan sebagai distribusi topik, memberikan cara 

yang kuat untuk melihat bagaimana dokumen terkait dengan 

topik-topik tertentu. 

3. Analisis Sentimen dan Klasifikasi Dokumen: Dengan 

memahami topik utama dalam dokumen, LDA dapat 

digunakan untuk menganalisis sentimen, mengelompokkan 

dokumen ke dalam kategori tertentu, atau bahkan membantu 

dalam pemrosesan pencarian. 
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C. Tujuan Implementasi LDA 

 

Pemahaman Teori Probabilistik di Balik LDA: Tujuan pertama 

adalah memberikan pemahaman yang kuat tentang dasar-dasar 

probabilistik yang mendasari model LDA sehingga pembaca 

dapat mengerti alasan di balik proses dan hasilnya. Implementasi 

Praktis dengan Alat yang Tersedia: Buku ini bertujuan untuk 

membantu pembaca dalam mengimplementasikan LDA dengan 

alat dan bahasa pemrograman yang umum digunakan seperti 

Python, R, atau bahasa lainnya yang mendukung analisis teks. 

 

Strategi Preprocessing dan Evaluasi yang Efektif: Penting bagi 

pembaca untuk memahami langkah-langkah pra-pemrosesan data 

yang diperlukan sebelum menerapkan LDA, serta cara melakukan 

evaluasi yang tepat terhadap model yang telah dibangun. Studi 

Kasus dan Contoh yang Nyata: Buku ini akan memaparkan studi 

kasus yang bervariasi dan contoh penggunaan nyata LDA di 

berbagai bidang agar pembaca mendapatkan gambaran yang jelas 

tentang cara praktis dalam menerapkan model ini. Dengan 

memahami ruang lingkup dan tujuan penggunaan LDA, 

diharapkan pembaca dapat merencanakan, 

mengimplementasikan, dan mengevaluasi model ini secara efektif 

untuk kebutuhan analisis teks mereka. 

 

Dalam dunia pembelajaran mesin, model probabilistik menjadi 

fondasi yang kuat untuk pemahaman dan analisis data. Dasar-

dasar model probabilistik mengacu pada representasi matematis 

dari ketidakpastian dalam suatu sistem. Konsep ini melibatkan 

probabilitas sebagai alat utama untuk menggambarkan 

ketidakpastian dalam data. Dalam konteks model probabilistik, 

variabel yang diamati diasumsikan memiliki distribusi 

probabilitas tertentu yang menentukan kemungkinan nilai-nilai 

yang mungkin mereka miliki. 

 

Model probabilistik menawarkan pendekatan kuat untuk 

memahami dan memodelkan data yang kompleks. Dengan 

memperhitungkan distribusi probabilitas dari berbagai variabel 

dan parameter, model-model ini memungkinkan penanganan 
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ketidakpastian dengan cara yang sistematis. Penggunaannya yang 

luas meliputi pembelajaran mesin, di mana model probabilistik 

digunakan untuk membuat prediksi yang bergantung pada 

distribusi probabilitas, bukan hanya untuk memberikan hasil biner 

atau deterministik. 

 

Dasar-dasar model probabilistik melibatkan konsep teoritis seperti 

distribusi probabilitas, fungsi likelihood, teori keputusan, dan 

inferensi statistik. Melalui representasi matematis yang rumit 

namun sistematis, model probabilistik memungkinkan kita untuk 

mengeksplorasi dan menganalisis data secara lebih mendalam. 

Dalam konteks pembelajaran mesin, ini memungkinkan 

pengembangan model yang mampu mengidentifikasi pola, 

menarik kesimpulan, dan membuat keputusan berdasarkan 

analisis statistik yang kuat. Dengan demikian, pemahaman yang 

kuat tentang dasar-dasar model probabilistik menjadi krusial 

dalam menjelajahi dan menerapkan teknik-teknik analisis data 

yang lebih canggih. 

 

D. Konsep Dasar Probabilistik 

 

Konsep Dasar Probabilistik merujuk pada teori dan prinsip yang 

mendasari penggunaan probabilitas dalam pemodelan fenomena 

yang tidak pasti. Probabilitas adalah ukuran untuk mengukur 

seberapa mungkin suatu peristiwa akan terjadi, dan konsep dasar 

probabilistik digunakan untuk menggambarkan ketidakpastian 

dalam berbagai situasi. 

 

Di dalamnya terdapat beberapa konsep utama, salah satunya 

adalah Distribusi Probabilitas. Ini merujuk pada cara peristiwa 

acak atau variabel acak tersebar di berbagai nilai dengan berbagai 

kemungkinan. Distribusi probabilitas memungkinkan kita untuk 

menggambarkan peluang masing-masing nilai yang mungkin 

diambil oleh variabel acak. 

 

Selain itu, konsep dasar probabilistik juga mencakup Fungsi 

Likelihood. Ini menggambarkan seberapa baik suatu model 

statistik cocok dengan data yang diamati. Fungsi Likelihood 
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menjadi dasar bagi banyak metode estimasi parameter dalam 

statistika, dan digunakan untuk mengukur seberapa mungkin 

parameter model yang diestimasi memproduksi data yang diamati. 

Konsep dasar ini juga mencakup Teori Keputusan, yang berkaitan 

dengan cara kita membuat keputusan dalam kondisi 

ketidakpastian. Teori Keputusan berusaha untuk menggabungkan 

aspek keuntungan (reward) dan risiko dalam pengambilan 

keputusan dengan mempertimbangkan probabilitas dan dampak 

dari pilihan yang dibuat. 

 

Inferensi Statistik juga merupakan bagian penting dari konsep 

dasar probabilistik. Ini berkaitan dengan proses membuat 

kesimpulan atau generalisasi tentang populasi atau fenomena 

berdasarkan data yang hanya diambil dari sampel. Dengan 

menggunakan prinsip-proprinsi dasar probabilitas, inferensi 

statistik memungkinkan kita untuk melakukan generalisasi yang 

masuk akal dari data sampel ke populasi yang lebih besar. 

 

Keseluruhan, Konsep Dasar Probabilistik menyediakan kerangka 

kerja matematis dan konseptual yang penting dalam memahami 

dan menerapkan teori probabilitas. Ini membantu kita untuk 

memodelkan dan memahami fenomena kompleks dengan 

menggambarkan ketidakpastian, membuat keputusan dalam 

kondisi tidak pasti, serta membuat inferensi yang dapat dipercaya 

berdasarkan data yang terbatas. 

 

E. Contoh Konsep Dasar Probabilistik: 

 

Berikut adalah beberapa contoh Konsep Dasar Probabilistik: 

1. Distribusi Probabilitas: Misalkan Anda melempar koin. 

Kemungkinan hasilnya adalah gambar (heads) atau angka 

(tails), di mana masing-masing hasil memiliki probabilitas 0.5 

(asumsi koin yang adil). Distribusi probabilitas ini membantu 

menggambarkan kemungkinan hasil yang mungkin dari 

eksperimen acak ini. 

2. Fungsi Likelihood: Bayangkan Anda memiliki data 

pengamatan tentang tinggi badan orang-orang di suatu 

populasi. Dengan menggunakan model statistik, Anda ingin 
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menemukan distribusi tinggi badan yang paling mungkin 

mewakili data yang diamati. Dalam konteks ini, fungsi 

likelihood membantu mengukur seberapa baik model distribusi 

tinggi badan ini cocok dengan data yang ada. 

3. Teori Keputusan: Anda berada di supermarket dan ingin 

memilih antara dua merek produk dengan harga yang berbeda. 

Anda tidak yakin kualitas produk mana yang lebih baik. 

Melalui teori keputusan, Anda mempertimbangkan 

kemungkinan manfaat dari masing-masing pilihan berdasarkan 

harga dan probabilitas bahwa salah satu merek produk lebih 

baik daripada yang lain. 

4. Inferensi Statistik: Anda ingin mengetahui rata-rata waktu 

yang dibutuhkan seseorang untuk menyelesaikan tes tertentu. 

Anda hanya memiliki data waktu yang diperlukan oleh 

sekelompok sampel orang. Dengan menggunakan inferensi 

statistik, Anda dapat membuat perkiraan rata-rata waktu yang 

diperlukan oleh seluruh populasi berdasarkan data sampel ini. 

 

Semua contoh di atas menunjukkan penerapan Konsep Dasar 

Probabilistik dalam berbagai konteks, mulai dari eksperimen acak 

hingga pengambilan keputusan dan estimasi parameter dari data 

terbatas. Konsep-konsep ini membantu dalam menggambarkan, 

memahami, dan membuat prediksi dalam situasi di mana terdapat 

ketidakpastian atau variasi dalam hasil yang mungkin terjadi. 

 

Model Probabilistik dalam Pembelajaran Mesin mengacu pada 

pendekatan di mana model statistik menggunakan konsep 

probabilitas untuk memodelkan dan mengevaluasi data. Ini adalah 

salah satu pendekatan yang sangat berguna dalam membuat 

estimasi, klasifikasi, dan prediksi berdasarkan data yang tidak 

pasti. 

 

Dalam pembelajaran mesin, model-model ini memungkinkan kita 

untuk menggabungkan informasi dari data yang diberikan dengan 

ketidakpastian yang melekat pada proses pengambilan keputusan. 

Beberapa konsep utama dalam model probabilistik pembelajaran 

mesin termasuk: 
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1. Probabilitas sebagai Landasan Utama: Model probabilistik 

menggunakan probabilitas sebagai dasar untuk memahami dan 

memodelkan ketidakpastian dalam data. Mereka 

mengekspresikan hubungan antara input dan output dengan 

distribusi probabilitas, yang membantu dalam mengukur 

ketidakpastian dalam prediksi. 

2. Pemodelan Distribusi Data: Model probabilistik mampu 

memodelkan distribusi data yang kompleks, memberikan cara 

yang lebih fleksibel untuk menggambarkan keragaman dan 

kompleksitas data dalam pembelajaran mesin. 

3. Estimasi Parameter dengan Maksimum Likelihood atau 

Metode Bayesian: Model ini sering kali menggunakan metode 

maksimum likelihood atau pendekatan Bayesian untuk 

mengestimasi parameter dari data yang diamati. Dengan cara 

ini, mereka dapat menyesuaikan model mereka dengan data 

yang ada dan menghasilkan prediksi yang lebih akurat. 

4. Penggunaan dalam Klasifikasi dan Regresi: Model-model 

ini digunakan untuk klasifikasi, regresi, atau tugas-tugas 

pembelajaran mesin lainnya. Mereka mampu memberikan 

prediksi dengan menghasilkan distribusi probabilitas atas 

output yang mungkin, bukan hanya memberikan label atau nilai 

tunggal. 

5. Interpretasi yang Lebih Mudah: Dalam beberapa kasus, 

model probabilistik dapat memberikan interpretasi yang lebih 

intuitif atas hasilnya. Mereka memungkinkan kita untuk 

memahami seberapa yakin model terhadap prediksi yang 

dibuatnya. 

6. Dalam keseluruhan, Model Probabilistik dalam 

Pembelajaran Mesin membantu dalam mengatasi 

ketidakpastian yang melekat dalam data, memungkinkan 

model untuk membuat prediksi yang lebih cermat, dan 

memberikan cara yang lebih terstruktur untuk memahami 

distribusi data yang kompleks. Ini adalah pendekatan yang kuat 

dalam konteks di mana informasi probabilistik diperlukan 

untuk membuat keputusan yang cerdas dan akurat. 

7. Pemodelan Distribusi Data merujuk pada upaya untuk 

menggambarkan atau memahami bagaimana data yang diamati 

tersebar atau didistribusikan di dalam ruang sampel. Ini adalah 
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konsep yang penting dalam statistika dan pembelajaran mesin 

karena membantu dalam memahami sifat-sifat data dan 

mencari model yang cocok untuk menjelaskan data tersebut. 

 

Dalam pemodelan distribusi data, kita mencari fungsi matematis 

yang paling sesuai untuk menggambarkan sebaran atau distribusi 

data yang diamati. Fungsi ini sering kali didasarkan pada sejumlah 

parameter yang kemudian akan diestimasi dari data yang tersedia. 

Beberapa distribusi probabilitas yang sering digunakan untuk 

memodelkan data meliputi distribusi normal (Gaussian), distribusi 

binomial, distribusi Poisson, distribusi eksponensial, dan banyak 

lagi. 

 

F. Aspek Pemodelan distribusi data memiliki 
 

1. Deskripsi Distribusi Data: Melalui pemodelan distribusi, kita 

bisa mendapatkan gambaran yang jelas tentang sebaran data. 

Misalnya, jika data terdistribusi normal, kita dapat 

menggunakan parameter rata-rata dan deviasi standar untuk 

mendeskripsikan distribusi tersebut. 

2. Prediksi dan Estimasi: Dengan mengetahui distribusi data, 

kita dapat membuat prediksi atau estimasi terkait nilai-nilai 

yang mungkin dari data yang baru. Misalnya, dalam prediksi, 

jika kita mengetahui distribusi data yang ada, kita dapat 

membuat perkiraan tentang nilai yang paling mungkin terjadi. 

3. Pemilihan Model yang Sesuai: Pemodelan distribusi 

membantu kita memilih model yang paling cocok untuk data 

yang kita hadapi. Ini membantu dalam pembuatan model yang 

lebih akurat dan representatif terhadap data yang sebenarnya. 

4. Analisis Statistik Lanjutan: Distribusi data juga menjadi 

dasar untuk banyak analisis statistik lanjutan. Misalnya, dalam 

inferensi statistik, pemodelan distribusi menjadi kunci dalam 

membuat asumsi tentang distribusi data sampel terhadap 

populasi yang lebih besar. 

 

Dengan kata lain, pemodelan distribusi data adalah usaha untuk 

menemukan atau menyesuaikan model matematika yang paling 

cocok untuk menjelaskan cara data tersebar, sehingga membantu 
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dalam analisis, prediksi, dan pengambilan keputusan yang 

berkaitan dengan data tersebut. 

 

G. Contoh Pemodelan Distribusi Data 

 

Berikut adalah beberapa contoh Pemodelan Distribusi Data: 

Distribusi Normal (Gaussian): Contoh: Misalkan Anda memiliki 

ketinggian orang-orang dalam sebuah populasi. Jika data 

ketinggian tersebut terdistribusi secara mendekati kurva normal 

(bell curve) dengan rata-rata 170 cm dan deviasi standar 10 cm, 

Anda dapat menggunakan distribusi normal untuk memodelkan 

sebaran ketinggian tersebut. Dengan model ini, Anda dapat 

memprediksi seberapa mungkin orang memiliki ketinggian 

tertentu di dalam populasi berdasarkan karakteristik distribusi 

tersebut. 

 

Distribusi Binomial: Contoh: Bayangkan Anda melakukan 

serangkaian uji coba di mana setiap uji coba memiliki dua hasil 

mungkin: sukses atau gagal. Misalnya, Anda melempar koin 10 

kali dan mencatat berapa kali hasilnya adalah gambar (heads). Jika 

Anda ingin memodelkan distribusi jumlah gambar yang mungkin 

muncul dari 10 lemparan tersebut, Anda bisa menggunakan 

distribusi binomial. Dengan ini, Anda bisa memprediksi 

probabilitas munculnya sejumlah gambar tertentu dalam 

serangkaian lemparan koin. 

 

Distribusi Poisson: Contoh: Anda mengamati jumlah kendaraan 

yang melewati suatu titik dalam satu jam di suatu jalan raya yang 

jarang dilewati. Anda mencatat rata-rata lima kendaraan per jam. 

Distribusi Poisson bisa digunakan untuk memodelkan sebaran 

jumlah kendaraan yang melewati titik tersebut dalam interval 

waktu tertentu. Dengan model ini, Anda dapat memperkirakan 

probabilitas munculnya sejumlah kendaraan dalam interval waktu 

yang telah ditentukan. 

 

Distribusi Eksponensial: Contoh: Bayangkan Anda ingin 

memodelkan waktu antara kedatangan pelanggan ke suatu layanan 

perbankan. Jika waktu antara kedatangan pelanggan terdistribusi 



73 

eksponensial dengan rata-rata 5 menit, Anda dapat menggunakan 

distribusi eksponensial untuk memodelkan interval waktu antara 

kedatangan pelanggan ke lokasi tersebut. Dengan ini, Anda dapat 

membuat perkiraan tentang waktu yang diharapkan untuk 

kedatangan pelanggan berikutnya. 

 

Contoh-contoh di atas mengilustrasikan cara pemodelan distribusi 

data digunakan dalam berbagai konteks untuk menggambarkan 

cara data tersebar, memberikan prediksi, serta membantu dalam 

pengambilan keputusan berdasarkan karakteristik distribusi 

tersebut. Berikut adalah contoh matematis dari beberapa distribusi 

data yang umum digunakan dalam pemodelan statistik: 

 

Distribusi Normal (Gaussian): Distribusi Normal didefinisikan 

oleh fungsi densitas probabilitas (probability density function, 

PDF)45: 

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
. 𝑒

− 
(𝑥−𝜇)2

2𝜎2  

 

Di sini, μ adalah nilai rata-rata, σ adalah deviasi standar, dan x 

adalah variabel acak yang diukur. 

 

Distribusi Binomial: Distribusi Binomial menggambarkan 

probabilitas p sukses atau 1−p gagal dalam n uji coba independen. 

Fungsi mass probabilitas (probability mass function, PMF) untuk 

distribusi binomial diberikan oleh: 

 

𝑃(𝑋 = 𝑘) =  (
𝑛

𝑘
) .  𝑝𝑘 .  (1 − 𝑝)𝑛−𝑘 

 

Di sini, k adalah jumlah sukses yang diharapkan dalam n uji coba, 

p adalah probabilitas sukses dalam satu uji coba, dan X adalah 

variabel acak yang menggambarkan jumlah sukses. 

 

 
4 https://en.wikipedia.org/wiki/Normal_distribution 
5 https://itl.nist.gov/div898/handbook/eda/section3/eda3661.htm 
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Distribusi Poisson: Distribusi Poisson menggambarkan jumlah 

peristiwa yang terjadi dalam Distribusi Poisson adalah distribusi 

probabilitas diskrit yang menggambarkan jumlah peristiwa yang 

terjadi dalam suatu interval waktu atau ruang tertentu, ketika 

peristiwa-peristiwa tersebut terjadi dengan tingkat kejadian yang 

konstan dan secara independen dari waktu sebelumnya. Distribusi 

ini sering digunakan dalam berbagai bidang seperti ilmu statistik, 

matematika, ilmu sosial, dan lainnya untuk memodelkan peristiwa 

yang jarang terjadi namun memiliki tingkat kejadian yang stabil. 

Rumus Distribusi Poisson adalah: 

 

𝑃(𝑋 = 𝑘) =  
𝑒−𝜆 −𝜆𝑘

𝑘!
 

 

P(X=k) adalah probabilitas bahwa terjadi  

k peristiwa dalam interval waktu atau ruang yang diberikan. 

e adalah konstanta Euler (sekitar 2.71828). 

 

λ adalah tingkat kejadian rata-rata per interval waktu atau ruang. 

Ini bisa dianggap sebagai rata-rata jumlah peristiwa yang terjadi. 

k adalah jumlah peristiwa yang ingin dihitung probabilitasnya. k! 

adalah faktorial dari k (produk dari semua bilangan bulat positif 

kurang dari atau sama dengan k). 

 

Misalnya, jika kita memiliki situasi di mana rata-rata jumlah mobil 

yang melewati suatu jalan dalam satu jam adalah 5, kita dapat 

menggunakan distribusi Poisson untuk menghitung probabilitas 

bahwa tepat 3 mobil akan melewati jalan dalam waktu satu jam: 

 

𝑃(𝑋 = 3) =  
𝑒−5 −53

3!
 

 

Ini akan memberikan probabilitas bahwa tepat 3 mobil akan 

melewati jalan dalam interval waktu satu jam, berdasarkan asumsi 

tingkat kejadian rata-rata sebanyak 5 mobil per jam. 
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Distribusi Poisson berguna dalam memodelkan peristiwa-

peristiwa yang jarang terjadi namun memiliki distribusi kejadian 

yang terukur. 

 

Distribusi Eksponensial: 

Distribusi Eksponensial menggambarkan waktu antara peristiwa-

peristiwa yang terjadi secara acak.  Distribusi Eksponensial adalah 

distribusi probabilitas yang digunakan untuk memodelkan waktu 

antara peristiwa-peristiwa yang terjadi secara acak dan 

independen dalam suatu proses yang memiliki tingkat kejadian 

konstan. Ini sering digunakan dalam analisis waktu tunggu di 

berbagai bidang seperti ilmu statistik, ilmu komputer, sistem 

antrian, dan lainnya. Rumus Distribusi Eksponensial adalah 

sebagai berikut: 

𝑓(𝑥; 𝜆) = 𝜆𝑒−𝜆𝑥 

 

f(x;λ) adalah fungsi kepadatan probabilitas (PDF) dari variabel 

acak  

x dengan parameter  

λ, yang menyatakan tingkat kejadian. 

λ adalah tingkat kejadian yang merupakan invers dari rata-rata 

peristiwa yang terjadi per unit waktu. Semakin besar nilai  

λ, semakin cepat peristiwa-peristiwa terjadi. 

e adalah konstanta Euler (sekitar 2.71828). 

x adalah waktu tunggu atau interval waktu antara peristiwa-

peristiwa. 

 

Misalnya, jika kita ingin menghitung probabilitas bahwa waktu 

antara dua kejadian (misalnya, kedatangan dua kendaraan pada 

suatu titik dalam sistem transportasi) berada pada interval waktu 

tertentu, kita dapat menggunakan distribusi Eksponensial. Jika 

tingkat kedatangan rata-rata kendaraan adalah 4 per jam (λ=4), 

maka probabilitas bahwa waktu antara kedatangan dua kendaraan 

adalah lebih dari 15 menit (𝑥 >  
15

60
  jam) adalah: 

 

𝑃 (𝑥,
15

60
) =  ∫ 𝜆𝑒−𝜆𝑥𝑑𝑥

∞

15
60
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Distribusi Eksponensial juga sering digunakan dalam model 

antrian untuk memprediksi waktu tunggu dalam antrian atau 

interval antara kedatangan pelanggan dalam sistem layanan. Ini 

membantu dalam analisis kinerja sistem di mana waktu antara 

peristiwa memegang peranan penting. 
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BAB VI 

LATENT DIRICHLET ALLOCATION 

(LDA) 
 

Dalam dunia yang semakin dipenuhi oleh volume besar informasi 

teks, pengelolaan dan pemahaman terhadap konten tersebut telah 

menjadi tantangan yang semakin kompleks. Salah satu alat yang 

paling penting dalam menganalisis data teks secara menyeluruh 

adalah Model Latent Dirichlet Allocation (LDA)(Blei et al., 

2003). Konsep ini, yang diadaptasi dari bidang statistik dan 

pembelajaran mesin, memungkinkan kita untuk mengurai struktur 

tersembunyi dari dokumen-dokumen yang kompleks, 

mengidentifikasi pola-pola yang tak terlihat pada pandangan 

pertama. Sejarah dan latar belakang Model Latent Dirichlet 

Allocation (LDA) berasal dari dunia ilmu komputer, statistik, dan 

pengolahan bahasa alami. Model ini diperkenalkan pertama kali 

oleh David Blei, Andrew Ng, dan Michael Jordan pada tahun 2003 

melalui makalah penelitian yang diterbitkan dalam jurnal ilmiah 

"Journal of Machine Learning Research". 

 

Latar belakang LDA berakar dari upaya untuk menemukan cara 

efektif untuk mengatasi kompleksitas dalam analisis teks. 

Sebelum LDA, memahami dan mengelompokkan dokumen-

dokumen berdasarkan topik atau pola yang tersembunyi dalam 

jumlah yang besar merupakan tantangan besar. LDA diciptakan 

sebagai jawaban untuk mengatasi masalah ini, dengan tujuan 

memberikan metode yang lebih sistematis dan terstruktur untuk 

mengekstraksi topik tersembunyi dari kumpulan dokumen yang 

besar. 

 

Pada dasarnya, LDA diilhami oleh konsep tentang bagaimana 

dokumen-dokumen terbentuk. Model ini mengasumsikan bahwa 

dokumen-dokumen dibangun dari sejumlah topik yang 

tersembunyi, dan setiap kata dalam dokumen tersebut berasal dari 

salah satu dari topik-topik ini. LDA menggunakan pendekatan 

probabilistik untuk mengekstraksi distribusi topik dari kumpulan 

dokumen dan mengidentifikasi pola yang mendasarinya. 
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Sejak diperkenalkan, LDA telah menjadi salah satu alat yang 

sangat populer dalam analisis teks, pengelompokan dokumen, 

sistem rekomendasi, dan pemrosesan bahasa alami. 

Penggunaannya telah meluas di berbagai bidang seperti ilmu 

sosial, ekonomi, biomedis, dan lainnya, karena kemampuannya 

dalam mengurai dan memahami konten teks yang kompleks 

menjadi topik-topik yang lebih terdefinisi. 

 

Latent Dirichlet Allocation (LDA) adalah model topik 

probabilistik yang sangat digunakan dalam pemrosesan bahasa 

alami (NLP) karena kemampuannya untuk mengidentifikasi 

struktur semantik dalam kumpulan teks besar. LDA beroperasi 

dengan mengasumsikan bahwa setiap dokumen adalah campuran 

dari sejumlah topik, dan setiap topik diwakili sebagai distribusi 

atas kata-kata. Hal ini memungkinkan LDA untuk mengekstraksi 

dan memahami topik-topik yang mendasari dalam kumpulan data 

teks tanpa perlu label atau anotasi manual, membuatnya sangat 

berguna untuk berbagai aplikasi analisis teks. 

 

Pentingnya LDA dalam NLP sangat signifikan karena 

kemampuannya untuk menangani masalah skala besar, seperti 

yang ditemukan dalam analisis Big Data. Model ini membantu 

'membuka' dan membuat koneksi percakapan laten yang 

sebelumnya tidak terlihat dalam korpus teks yang luas, seperti 

profil, thread diskusi, forum, dan media sosial lainnya. LDA 

membantu dalam mengidentifikasi hubungan yang belum 

diketahui sebelumnya dan menyediakan wawasan yang lebih 

dalam tentang struktur semantik data teks (Gross & Murthy, 

2014). 

 

Dalam konteks NLP, LDA sering digunakan untuk meningkatkan 

aplikasi seperti klasifikasi dokumen, pengelompokan teks, dan 

sistem rekomendasi. Model ini menawarkan kerangka kerja yang 

kuat untuk memahami dan mengelola variabilitas semantik dan 

sintaktik dalam teks. Dengan memetakan dokumen ke dalam 

ruang topik, LDA memfasilitasi pengurangan dimensi yang efektif 

dan interpretasi semantik yang kaya, yang sangat penting dalam 

tugas pemahaman teks dan pengambilan informasi (Wang et al., 
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2012).  Selain itu, variasi LDA, seperti LDA semi-supervised, 

telah dikembangkan untuk menggabungkan pengetahuan yang 

diawasi ke dalam prosedur pembelajaran, memungkinkan 

penggunaan label terawasi untuk memandu pemodelan topik dan 

meningkatkan akurasi klasifikasi dokumen. Ini menunjukkan 

fleksibilitas dan kemampuan adaptasi LDA untuk memenuhi 

kebutuhan spesifik dari berbagai tugas NLP (Wang et al., 2012). 

 

Secara keseluruhan, LDA merupakan alat yang sangat berharga 

dalam kotak alat NLP, memberikan wawasan mendalam tentang 

struktur semantik yang kompleks dari teks dan memfasilitasi 

pengembangan aplikasi pemrosesan teks yang canggih. 

 

A. Prinsip Kerja LDA 

 

Model Latent Dirichlet Allocation (LDA) bekerja dengan cara 

mengasumsikan bahwa setiap dokumen dalam kumpulan 

dokumen dibentuk oleh kombinasi dari beberapa topik, dan setiap 

kata dalam dokumen berasal dari salah satu dari topik-topik 

tersebut. Prinsip kerja LDA secara rinci dapat dijabarkan sebagai 

berikut: 

Inisialisasi Awal: LDA dimulai dengan tahap inisialisasi di mana 

setiap kata dalam setiap dokumen ditugaskan secara acak ke salah 

satu dari sejumlah topik yang telah ditentukan. Awalnya, 

distribusi kata dalam dokumen ditetapkan secara acak. 

Iterasi Estimasi: Model melakukan iterasi untuk menyesuaikan 

distribusi topik di setiap dokumen dan distribusi kata di setiap 

topik. Dalam setiap iterasi, LDA mencoba untuk memperbaiki 

penugasan kata-kata ke topik-topik berdasarkan dua hal utama: 

1. Perhitungan Proporsi Topik dalam Dokumen: Model 

memperkirakan seberapa banyak setiap topik mempengaruhi 

setiap dokumen. Ini dilakukan dengan menghitung proporsi 

atau distribusi probabilitas dari setiap topik dalam setiap 

dokumen. 

2. Perhitungan Proporsi Kata dalam Topik: LDA juga 

memperkirakan seberapa banyak setiap kata terkait dengan 

setiap topik. Ini dilakukan dengan menghitung proporsi atau 

distribusi probabilitas dari setiap kata dalam setiap topik. 
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Update Parameter: Setelah iterasi yang berulang, model 

memperbarui parameter-parameternya untuk memperbaiki 

estimasi proporsi kata dalam topik dan proporsi topik dalam 

dokumen. 

Penentuan Topik: Setelah proses iterasi selesai, LDA 

menghasilkan distribusi topik yang diperkirakan untuk setiap 

dokumen dan distribusi kata yang diperkirakan untuk setiap topik. 

Dengan hasil ini, kita dapat melihat topik-topik yang 

mendominasi setiap dokumen dan kata-kata yang paling terkait 

dengan masing-masing topik. 

 

Prinsip utama di balik LDA adalah bagaimana model mencoba 

untuk memperbaiki estimasi awal terkait dengan bagaimana kata-

kata terdistribusi di antara topik-topik dan bagaimana topik-topik 

didistribusikan di antara dokumen-dokumen. Tujuannya adalah 

untuk menemukan pola yang tersembunyi dalam dokumen-

dokumen dan menghasilkan representasi yang lebih terstruktur 

dan informatif tentang topik-topik yang ada dalam kumpulan 

dokumen tersebut. Implementasi matematis dari Model Latent 

Dirichlet Allocation (LDA) melibatkan langkah-langkah yang 

kompleks dalam memodelkan distribusi kata-kata di dalam 

dokumen dan distribusi topik di dalam kumpulan dokumen. Di 

bawah ini adalah detail langkah-langkah implementasi matematis 

LDA: 

 

B. Pembentukan Model: 

 

Variabel Laten: LDA melibatkan variabel laten (tersembunyi), 

termasuk variabel topik dan variabel distribusi topik pada 

dokumen-dokumen. 

 

Parameter Model: Parameter yang diperlukan meliputi jumlah 

topik yang diinginkan (K), distribusi Dirichlet untuk topik dalam 

dokumen (α), dan distribusi Dirichlet untuk kata dalam topik (β). 

Representasi Dokumen: Dokumen direpresentasikan dalam 

bentuk matriks di mana setiap baris mewakili sebuah dokumen, 

dan setiap kolom mewakili jumlah kata dalam kosa kata yang 
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digunakan. Nilai di dalam matriks ini mewakili frekuensi 

kemunculan kata dalam dokumen tersebut. 

 

Proses Estimasi dan Iterasi: Iterasi dimulai dengan 

menginisialisasi secara acak nilai-nilai awal untuk variabel 

tersembunyi (topik dari kata-kata dalam dokumen). 

Proses perhitungan dilakukan berulang kali untuk memperbaiki 

estimasi variabel laten. Langkah-langkah ini melibatkan 

perhitungan proporsi topik dalam dokumen dan proporsi kata 

dalam topik. 

 

Metode Variational Inference atau Gibbs Sampling: Metode ini 

sering digunakan dalam LDA untuk mendekati distribusi posterior 

dari variabel tersembunyi. Dalam variational inference, tujuannya 

adalah untuk mendekati distribusi posterior dengan memilih 

distribusi yang paling dekat secara matematis. Gibbs sampling, 

metode lain yang digunakan, melibatkan pengambilan sampel 

acak dari distribusi probabilitas yang diinginkan. 

 

C. Penyesuaian Parameter 

 

Selama iterasi, nilai-nilai parameter model (seperti α dan β) 

disesuaikan untuk memperbaiki estimasi distribusi topik dan kata-

kata di dalam dokumen. 

 

Evaluasi dan Output: Setelah iterasi yang cukup banyak, model 

LDA menghasilkan distribusi topik untuk setiap dokumen dan 

distribusi kata untuk setiap topik. Hasil ini memberikan 

representasi yang lebih baik tentang topik-topik yang 

mendominasi dokumen dan kata-kata yang paling terkait dengan 

masing-masing topik. 

 

Implementasi matematis LDA melibatkan perhitungan 

probabilistik yang kompleks, termasuk penggunaan distribusi 

Dirichlet dan perhitungan untuk memperbaiki estimasi variabel 

tersembunyi. Langkah-langkah ini memungkinkan model untuk 

mengekstraksi informasi tersembunyi dari kumpulan dokumen 

secara efisien. 
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D. Persamaan dalam Model LDA 

 

Rumus Umum LDA: LDA dapat direpresentasikan sebagai model 

generatif probabilitas yang mencakup beberapa variabel laten. 

Untuk setiap kata dalam dokumen, ada dua variabel laten utama 

yang penting dalam LDA, yaitu variabel topik z dan variabel 

distribusi topik ϕ. 

 

θ: Distribusi topik dalam dokumen. 

z: Topik yang dipilih untuk setiap kata dalam dokumen. 

β: Distribusi kata dalam topik. 

w: Kata yang diamati dalam dokumen. 

 

Model LDA direpresentasikan dengan rumus umum sebagai 

berikut: 

 

𝑃(𝜃, 𝑧, 𝛽|𝑤)

= 𝑃(𝜃)  .  ∏ 𝑃(𝜃𝑑) .  ∏ (𝑍𝑑,𝑛|𝜃𝑑  .  𝑃(𝑊𝑤𝑑,𝑛 |  𝛽𝑧𝑑,𝑛

𝑁

𝑛=1
)

𝐷

𝑑=1
 

 

Dengan D adalah jumlah dokumen dalam kumpulan dokumen, N 

adalah jumlah kata dalam dokumen, dan P(θ) serta P(β) adalah 

distribusi prior dari variabel θ dan β, masing-masing. 

 

E. Perhitungan Distribusi Posterior 

 

Untuk mengestimasi distribusi posterior dari variabel laten (θ dan 

β) dalam LDA, diperlukan metode seperti variational inference 

atau Gibbs sampling. Metode-metode ini digunakan untuk 

mendekati distribusi posterior dari variabel laten, yang tidak dapat 

dihitung secara langsung. Rumus umum LDA memberikan 

kerangka kerja untuk memahami bagaimana dokumen dibangun 

dari kombinasi topik dan bagaimana kata-kata dalam dokumen 

berasal dari topik-topik tertentu. Langkah-langkah selanjutnya 

dalam implementasi LDA melibatkan perhitungan untuk 

mendekati distribusi posterior dari variabel laten ini. 
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Tentu, berikut adalah rumus matematis yang mendasari Model 

Latent Dirichlet Allocation (LDA): 

 

Representasi Dokumen: 

D: Jumlah dokumen dalam kumpulan dokumen. 

Nd: Jumlah kata dalam dokumen d. 

V: Jumlah kata unik dalam kosa kata. 

wd,n: Kata ke-n dalam dokumen d. 

Parameter Model: 

K: Jumlah topik yang diinginkan. 

α: Parameter distribusi Dirichlet untuk distribusi topik 

dalam dokumen. 

β: Parameter distribusi Dirichlet untuk distribusi kata 

dalam topik. 

Variabel Tersembunyi: 

zd,n: Topik yang diatribusikan untuk kata ke-n dalam 

dokumen d. 

 

Rumus Estimasi LDA: 

a. Distribusi topik dalam dokumen: 

𝑃(𝜃𝑑  | 𝛼 = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜃𝑑  |𝛼) 

𝑃(𝜃𝑑) =  
Γ(∑ 𝛼𝑖)𝐾

𝑖=1

∏ Γ α𝑖
𝐾
𝑖=1

 ∏ 𝜃𝑑,𝑖
𝛼𝑖−1

𝐾

𝑖=1
 

b. Distribusi kata dalam topik 

𝑃(𝜙𝑘 | 𝛽 = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜙𝑘 | 𝛽) 

𝑃(𝜙𝑘) =  
Γ(∑ 𝛽𝑖)

𝐾
𝑖=1

∏ Γ β𝑖
𝐾
𝑖=1

 ∏ 𝜙𝑘,𝑖
𝛽𝑖−1

𝑉

𝑖=1
 

c. Probabilitas word assignment 

𝑃(𝑤𝑑,𝑛 | 𝜃𝑑 , 𝜙𝑧𝑑,𝑛
) = 𝜃𝑑,𝑧𝑑,𝑛

𝑥  𝜙𝑧𝑑,𝑛,𝑤𝑑,𝑛
 

 

Rumus-rumus di atas menggambarkan cara LDA memodelkan 

distribusi topik dalam dokumen, distribusi kata dalam topik, dan 

probabilitas penugasan kata ke topik dalam dokumen. Metode 

variational inference atau Gibbs sampling sering digunakan untuk 

mendekati atau menemukan solusi numerik dari model LDA ini. 

Tentu, berikut adalah rumus matematis dari Model Latent 

Dirichlet Allocation (LDA): 
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Notasi dan Variabel yang Digunakan: 

D = Jumlah dokumen dalam kumpulan dokumen 

N = Jumlah kata dalam dokumen d 

K = Jumlah topik yang diinginkan 

V = Jumlah kata dalam kosa kata 

wd,n = Kata ke-n dalam dokumen ke-d 

zd,n = Topik yang ditugaskan kepada kata ke-n dalam 

dokumen ke-d 

α = Parameter distribusi Dirichlet untuk distribusi topik 

dalam dokumen 

β = Parameter distribusi Dirichlet untuk distribusi kata 

dalam topik 

 

F. Rumus-rumus LDA 

 

Representasi Distribusi Topik dalam Dokumen: θd,k∼Dirichlet(α) 

Representasi Distribusi Kata dalam Topik: ϕk,v∼Dirichlet(β) 

Pembentukan Variabel Laten: wd,n∼Multinomial(ϕzd,n) 

 

Distribusi Posterior untuk θ dan ϕ: 

𝑝(𝜃𝑑  |𝑤, 𝛼) =
𝑝(𝜃𝑑  𝑥 𝑝(𝑤|𝜃𝑑 , 𝜙)𝑥 𝑝(𝜙|𝛽)

𝑝(𝑤|𝛼, 𝛽)
 

Estimasi Distribusi Posterior: 

𝑝(𝜃𝑑  |𝑤, 𝛼) =
𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 +  ∑ 𝐶𝑜𝑢𝑛𝑡(𝑤𝑑,𝑛)𝑁

𝑛=1 )

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) + 𝑁
 

𝑝(𝜙𝑘  |𝑤, 𝛽) =
𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽+ ∑𝐷

𝑑=1  ∑ 𝐶𝑜𝑢𝑛𝑡(𝑤𝑑,𝑛)𝑁
𝑛=1 𝑥(𝑧𝑑,𝑛=𝑘))

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽)+∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑤𝑑,𝑛
𝑁
𝑛=1

𝐷
𝑑=1 )

           

rumus xx 

 

Persamaan xx menunjukkan adalah rumus posterior dari distribusi 

probabilitas suatu topik (ϕ_k) dalam model Latent Dirichlet 

Allocation (LDA). Dalam persamaan ini: 

 

p(ϕ_k | w, β) adalah probabilitas posterior dari topik ϕ_k, dengan 

diberikan dokumen-dokumen (w) dalam korpus dan parameter 

hyperparameter β. 
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Dirichlet (β+∑_(d=1)^D ∑_(n=1)^N Count(w_(d,n)) 

x(z_(d,n)=k)) adalah distribusi Dirichlet dengan parameter β yang 

diubah dengan jumlah kata dalam dokumen yang terasosiasi 

dengan topik k (ϕ_k). 

 

Dirichlet(β) adalah distribusi Dirichlet dengan parameter β. 

∑_(d=1)^D ∑_(n=1)^N Count(w_(d,n)) x(z_(d,n)=k) mewakili 

jumlah kemunculan kata dalam dokumen yang dikaitkan dengan 

topik k.  ∑_(d=1)^D ∑_(n=1)^N Count(w_(d,n)) mewakili jumlah 

total kata dalam semua dokumen. 

 

Secara intuitif, rumus tersebut menggambarkan bagaimana 

probabilitas distribusi topik tertentu dihitung berdasarkan jumlah 

kemunculan kata dalam dokumen yang terkait dengan topik 

tersebut, dibandingkan dengan jumlah total kata dalam semua 

dokumen, dan diperbarui dengan parameter β yang merupakan 

prior distribusi topik. Dalam LDA, tujuannya adalah untuk 

mengetahui distribusi topik kata (ϕ_k) dan distribusi topik 

dokumen (θ_d), dan rumus ini membantu dalam memperbarui 

estimasi distribusi topik kata berdasarkan dokumen yang diamati 

dalam korpus yang diberikan. 

 

G. Proses Model LDA 

 

Secara singkat dapat dijelaskan sebagai berikut: 

Model Latent Dirichlet Allocation (LDA) adalah model generatif 

yang menggunakan konsep probabilitas untuk menggambarkan 

hubungan antara variabel tersembunyi (topik) dan variabel 

pengamatan (kata-kata dalam dokumen). Berikut adalah 

representasi matematis dari Model LDA: 

 

H. Variabel Tersembunyi: 

1. Distribusi Topik Dokumen θ 

p(θi∣α)=Dir(θi∣α) 
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θi adalah distribusi dari topik-topik dalam dokumen i, diambil dari 

distribusi Dirichlet dengan parameter α. 

2. Distribusi Kata dalam Topik β 

p(βk∣η)=Dir(βk∣η)  

βk adalah distribusi dari kata-kata dalam topik k, diambil dari 

distribusi Dirichlet dengan parameter η.  

 

Proses Generatif: 

• Untuk setiap dokumen i: 

o θi∼Dir(α) 

• Untuk setiap kata ke-j dalam dokumen i: 

o ∼zij∼Multinomial(θi) 

o ∼wij∼Multinomial(βzij) 

• Penjelasan: 

• α adalah parameter prior untuk distribusi topik dokumen. 

• η adalah parameter prior untuk distribusi kata dalam topik. 

• θi adalah distribusi dari topik-topik dalam dokumen i. 

• βk adalah distribusi dari kata-kata dalam topik k. 

• zij adalah variabel tersembunyi yang menunjukkan topik 

yang diatribusikan ke kata ke- j dalam dokumen i. 

• wij adalah kata yang diamati ke-j dalam dokumen i. 

 

Model LDA melakukan proses generatif untuk menghasilkan 

dokumen-dokumen dengan cara mengambil distribusi topik dari 

distribusi Dirichlet untuk setiap dokumen, kemudian memilih 

topik dari distribusi topik dokumen untuk setiap kata dalam 

dokumen tersebut, dan akhirnya memilih kata dari distribusi kata 

dalam topik yang terkait dengan topik yang telah dipilih 

sebelumnya. 

 

I. Implementasi LDA 
 

import zipfile 

import pandas as pd 

import os 
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import zipfile: Ini mengimpor modul zipfile, yang memungkinkan 

Anda untuk bekerja dengan file zip di Python. Dengan 

menggunakan modul ini, Anda dapat mengekstrak file dari arsip 

zip, membuat file zip, dan melakukan operasi terkait file zip 

lainnya. import pandas as pd: Ini mengimpor modul pandas 

dengan alias pd. Pandas adalah pustaka yang sangat populer dalam 

Python untuk analisis data. Dengan menggunakan pd sebagai 

alias, Anda bisa mengakses fungsi-fungsi dan objek-objek dari 

pustaka pandas dengan menggunakan pd sebagai awalan. import 

os: Ini mengimpor modul os, yang memberikan fungsionalitas 

sistem operasi, seperti interaksi dengan sistem file, mengelola 

variabel lingkungan, dan melakukan operasi terkait sistem operasi 

lainnya di dalam program Python Anda. 

 

from google.colab import drive 

drive.mount ('/content/drive') 

 

Perintah from google.colab import drive digunakan dalam 

lingkungan Google Colab, yang merupakan lingkungan 

pengembangan berbasis cloud dari Google yang memungkinkan 

Anda untuk menulis dan mengeksekusi kode Python di browser. 

Perintah ini mengimpor fungsi drive dari modul google.colab. 

Fungsi drive ini digunakan untuk melakukan mount atau 

menghubungkan Google Drive ke sesi Colab Anda. Dengan cara 

ini, Anda bisa mengakses file yang ada di Google Drive dari 

lingkungan Colab untuk membaca, menulis, atau melakukan 

operasi lainnya pada file tersebut melalui kode Python. 

 

Pada perintah drive.mount('/content/drive'), drive.mount() adalah 

panggilan fungsi yang memicu proses mount Google Drive ke sesi 

Colab. Argument '/content/drive' adalah path atau lokasi di mana 

Google Drive akan di-mount di dalam lingkungan Colab. Setelah 

menjalankan perintah ini, Colab akan meminta autentikasi dengan 

akun Google Anda dan memberikan kode untuk autentikasi, yang 

perlu di-copy-paste untuk mengotorisasi akses ke Google Drive 

Anda. Setelah otorisasi berhasil, Google Drive akan di-mount ke 

path yang telah ditentukan, dalam contoh ini ke '/content/drive'. 
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#papers = pd.read_csv('drive/My 

Drive/dataset/fintechP2P/2023/16ribu.csv') #lokasi file 

papers = pd.read_csv('drive/My 

Drive/dataset/fintechP2P/2023/dataset/12-feb-2023masterurut-

p2p.csv') #lokasi file 

 

Perintah ini adalah contoh penggunaan dari pustaka pandas di 

Python untuk membaca sebuah file CSV ke dalam variabel papers. 

Dalam kode yang Anda berikan: 

 

pd.read_csv() adalah fungsi dari pustaka pandas yang digunakan 

untuk membaca file CSV. 'drive/My 

Drive/dataset/fintechP2P/2023/dataset/12-feb-2023masterurut-

p2p.csv' adalah path atau lokasi dari file CSV yang akan dibaca. 

Jadi, perintah membaca file CSV yang terletak pada path tersebut 

dan menyimpannya ke dalam variabel papers. Setelah eksekusi 

perintah ini, data dari file CSV tersebut akan dimuat ke dalam 

variabel papers, yang kemudian bisa digunakan untuk analisis 

lebih lanjut atau manipulasi data menggunakan pustaka pandas. 

 

papers 

 

Papers adalah sebuah variabel yang digunakan untuk menyimpan 

data yang dibaca dari file CSV dengan menggunakan pustaka 

pandas di Python. Dalam konteks ini, papers mungkin berisi 

kumpulan data yang terdapat dalam file CSV yang telah dibaca 

menggunakan fungsi pd.read csv(). 

 

Variabel ini bisa berupa DataFrame, struktur data yang sangat 

berguna dari pustaka pandas. DataFrame memungkinkan untuk 

menyimpan data dalam bentuk tabel dengan baris dan kolom, 

mirip dengan spreadsheet. Setiap kolom dalam DataFrame 

mungkin merepresentasikan jenis data atau atribut tertentu, 

sedangkan setiap baris mungkin merepresentasikan entri atau 

contoh dari data tersebut. 
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Dengan menggunakan variabel papers, Anda bisa melakukan 

berbagai operasi analisis data, seperti manipulasi data, pengolahan 

statistik, visualisasi, dan banyak lagi, karena papers sekarang 

berisi data dari file CSV yang telah dimuat menggunakan pustaka 

pandas. 

 

 
 

Variabel papers merupakan sebuah DataFrame yang berisi data 

teks atau komentar-komentar terkait dengan informasi tertentu. 

DataFrame ini memiliki satu kolom dengan nama 'content' yang 

berisi teks komentar. 

 

Dari potongan data yang Anda tunjukkan, terdapat 37143 baris (0 

sampai 37142) dan 1 kolom ('content'). Isi dari kolom 'content' ini 

tampaknya berupa komentar-komentar atau teks yang berkaitan 

dengan suatu topik, mungkin terkait dengan pendapat atau ulasan 

terhadap suatu layanan atau produk. 
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Contoh beberapa baris dari data yang tersimpan dalam variabel 

papers: 

 

Baris ke-0: "nama fet sroyer tolong hapus data banyak omon..." 

Baris ke-1: "uninstallkarenakan meminjam uang tolak mo..." 

Baris ke-2: "zonk data tolong dihapus" 

Baris ke-3: "zonk persyaratan hanya ktp pengajuan tolak m..." 

Baris ke-4: "zonk penipu mudah curi data doank" 

 

Setiap baris berisi komentar atau informasi yang mungkin dapat 

dianalisis lebih lanjut, misalnya, untuk mengidentifikasi sentimen 

atau pola-pola tertentu dalam teks tersebut menggunakan teknik 

pemrosesan bahasa alami atau untuk melakukan analisis sentimen 

terhadap pendapat-pendapat tersebut. 

 

papers['word_count'] = papers['content'].str.split().map(len) 

 

 

Perintah ini menambahkan kolom baru ke dalam DataFrame 

papers dengan nama 'word_count'. 

 

Mari kita bahas lebih rinci: papers['content']: Merujuk pada kolom 

'content' dalam DataFrame papers. Ini adalah kolom yang berisi 

teks atau komentar-komentar. 

 

str.split(): Ini adalah metode dari objek Series di pandas yang 

digunakan untuk membagi setiap teks dalam kolom 'content' 

menjadi kata-kata (dengan menggunakan spasi sebagai pemisah). 

Hasilnya adalah daftar kata-kata untuk setiap teks. .map(len): 

Setelah kata-kata dipisahkan untuk setiap teks dalam kolom 

'content', map(len) diaplikasikan pada setiap daftar kata-kata. 

Fungsinya adalah untuk menghitung panjang dari setiap daftar 

kata-kata, yang pada dasarnya adalah jumlah kata dalam setiap 

teks. Dengan menggunakan map(len), dihitunglah panjang setiap 

daftar kata-kata, yang sebenarnya adalah jumlah kata dalam setiap 

baris. 
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papers['word_count']: Ini menugaskan hasil dari perhitungan 

jumlah kata ke dalam kolom baru yang bernama 'word_count' di 

dalam DataFrame papers. Dengan demikian, setelah eksekusi 

perintah ini, papers akan memiliki kolom tambahan yang 

menampilkan jumlah kata dalam setiap teks yang ada di dalam 

kolom 'content'. 

 

 
 

Tabel ini menunjukkan hasil dari penghitungan jumlah kata dalam 

setiap teks yang terdapat dalam kolom 'content' dari DataFrame 

papers. Kolom baru yang diberi nama 'word_count' menampilkan 

jumlah kata dalam setiap baris teks yang sesuai. 

 

Contohnya, untuk beberapa baris tertentu: 

1. Baris pertama ('nama fet sroyer tolong hapus data banyak 

omon...'): Memiliki 9 kata. 

2. Baris kedua ('uninstallkarenakan meminjam uang tolak mo...'): 

Memiliki 11 kata. 

3. Baris ketiga ('zonk data tolong dihapus'): Memiliki 4 kata. 

4. Baris keempat ('zonk persyaratan hanya ktp pengajuan tolak 

m...'): Memiliki 18 kata. 
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5. Baris kelima ('zonk penipu mudah curi data doank'): Memiliki 

6 kata. 

6. Baris terakhir ('a suka banget proses gampang bgtsukses plus'): 

Memiliki 7 kata. 

 

Jadi, kolom 'word_count' ini memberikan informasi tentang 

jumlah kata yang ada dalam setiap baris teks yang ada di dalam 

kolom 'content' DataFrame papers. Informasi ini bisa berguna 

untuk analisis statistik atau pemahaman lebih lanjut tentang 

panjang atau kompleksitas teks dalam dataset tersebut. 

 

papers = papers[papers['word_count'] > 4] 

 

Perintah papers = papers[papers['word_count'] > 4] adalah contoh 

dari penggunaan filter di dalam Python dengan menggunakan 

pustaka pandas untuk DataFrame papers. Mari kita bahas langkah-

langkahnya: 

1. papers['word_count'] > 4: Ini adalah sebuah kondisi yang 

diterapkan pada kolom 'word_count' di dalam DataFrame 

papers. Kondisi ini mengevaluasi setiap baris dalam kolom 

'word_count' dan menghasilkan nilai True jika nilai dalam baris 

tersebut lebih besar dari 4, dan False jika tidak. 

2. papers[papers['word_count'] > 4]: Ini adalah teknik filter 

DataFrame di dalam pandas. Menggunakan kondisi di atas, 

perintah ini memilih hanya baris-baris dari DataFrame papers 

di mana kondisi papers['word_count'] > 4 bernilai True. 

Dengan kata lain, hanya baris-baris yang memiliki jumlah kata 

lebih dari 4 yang akan tetap ada dalam DataFrame yang baru. 

DataFrame yang dihasilkan akan berisi hanya baris-baris 

tersebut. 

 

Dengan menggunakan perintah ini, DataFrame papers diubah 

sedemikian rupa sehingga hanya menyertakan baris-baris di mana 

jumlah kata dalam teks (diwakili oleh kolom 'word_count') lebih 

dari 4. Ini memungkinkan untuk memfilter data berdasarkan 

kriteria tersebut, membuang baris-baris yang tidak memenuhi 

syarat tersebut. 
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#menghapus duplikasi data 

papers.drop_duplicates(subset ="content",keep = False, inplace = 

True) 

 

Perintah papers.drop_duplicates(subset="content", keep=False, 

inplace=True) digunakan untuk menghapus baris-baris duplikat 

dari DataFrame papers berdasarkan kolom 'content'. 

Mari kita bahas detailnya: 

1. papers: Merujuk pada DataFrame yang sedang dioperasikan. 

2. .drop_duplicates(): Ini adalah metode dari pandas yang 

digunakan untuk menghapus baris-baris yang merupakan 

duplikat dari DataFrame. 

3. subset="content": Parameter subset menentukan kolom mana 

yang akan diperiksa untuk mendeteksi duplikat. Di sini, kita 

menggunakan kolom 'content', yang berisi teks atau komentar-

komentar. 

4. keep=False: Parameter keep menentukan bagaimana 

mempertahankan hasil penghapusan. Nilai False berarti semua 

baris yang memiliki nilai yang sama di kolom yang ditentukan 

akan dihapus, termasuk baris pertama dan yang kedua (semua 

duplikat). 

5. inplace=True: Parameter inplace menentukan apakah 

perubahan akan diterapkan pada DataFrame itu sendiri atau 

apakah hasilnya akan disimpan dalam DataFrame baru. 

Dengan nilai True, perubahan akan diterapkan pada papers 

tanpa membuat DataFrame baru. 

 

Jadi, setelah eksekusi perintah ini, baris-baris yang memiliki nilai 

yang sama dalam kolom 'content' akan dihapus dari DataFrame 

papers. Hal ini membantu memastikan bahwa setiap baris dalam 

DataFrame tersebut memiliki nilai yang unik dalam kolom 

'content'. Dari proses menghapus data yang duplikasi dan data 

yang digunakan yang lebih dari 4 hata maka dihasilkan data 

sebagai berikut: 

 

Tabel yang Anda sertakan menunjukkan DataFrame setelah 

operasi penghapusan duplikat dan setelah melakukan filter untuk 

baris-baris di mana jumlah kata (kolom 'word_count') lebih besar 
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dari 4. Kolom 'content' berisi teks atau komentar-komentar, 

sementara kolom 'word_count' berisi jumlah kata dalam teks 

tersebut. 

 

Contohnya: 

1. Baris pertama ('nama fet sroyer tolong hapus data banyak 

omon...') memiliki 9 kata. 

2. Baris kedua ('uninstallkarenakan meminjam uang tolak mo...') 

memiliki 11 kata. 

3. Baris ketiga ('zonk persyaratan hanya ktp pengajuan tolak m...') 

memiliki 18 kata. 

4. Baris keempat ('zonk penipu mudah curi data doank') memiliki 

6 kata. 

5. Baris kelima ('zonk kali repot membayar tanggal mei jatuh ...') 

memiliki 39 kata. 

6. Baris terakhir ('a suka banget proses gampang bgtsukses plus') 

memiliki 7 kata. 

 

Tabel tersebut menampilkan baris-baris unik (tanpa duplikat), di 

mana setiap baris memiliki jumlah kata lebih besar dari 4, seperti 

yang telah dijelaskan sebelumnya. Jumlah total baris dalam 

DataFrame yang ditampilkan setelah operasi filter tersebut adalah 

29505. 

 

papers.to_csv('./drive/My 

Drive/dataset/fintechP2P/2023/20februari-bersih.csv', 

index=False) 

 

Perintah diatas merupakan sebuah perintah dalam Python 

menggunakan pustaka pandas untuk menyimpan DataFrame 

papers ke dalam format file CSV. 

1. papers: Merujuk pada DataFrame yang ingin disimpan. 

2. .to_csv(): Ini adalah metode dari pustaka pandas yang 

digunakan untuk menyimpan DataFrame ke dalam format 

file CSV. 

3. './drive/My Drive/dataset/fintechP2P/2023/20februari-

bersih.csv': Ini adalah path atau lokasi file di mana 

DataFrame papers akan disimpan sebagai file CSV. Dalam 
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kasus ini, file tersebut akan disimpan di lokasi yang 

ditentukan dengan nama file '20februari-bersih.csv'. 

4. index=False: Parameter index digunakan untuk 

menentukan apakah indeks dari DataFrame juga akan 

disimpan sebagai kolom dalam file CSV. Dengan nilai 

False, indeks tidak akan disertakan dalam file CSV yang 

dihasilkan. 

 

Jadi, perintah ini akan menyimpan DataFrame papers ke dalam 

file CSV dengan nama '20februari-bersih.csv' di lokasi yang 

ditentukan. File CSV yang dihasilkan akan berisi data dari 

DataFrame papers, dan indeks DataFrame tidak akan disertakan 

dalam file CSV tersebut. 

 

Tahap 2: Data Cleaning 

 

papers = papers.sample(10000) 

 

Perintah papers = papers.sample(10000) adalah perintah yang 

digunakan pada DataFrame dalam pustaka pandas di Python untuk 

mengambil sampel acak sejumlah 10.000 baris dari DataFrame 

papers. 

 

papers: Merujuk pada DataFrame yang sedang dioperasikan. 

.sample(): Ini adalah metode dari pustaka pandas yang digunakan 

untuk mengambil sampel acak dari DataFrame. 10000: Argumen 

ini menunjukkan jumlah baris yang ingin diambil sebagai sampel 

dari DataFrame. Dalam hal ini, dipilih untuk mengambil 10.000 

baris sebagai sampel acak dari DataFrame papers. 

 

Ketika perintah ini dieksekusi, DataFrame papers akan berisi 

10.000 baris yang diambil secara acak dari data aslinya. Sampel 

tersebut dapat digunakan untuk analisis yang lebih cepat atau 

untuk mengurangi ukuran data yang digunakan tanpa kehilangan 

representasi signifikan dari keseluruhan data. 

 

papers['paper_text'] = papers['content'].str.lower() 
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1. Perintah papers['paper_text'] = papers['content'].str.lower() 

digunakan untuk membuat kolom baru dalam DataFrame 

papers dengan nama 'paper_text', yang berisi teks dari kolom 

'content' yang telah diubah menjadi huruf kecil (lowercase). 

2. papers['content']: Merujuk pada kolom 'content' dalam 

DataFrame papers. Kolom ini berisi teks atau komentar-

komentar. 

3. .str.lower(): Ini adalah metode dari objek Series di pandas yang 

digunakan untuk mengonversi setiap teks dalam kolom 

'content' menjadi huruf kecil atau lowercase. 

4. papers['paper_text']: Ini adalah penugasan hasil dari konversi 

teks menjadi huruf kecil ke dalam kolom baru dengan nama 

'paper_text' di dalam DataFrame papers. 

 

Jadi, setelah perintah ini dieksekusi, DataFrame papers akan 

memiliki kolom baru 'paper_text' yang berisi teks dari kolom 

'content' dengan semua huruf diubah menjadi huruf kecil. Hal ini 

sering digunakan untuk mempermudah pemrosesan dan analisis 

teks, karena mengubah teks menjadi lowercase membantu untuk 

konsistensi dalam pencarian dan pengelompokan teks dalam 

analisis data. 

1. Menghapus tanda baca/huruf kecil 

Selanjutnya, mari kita lakukan prapemrosesan pada konten kolom 

paper_text agar lebih mudah dianalisis dan hasilnya dapat 

diandalkan. Untuk melakukannya, kami akan menggunakan 

ekspresi reguler untuk menghapus tanda baca apa pun, lalu huruf 

kecil pada teksnya 

 

# Load the regular expression library 

import re 

 

# Remove punctuation 

papers['paper_text_processed'] = 

papers['paper_text'].map(lambda x: re.sub('[,\.!?]', '', x)) 
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# Convert the titles to lowercase 

papers['paper_text_processed'] = 

papers['paper_text_processed'].map(lambda x: x.lower()) 

 

# Print out the first rows of papers 

papers['paper_text_processed'].head() 

 

Perintah ini adalah bagian dari proses pra-pemrosesan teks di 

dalam DataFrame papers menggunakan modul re (regular 

expression) dan pustaka pandas di Python. import re: Ini adalah 

perintah untuk memuat modul regular expression (re) yang 

memungkinkan penggunaan ekspresi reguler untuk manipulasi 

teks. 

 

papers['paper_text_processed'] =papers['paper_text'].map(lambda 

x: re.sub('[,\.!?]', '', x)): Perintah ini menghapus tanda baca dari 

teks di dalam kolom 'paper_text' di DataFrame papers. Ini 

dilakukan dengan menggunakan ekspresi reguler untuk mengganti 

(substitusi) tanda baca seperti koma, titik, tanda seru, dan tanda 

tanya dengan string kosong (''). Fungsi lambda digunakan di sini 

untuk menerapkan perubahan ini ke setiap baris di kolom 

'paper_text'. 

 

papers['paper_text_processed']= papers['paper_text_processed'] 

.map(lambda x: x.lower()): Setelah menghapus tanda baca, 

perintah ini mengonversi teks di dalam kolom 

'paper_text_processed' menjadi huruf kecil (lowercase). Ini 

dilakukan menggunakan fungsi lambda untuk menerapkan operasi 

lowercase ke setiap baris teks di kolom 'paper_text_processed'. 

papers['paper_text_processed'].head(): Perintah ini mencetak 

beberapa baris pertama dari kolom 'paper_text_processed' dari 

DataFrame papers, menampilkan teks yang telah melalui proses 

penghapusan tanda baca dan konversi ke huruf kecil. 

 

Dengan demikian, proses ini adalah bagian dari tahap pra-

pemrosesan teks yang umum dilakukan sebelum melakukan 

analisis teks lebih lanjut, seperti pemodelan atau pemrosesan 
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lanjutan untuk tujuan tertentu seperti analisis sentimen atau 

pemodelan bahasa alami. 

 

2. Tokenize words and further clean-up text 

 

Let’s tokenize each sentence into a list of words, removing 

punctuations and unnecessary characters altogether. 

 

import gensim 

from gensim.utils import simple_preprocess 

 

def sent_to_words(sentences): 

    for sentence in sentences: 

        yield(gensim.utils.simple_preprocess(str(sentence), 

deacc=True))  # deacc=True removes punctuations 

 

data = papers.paper_text_processed.values.tolist() 

data_words = list(sent_to_words(data)) 

 

print(data_words[:1][0][:30]) 

 

Kode menggunakan pustaka gensim dalam Python, yang 

umumnya digunakan untuk pemodelan teks dan pemrosesan 

bahasa alami. import gensim: Ini adalah perintah untuk memuat 

pustaka gensim, yang memiliki alat dan fungsi untuk pemodelan 

teks dan pemrosesan bahasa alami. 

 

from gensim.utils import simple_preprocess: Ini mengimpor 

fungsi simple_preprocess dari gensim.utils. Fungsi ini berguna 

untuk memproses teks secara sederhana, seperti membagi teks 

menjadi kata-kata kecil (lowercase) dan menghapus aksara. 

 

def sent_to_words(sentences): ...: Ini adalah definisi dari sebuah 

fungsi bernama sent_to_words. Fungsi ini menerima daftar 

kalimat atau teks (sentences) dan memprosesnya menjadi kata-

kata kecil tanpa aksara (punctuation) menggunakan 

simple_preprocess. Fungsi ini menggunakan generator (yield) 
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untuk menghasilkan kata-kata dari setiap kalimat yang diberikan 

ke fungsi. 

3. Pemodelan Frase: Model Bigram dan Trigram 

Bigram adalah dua kata yang sering muncul bersamaan dalam 

dokumen. Trigram adalah 3 kata yang sering muncul. Beberapa 

contoh dalam contoh kita adalah: 'back_bumper', 'oil_leakage', 

'maryland_college_park' dll. Model Frase Gensim dapat 

membangun dan mengimplementasikan bigram, trigram, 

quadgram, dan lainnya. Dua argumen penting pada Frase adalah 

min_count dan ambang batas. Semakin tinggi nilai param ini, 

semakin sulit kata-kata untuk digabungkan. 

 

data = papers.paper_text_processed.values.tolist(): Ini mengambil 

kolom 'paper_text_processed' dari DataFrame papers dan 

mengonversinya ke dalam bentuk daftar (list). Kolom ini berisi 

teks yang telah diolah sebelumnya. 

 

data_words = list(sent_to_words(data)): Fungsi sent_to_words 

yang telah didefinisikan sebelumnya diterapkan ke data (kolom 

'paper_text_processed') untuk memproses teks menjadi daftar 

kata-kata kecil tanpa aksara. Hasilnya disimpan dalam variabel 

data_words. 

 

print(data_words[:1][0][:30]):  

 

Perintah ini mencetak 30 kata pertama dari hasil pemrosesan teks 

(data_words) untuk satu baris teks pertama yang telah diproses 

sebelumnya. Jadi, keseluruhan kode ini digunakan untuk 

mengubah teks yang terdapat dalam kolom 'paper_text_processed' 

dari DataFrame papers menjadi daftar kata-kata kecil tanpa aksara 

(punctuation) menggunakan pustaka gensim dan fungsi 

simple_preprocess untuk analisis teks lebih lanjut. 

 

Kode ini menggunakan pustaka gensim untuk mengidentifikasi 

dan membentuk bigram (pasangan dua kata) dan trigram 

(pasangan tiga kata) dari daftar kata-kata yang telah diproses 
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sebelumnya dalam variabel data_words. Mari kita bahas langkah-

langkahnya: 

 

bigram = gensim.models.Phrases(data_words, min_count=5, 

threshold=100):  

 

Di sini, gensim.models.Phrases digunakan untuk membentuk 

bigram dari data_words. Parameter min_count mengontrol jumlah 

minimum kemunculan kata dalam teks agar menjadi bigram, 

sedangkan threshold adalah nilai yang menentukan seberapa 

sering pasangan kata harus muncul agar dianggap sebagai bigram. 

Semakin tinggi nilai threshold, semakin sedikit bigram yang 

dihasilkan. 

 

trigram = gensim.models.Phrases(bigram[data_words], 

threshold=100):  

 

Langkah ini menggunakan bigram yang telah dibuat sebelumnya 

sebagai dasar untuk membentuk trigram. Dengan menggunakan 

bigram[data_words], kita menggunakan bigram yang telah 

dihitung sebelumnya sebagai acuan untuk menemukan trigram. Ini 

membantu dalam pembentukan trigram berdasarkan bigram yang 

telah dibentuk sebelumnya. 

 

bigram_mod = gensim.models.phrases.Phraser(bigram): Untuk 

mempercepat proses pembentukan bigram, 

gensim.models.phrases.Phraser digunakan untuk membuat objek 

bigram_mod dari bigram yang telah dibuat sebelumnya. Objek 

bigram_mod ini dapat digunakan untuk menerapkan bigram ke 

teks. 

 

trigram_mod = gensim.models.phrases.Phraser(trigram): Sama 

seperti langkah sebelumnya, trigram yang telah dihitung 

sebelumnya dikonversi menjadi objek trigram_mod menggunakan 

gensim.models.phrases.Phraser. Ini memungkinkan penggunaan 

trigram dalam pemrosesan teks. 

Dengan menggunakan langkah-langkah ini, bigram dan trigram 

diidentifikasi dari daftar kata-kata, dan objek bigram_mod dan 
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trigram_mod dapat digunakan untuk menerapkan bigram dan 

trigram tersebut pada teks dengan cepat dan efisien. Ini berguna 

dalam pemodelan teks atau analisis berikutnya yang memerlukan 

penggunaan bigram dan trigram. 

4. Remove Stopwords, Make Bigrams and Lemmatize 

The phrase models are ready. Let’s define the functions to remove 

the stopwords, make trigrams and lemmatization and call them 

sequentially. 

 

# NLTK Stop words 

import nltk 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

 

#stop_words = stopwords.words('english') 

stop_words = stopwords.words('indonesian') 

#stop_words.extend(['from', 'subject', 're 

stop_words.extend(["yg", "dg", "rt", "dgn", "ny", "d", 'klo', 

'sy','saya','kalo', 'amp', 'biar', 'bikin', 

        'pen', 'u', 'nan', 'loh', 'rt', '&amp', 'yah']) 

 

Kode ini menggunakan pustaka Natural Language Toolkit 

(NLTK) di Python untuk mengunduh dan menggunakan kata-kata 

stop (stop words) dalam bahasa Indonesia untuk pemrosesan teks 

lebih lanjut. 

 

import nltk: Ini mengimpor pustaka NLTK, pustaka yang sering 

digunakan dalam pemrosesan bahasa alami di Python. 

 

nltk.download('stopwords'): Ini adalah perintah untuk mengunduh 

dataset kata-kata stop dari NLTK. Dataset ini berisi daftar kata-

kata yang umumnya dianggap tidak memiliki makna penting 

dalam analisis teks karena mereka sangat umum dan sering 

muncul dalam bahasa tertentu. 
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from nltk.corpus import stopwords: Setelah dataset stop words 

diunduh, kita mengimpor modul stopwords dari corpus NLTK. 

Modul ini berisi daftar kata-kata stop dalam berbagai bahasa. 

 

stop_words = stopwords.words('indonesian'): Di sini, kita 

menggunakan daftar kata-kata stop dalam bahasa Indonesia yang 

telah diunduh dari NLTK. Variabel stop_words akan berisi daftar 

kata-kata tersebut, yang akan digunakan untuk menghapus kata-

kata ini dari teks dalam proses pra-pemrosesan. 

 

stop_words.extend([...]): Baris ini digunakan untuk 

menambahkan kata-kata tambahan ke dalam daftar stop words. 

Dalam contoh ini, terdapat beberapa kata tambahan yang 

ditambahkan ke dalam daftar stop words bahasa Indonesia seperti 

"yg", "dg", "rt", dan lain-lain. Ini bisa dilakukan untuk 

menyesuaikan daftar kata-kata stop sesuai dengan kebutuhan 

analisis atau pemrosesan teks yang sedang dilakukan. 

 

Jadi, kode ini membantu untuk memuat daftar kata-kata stop 

dalam bahasa Indonesia dan menambahkan beberapa kata 

tambahan ke dalam daftar tersebut agar dapat digunakan dalam 

proses pra-pemrosesan teks. Hal ini berguna untuk menghilangkan 

kata-kata yang tidak relevan atau yang biasanya tidak memberikan 

informasi penting dalam analisis teks. 

 

5. Transformasi data: Korpus dan Kamus 

 

Dua masukan utama pada model topik LDA adalah kamus 

(id2word) dan korpus. Mari kita buat. 

import gensim.corpora as corpora 

 

# Create Dictionary 

#id2word = corpora.Dictionary(data_lemmatized) 

id2word = corpora.Dictionary(data_words) 

 

# Create Corpus 

texts = data_words 
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# Term Document Frequency 

corpus = [id2word.doc2bow(text) for text in texts] 

 

# View 

print(corpus[:1][0][:30]) 

 

Kode ini menggunakan pustaka Gensim di Python untuk 

membangun representasi numerik dari teks yang disebut "Bag-of-

Words" (BoW). BoW mengubah teks ke dalam representasi vektor 

di mana setiap kata diwakili sebagai fitur, dan nilai di setiap fitur 

menunjukkan jumlah kemunculan kata tersebut dalam teks. 

import gensim.corpora as corpora: Ini mengimpor modul corpora 

dari pustaka Gensim, yang berguna untuk membangun model-

madel teks. 

 

id2word = corpora.Dictionary(data_words): Di sini, sebuah 

kamus (dictionary) dibuat menggunakan Dictionary dari modul 

corpora. Dictionary ini memetakan kata-kata dalam data_words ke 

indeks numerik. Setiap kata dalam data_words akan diberikan 

sebuah ID numerik yang unik. 

 

texts = data_words: Data yang telah di-preprocess (data_words) 

disimpan dalam variabel texts. 

 

corpus = [id2word.doc2bow(text) for text in texts]: Langkah ini 

membangun representasi BoW dari teks yang telah dipreprocess 

(texts). Metode doc2bow dari objek id2word digunakan untuk 

mengonversi setiap dokumen (teks) dalam texts menjadi 

representasi BoW. BoW ini terdiri dari tupel (word_id, 

word_frequency), yang menunjukkan ID kata dan frekuensi kata 

dalam teks. 

 

print(corpus[:1][0][:30]): Perintah ini mencetak 30 elemen 

pertama dari representasi BoW dari teks pertama yang telah 

dihasilkan sebelumnya. 

 

Jadi, keseluruhan kode ini bertujuan untuk membuat representasi 

BoW dari teks yang telah dipreprocess dan membangun corpus 
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BoW yang siap digunakan untuk model-topik atau analisis 

lanjutan lainnya menggunakan pustaka Gensim. 

 

J. Model Dasar 

 

Kami memiliki semua yang diperlukan untuk melatih model LDA 

dasar. Selain korpus dan kamus, Anda juga perlu menyediakan 

jumlah topik. Selain itu, alpha dan eta merupakan hyperparameter 

yang mempengaruhi ketersebaran topik. Menurut dokumen 

Gensim, keduanya default ke 1.0/num_topics sebelumnya (kami 

akan menggunakan default untuk model dasar). 

 

chunksize mengontrol berapa banyak dokumen yang diproses 

sekaligus dalam algoritma pelatihan. Meningkatkan ukuran 

potongan akan mempercepat pelatihan, setidaknya selama 

potongan dokumen tersebut mudah masuk ke dalam memori. 

pass mengontrol seberapa sering kita melatih model di seluruh 

korpus (disetel ke 10). Kata lain untuk pass mungkin adalah 

"zaman". iterasi agak bersifat teknis, namun pada dasarnya ini 

mengontrol seberapa sering kita mengulangi perulangan tertentu 

pada setiap dokumen. Penting untuk menetapkan jumlah "pass" 

dan "iterasi" yang cukup tinggi. 

 

# Build LDA model 

lda_model = gensim.models.LdaMulticore(corpus=corpus, 

                                       id2word=id2word, 

                                       num_topics=10, 

                                       random_state=100, 

                                       chunksize=100, 

                                       passes=10, 

                                       per_word_topics=True) 

 

Perintah ini menggunakan pustaka Gensim di Python untuk 

membangun model LDA (Latent Dirichlet Allocation) yang 

merupakan metode untuk menemukan topik-topik tersembunyi 

dalam koleksi dokumen. 
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lda_model = gensim.models.LdaMulticore(corpus=corpus, 

id2word=id2word, num_topics=10, random_state=100, 

chunksize=100, passes=10, per_word_topics=True) 

 

gensim.models.LdaMulticore: Ini adalah metode untuk membuat 

model LDA dengan implementasi multicore yang memungkinkan 

penggunaan beberapa core CPU untuk pelatihan yang lebih cepat. 

 

corpus=corpus: Parameter ini adalah representasi BoW dari 

dokumen yang telah disiapkan sebelumnya dengan menggunakan 

fungsi corpora.Dictionary dan id2word.doc2bow. 

 

id2word=id2word: Parameter ini adalah kamus (dictionary) yang 

telah dibuat untuk memetakan kata-kata ke indeks numerik. 

num_topics=10: Ini adalah jumlah topik yang ingin diidentifikasi 

dalam model LDA. Dalam contoh ini, model diatur untuk mencari 

10 topik tersembunyi dalam koleksi dokumen. 

 

random_state=100: Parameter ini mengatur nilai awal untuk 

pengacakan yang memastikan hasil yang konsisten saat model 

dilatih ulang. 

 

chunksize=100: Ukuran blok untuk pemrosesan paralel dalam 

model multicore. 

 

passes=10: Jumlah iterasi untuk melatih model pada seluruh 

corpus. 

 

per_word_topics=True: Parameter ini mengatur untuk 

menghasilkan informasi topik untuk setiap kata dalam dokumen, 

bukan hanya topik utama dari dokumen itu sendiri. 

 

Perintah ini akan membuat sebuah model LDA yang akan 

mencoba mengidentifikasi 10 topik tersembunyi dalam koleksi 

dokumen berdasarkan representasi BoW yang telah dibuat 

sebelumnya. Model ini kemudian dapat digunakan untuk 

mengeksplorasi dan menganalisis topik dalam dokumen-dokumen 

tersebut. 
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Model LDA di atas dibangun dengan 10 topik berbeda dimana 

setiap topik merupakan kombinasi kata kunci dan setiap kata 

kunci memberikan kontribusi bobot tertentu pada topik. 

Anda dapat melihat kata kunci untuk setiap topik dan bobot 

(pentingnya) setiap kata kunci menggunakan 

lda_model.print_topics() 

 

from pprint import pprint 

 

# Print the Keyword in the 10 topics 

pprint(lda_model.print_topics()) 

doc_lda = lda_model[corpus] 

 

Perintah ini menggunakan pustaka pprint untuk mencetak topik-

topik yang telah ditemukan oleh model LDA (Latent Dirichlet 

Allocation) yang telah dilatih sebelumnya. 

 

from pprint import pprint: Ini mengimpor fungsi pprint dari 

pustaka pprint. pprint (pretty-print) digunakan untuk mencetak 

output dengan tata letak yang lebih baik dan lebih mudah dibaca 

daripada fungsi print biasa. 

 

pprint(lda_model.print_topics()): Perintah ini mencetak topik-

topik yang telah ditemukan oleh model LDA yang telah dilatih 

sebelumnya. Fungsi print_topics() pada objek model LDA 

mengembalikan daftar topik dengan kata-kata kunci yang paling 

berkaitan dengan setiap topik. 

 

doc_lda = lda_model[corpus]: Ini adalah cara untuk menerapkan 

model LDA yang telah dilatih pada seluruh dataset (corpus) yang 

telah digunakan sebelumnya untuk melatih model. Hasilnya 

disimpan dalam variabel doc_lda. Ini akan memberikan distribusi 

topik untuk setiap dokumen dalam corpus, yaitu, seberapa kuat 

setiap dokumen terhubung dengan setiap topik. 

 

Dengan menggunakan pprint(lda_model.print_topics()), kita 

mendapatkan tampilan yang terstruktur dan mudah dibaca tentang 

kata-kata kunci yang paling berkaitan dengan setiap topik yang 
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ditemukan oleh model LDA. Ini membantu dalam memahami 

topik-topik yang mungkin ada dalam koleksi dokumen yang telah 

diproses menggunakan model LDA tersebut. 

 

Hasilnya sebagai berikut: 

[(0, 

  '0.075*"bayar" + 0.048*"udah" + 0.034*"tempo" + 

0.031*"pinjam" + ' 

  '0.031*"limit" + 0.027*"jatuh" + 0.024*"kecewa" + 

0.023*"telat" + ' 

  '0.023*"pengajuan" + 0.022*"pembayaran"'), 

 (1, 

  '0.134*"data" + 0.061*"tolong" + 0.047*"hapus" + 

0.039*"mohon" + ' 

  '0.038*"nama" + 0.032*"pengajuan" + 0.031*"pinjaman" + 

0.030*"tolak" + ' 

  '0.022*"uninstall" + 0.021*"saya"'), 

 (2, 

  '0.050*"sistem" + 0.048*"lunas" + 0.031*"ngajuin" + 

0.020*"perbaikan" + ' 

  '0.019*"kaya" + 0.019*"telepon" + 0.019*"pundi" + 

0.018*"skor" + ' 

  '0.018*"kirim" + 0.017*"chat"'), 

 (3, 

  '0.055*"pinjaman" + 0.035*"semoga" + 0.035*"cepat" + 

0.033*"acc" + ' 

  '0.033*"kredit" + 0.031*"membantu" + 0.024*"mudah" + 

0.022*"pengajuan" + ' 

  '0.022*"dana" + 0.022*"proses"'), 

 (4, 

  '0.048*"bank" + 0.047*"bunganya" + 0.030*"cicilan" + 

0.029*"tenor" + ' 

  '0.026*"bunga" + 0.024*"sulit" + 0.023*"kebutuhan" + 

0.022*"tunggu" + ' 

  '0.022*"selesai" + 0.016*"kridit"'), 

 (5, 

  '0.031*"ajukan" + 0.028*"tanggal" + 0.027*"pakai" + 

0.024*"aman" + ' 
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  '0.019*"suruh" + 0.019*"melunasi" + 0.018*"menit" + 

0.018*"sekarang" + ' 

  '0.018*"knp" + 0.016*"upgrade"'), 

 (6, 

  '0.038*"susah" + 0.028*"tolong" + 0.027*"bukti" + 

0.025*"meng" + 0.021*"wa" ' 

  '+ 0.021*"nomor" + 0.021*"masukan" + 0.021*"nomer" + 

0.017*"hp" + ' 

  '0.016*"kembalikan"'), 

 (7, 

  '0.125*"bintang" + 0.057*"acc" + 0.033*"download" + 

0.020*"ngajuin" + ' 

  '0.019*"coba" + 0.016*"parah" + 0.013*"di" + 0.013*"dr" + 

0.012*"sudah" + ' 

  '0.012*"menunggu"'), 

 (8, 

  '0.034*"disetujui" + 0.032*"rb" + 0.029*"dah" + 0.027*"trus" + 

0.020*"gitu" ' 

  '+ 0.019*"topup" + 0.018*"limitnya" + 0.018*"sehari" + 

0.015*"ngisi" + ' 

  '0.014*"eror"'), 

 (9, 

  '0.053*"masuk" + 0.033*"gagal" + 0.026*"email" + 

0.025*"uang" + 0.023*"akun" ' 

  '+ 0.021*"pake" + 0.021*"rekening" + 0.018*"saldo" + 

0.017*"cs" + ' 

  '0.017*"maret"')] 

 

Compute Model Perplexity and Coherence Score 

 

from gensim.models import CoherenceModel 

 

# Compute Coherence Score 

coherence_model_lda = CoherenceModel(model=lda_model, 

texts=data_words, dictionary=id2word, coherence='c_v') 

coherence_lda = coherence_model_lda.get_coherence() 

print('Coherence Score: ', coherence_lda) 
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Perintah ini digunakan untuk menghitung skor koherensi 

(coherence score) dari model Latent Dirichlet Allocation (LDA) 

yang telah dilatih sebelumnya. Skor koherensi memberikan 

gambaran tentang seberapa koheren atau terkait topik-topik yang 

dihasilkan oleh model. 

 

from gensim.models import CoherenceModel: Ini mengimpor 

CoherenceModel dari pustaka Gensim. CoherenceModel 

digunakan untuk menghitung koherensi dari model topic 

modeling. 

 

coherence_model_lda = CoherenceModel(model=lda_model, 

texts=data_words, dictionary=id2word, coherence='c_v'): Ini 

membuat objek coherence_model_lda menggunakan 

CoherenceModel. Parameter-parameter yang digunakan adalah: 

model=lda_model: Merujuk pada model LDA yang telah dilatih 

sebelumnya. 

 

texts=data_words: Merupakan teks yang telah diproses 

sebelumnya, dalam bentuk daftar kata-kata. 

 

dictionary=id2word: Kamus yang memetakan kata-kata ke indeks 

numerik. 

 

coherence='c_v': Jenis koherensi yang digunakan. Dalam hal ini, 

'c_v' adalah metode koherensi yang dikenal sebagai Coherence 

'c_v'. 

 

coherence_lda = coherence_model_lda.get_coherence(): Langkah 

ini menghitung skor koherensi dengan menggunakan metode 

get_coherence() dari objek coherence_model_lda. Skor koherensi 

akan memberikan gambaran tentang seberapa baik topik-topik 

yang dihasilkan oleh model LDA. 

 

print('Coherence Score: ', coherence_lda): Perintah ini mencetak 

skor koherensi yang telah dihitung sebelumnya. 
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Dengan menggunakan skor koherensi, kita mendapatkan ukuran 

kualitas dari topik-topik yang dihasilkan oleh model. Semakin 

tinggi skor koherensi, semakin baik atau lebih terkait topik-topik 

yang dihasilkan oleh model tersebut. 

 

K. Penyetelan tuning hyper parameter 

 

Pertama, mari kita bedakan antara hyperparameter model dan 

parameter model: 

 

Hyperparameter model dapat dianggap sebagai pengaturan untuk 

algoritma pembelajaran mesin yang disetel oleh data scientist 

sebelum pelatihan. Contohnya adalah jumlah pohon di hutan acak, 

atau dalam kasus kami, jumlah topik K. Parameter model dapat 

dianggap sebagai apa yang dipelajari model selama pelatihan, 

seperti bobot setiap kata dalam topik tertentu. Sekarang kita 

memiliki skor koherensi dasar untuk model LDA default, mari kita 

lakukan serangkaian uji sensitivitas untuk membantu menentukan 

hyperparameter model berikut: 

 

Jumlah Topik (K), Dirichlet hyperparameter alpha: Kepadatan 

Topik Dokumen, Hyperparameter beta Dirichlet: Kepadatan 

Topik Kata 

 

Kami akan melakukan pengujian ini secara berurutan, satu 

parameter pada satu waktu dengan menjaga parameter lainnya 

tetap konstan dan menjalankannya pada dua set korpus validasi 

perbedaan. Kami akan menggunakan C_v sebagai metrik pilihan 

kami untuk perbandingan kinerja 

 

# supporting function 

def compute_coherence_values(corpus, dictionary, k, a, b): 

    lda_model = gensim.models.LdaMulticore(corpus=corpus, 

                                           id2word=dictionary, 

                                           num_topics=k, 

                                           random_state=100, 

                                           chunksize=100, 
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                                           passes=10, 

                                           alpha=a, 

                                           eta=b) 

    coherence_model_lda = CoherenceModel(model=lda_model, 

texts=data_words, dictionary=id2word, coherence='c_v') 

 

    return coherence_model_lda.get_coherence() 

 

 

Fungsi ini digunakan untuk menghitung skor koherensi 

(coherence score) dari model LDA (Latent Dirichlet Allocation) 

yang dibangun dengan berbagai nilai alpha dan eta. Fungsi ini 

membantu dalam mengevaluasi bagaimana nilai-nilai parameter 

ini mempengaruhi kualitas topik-topik yang dihasilkan oleh 

model. 

 

Argumen-argumen dalam fungsi compute_coherence_values: 

corpus: Representasi Bag-of-Words (BoW) dari dokumen yang 

akan digunakan untuk melatih model. 

dictionary: Kamus yang memetakan kata-kata ke indeks numerik. 

k: Jumlah topik yang diuji. 

1. Parameter alpha yang digunakan dalam model LDA. Ini 

mengontrol distribusi topik dalam dokumen. Nilai alpha yang 

lebih tinggi menyebabkan dokumen memiliki distribusi topik 

yang lebih merata. 

2. Parameter eta yang digunakan dalam model LDA. Ini 

mengontrol distribusi kata dalam topik. Nilai eta yang lebih 

tinggi menyebabkan topik memiliki distribusi kata yang lebih 

merata. 

 

Langkah-langkahnya adalah sebagai berikut: 

 

lda_model = gensim.models.LdaMulticore(...): Fungsi ini 

menggunakan model LDA multicore dari Gensim untuk melatih 

model LDA dengan parameter yang diberikan (corpus, dictionary, 

num_topics=k, alpha=a, eta=b, dst). 
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coherence_model_lda = CoherenceModel(...): Langkah ini 

membuat objek coherence_model_lda menggunakan 

CoherenceModel dari Gensim dengan menggunakan model LDA 

yang telah dilatih sebelumnya. 

 

return coherence_model_lda.get_coherence(): Fungsi 

mengembalikan skor koherensi yang dihitung menggunakan 

metode get_coherence() dari objek coherence_model_lda. Ini 

memberikan informasi tentang seberapa koheren topik-topik yang 

dihasilkan oleh model dengan kombinasi parameter alpha dan eta 

tertentu. 

 

Dengan menggunakan fungsi ini, Anda dapat menguji dan 

membandingkan berbagai nilai alpha dan eta untuk mengevaluasi 

bagaimana hal itu mempengaruhi kualitas topik yang dihasilkan 

oleh model LDA. memanggil fungsinya, dan ulangi pada rentang 

nilai parameter topik, alfa, dan beta 

 

#bagian 1 

import numpy as np 

import tqdm 

 

grid = {} 

grid['Validation_Set'] = {} 

 

# Topics range 

min_topics = 2 

max_topics = 11 

step_size = 1 

topics_range = range(min_topics, max_topics, step_size) 

 

# Alpha parameter 

alpha = list(np.arange(0.01, 1, 0.3)) 

alpha.append('symmetric') 

alpha.append('asymmetric') 

 

# Beta parameter 

beta = list(np.arange(0.01, 1, 0.3)) 
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beta.append('symmetric') 

 

# Validation sets 

num_of_docs = len(corpus) 

corpus_sets = [gensim.utils.ClippedCorpus(corpus, 

int(num_of_docs*0.75)), 

               corpus] 

 

corpus_title = ['75% Corpus', '100% Corpus'] 

 

model_results = {'Validation_Set': [], 

                 'Topics': [], 

                 'Alpha': [], 

                 'Beta': [], 

                 'Coherence': [] 

                } 

 

#Bagian 2 

if 1 == 1: 

    pbar = 

tqdm.tqdm(total=(len(beta)*len(alpha)*len(topics_range)*len(co

rpus_title))) 

 

    # iterate through validation corpuses 

    for i in range(len(corpus_sets)): 

        # iterate through number of topics 

        for k in topics_range: 

            # iterate through alpha values 

            for a in alpha: 

                # iterare through beta values 

                for b in beta: 

                    # get the coherence score for the given parameters 

                    cv = 

compute_coherence_values(corpus=corpus_sets[i], 

dictionary=id2word, 

                                                  k=k, a=a, b=b) 

                    # Save the model results 
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                    model_results['Validation_Set'].append(corpus_title[

i]) 

                    model_results['Topics'].append(k) 

                    model_results['Alpha'].append(a) 

                    model_results['Beta'].append(b) 

                    model_results['Coherence'].append(cv) 

 

                    pbar.update(1) 

    pd.DataFrame(model_results).to_csv('./drive/My 

Drive/dataset/fintechP2P/2023/13feb_tuning_results.csv', 

index=False) 

    pbar.close() 

 

Bagian 1 Ini adalah kode untuk menyiapkan berbagai parameter 

yang akan digunakan dalam eksplorasi model LDA (Latent 

Dirichlet Allocation) dengan menggunakan teknik grid search. 

Import Numpy dan tqdm: Baris pertama mengimpor modul 

NumPy untuk operasi numerik dan tqdm, sebuah modul yang 

membantu membuat bar progres saat iterasi yang lama.  

 

Variabel grid: Ini adalah wadah (dictionary) yang akan digunakan 

untuk menyimpan hasil eksperimen. 

 

Range Topik: Variabel min_topics, max_topics, dan step_size 

digunakan untuk menentukan rentang nilai topik yang akan 

dieksplorasi dalam pencarian model LDA yang optimal. 

 

Parameter Alpha dan Beta: alpha dan beta adalah daftar yang 

berisi rentang nilai untuk parameter alpha dan beta yang akan 

dieksplorasi dalam pencarian model LDA. 

 

Validation Sets: Variabel num_of_docs, corpus_sets, dan 

corpus_title digunakan untuk menyiapkan data corpus yang akan 

digunakan untuk validasi. num_of_docs adalah jumlah dokumen 

dalam corpus, corpus_sets adalah persentase corpus yang akan 

digunakan (75% dan 100%), dan corpus_title adalah label yang 

sesuai dengan corpus yang digunakan. 
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Model Results: Ini adalah wadah untuk menyimpan hasil evaluasi 

berbagai parameter LDA, seperti nilai koherensi. 

Kode ini adalah langkah pertama dalam proses eksperimen yang 

melibatkan iterasi berbagai kombinasi parameter LDA untuk 

menentukan parameter mana yang memberikan hasil terbaik 

dalam hal koherensi topik pada model. Setelah parameter dan data 

disiapkan seperti ini, dilakukan iterasi dalam eksperimen grid 

search untuk mengevaluasi kombinasi parameter yang berbeda 

terhadap kualitas model yang dihasilkan. 

 

Bagian 2 ini adalah bagian yang melakukan iterasi melalui 

kombinasi parameter LDA yang telah ditentukan sebelumnya 

untuk mengevaluasi dan menyimpan skor koherensi untuk setiap 

kombinasi tersebut. 

 

if 1 == 1:: Ini adalah pernyataan yang selalu benar. Ini 

menunjukkan bahwa iterasi yang dilakukan di bawahnya akan 

dieksekusi. 

 

pbar = 

tqdm.tqdm(total=(len(beta)*len(alpha)*len(topics_range)*len(co

rpus_title))): Membuat progress bar menggunakan tqdm untuk 

mengukur kemajuan dalam iterasi. Total jumlah iterasi yang 

diharapkan dihitung berdasarkan jumlah kombinasi yang akan 

dieksekusi. 

 

Iterasi Loop Bersarang: 

1. Loop pertama (for i in range(len(corpus_sets))): Melakukan 

iterasi melalui berbagai dataset validasi. 

2. Loop kedua (for k in topics_range): Melakukan iterasi melalui 

rentang nilai topik. 

3. Loop ketiga (for a in alpha): Melakukan iterasi melalui nilai 

alpha yang telah ditentukan sebelumnya. 

4. Loop keempat (for b in beta): Melakukan iterasi melalui nilai 

beta yang telah ditentukan sebelumnya. 

Dalam setiap iterasi kombinasi parameter yang berbeda (corpus, 

dictionary, k, a, dan b), fungsi compute_coherence_values 

dipanggil untuk menghitung skor koherensi (cv) dari model LDA 
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yang dibuat berdasarkan parameter-parameter tersebut. Hasil skor 

koherensi kemudian disimpan dalam model_results sesuai dengan 

kombinasi parameter yang digunakan. Setelah semua iterasi 

selesai, hasil dari model_results disimpan sebagai file CSV di 

direktori yang ditentukan menggunakan 

pd.DataFrame(model_results).to_csv('./drive/My 

Drive/dataset/fintechP2P/2023/13feb_tuning_results.csv', 

index=False). 

 

pbar.close(): Setelah proses iterasi selesai, progress bar ditutup. 

Ini adalah langkah yang memakan waktu untuk mengevaluasi dan 

mencari parameter terbaik yang memberikan skor koherensi yang 

paling optimal untuk model LDA. Proses ini melibatkan berbagai 

kombinasi parameter yang mungkin dan mengevaluasi setiap 

kombinasi tersebut untuk memilih yang terbaik. Hasil perhitungan 

dari script di atas adalah sebagai berikut: 

 

No Validation_Set Topics Alpha Beta Coherence 

1 100% Corpus 10 0.01 0.91 0.554553496 

2 100% Corpus 3 0.91 0.91 0.554553496 

3 100% Corpus 3 0.91 0.31 0.546011003 

4 100% Corpus 3 0.91 symmetric 0.546011003 

5 100% Corpus 3 asymmetric 0.01 0.544522395 

6 100% Corpus 3 0.61 0.61 0.541360905 

7 100% Corpus 3 0.91 0.01 0.540641211 

8 100% Corpus 3 0.61 symmetric 0.536954678 

9 100% Corpus 3 0.61 0.91 0.535848054 

10 100% Corpus 3 0.61 0.31 0.534917947 

11 100% Corpus 8 symmetric 0.91 0.532990744 

12 75% Corpus 3 0.61 0.31 0.531145051 

13 75% Corpus 3 0.91 0.61 0.531057059 

14 75% Corpus 3 0.91 0.91 0.531057059 

15 100% Corpus 3 0.61 0.01 0.527612144 

16 75% Corpus 3 0.61 0.01 0.526229031 

17 75% Corpus 3 0.61 symmetric 0.523419221 

18 75% Corpus 3 0.91 symmetric 0.52139985 
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Dari hasil di atas dapat dilihat bahwa nilai coherence yang lebih 

dari 0.50 terlihat dan terdapat pada 3 dan 8 topic. Yang perlu 

diperhatikan adalah apakah dengan 8 topic masih mendapatkan 

makna yang berbeda pada setiap topik, jika makanya berbeda 

jumlah topik dapat di set menjadi 8 (nomor urut 11). Namun jika 

banyak topik yang sama, maka dapat dipilih 10 topic dengan nilai 

coherence tertinggi terlihat pada nomor urut 1.  

 

Berdasarkan evaluasi eksternal (Kode akan ditambahkan dari 

analisis berbasis Excel), mari kita latih model akhir dengan 

parameter yang menghasilkan skor koherensi tertinggi. 

num_topics = 10 

 

lda_model = gensim.models.LdaMulticore(corpus=corpus, 

                                           id2word=id2word, 

                                           num_topics=num_topics, 

                                           random_state=100, 

                                           chunksize=100, 

                                           passes=10, 

                                          # alpha='asymmetric', 

                                           alpha=0.01, 

                                           #eta=0.9 

                                           eta=0.91) 

 

 

Perintah di atas adalah bagian dari proses pembentukan model 

LDA (Latent Dirichlet Allocation) menggunakan pustaka Gensim 

dalam Python. Ini digunakan untuk membuat model topik dari 

data teks yang telah diubah menjadi representasi Bag-of-Words 

(BoW). 

 

num_topics = 10: Parameter ini menentukan jumlah topik yang 

ingin ditemukan dalam korpus teks. Dalam kasus ini, ditetapkan 

sebagai 10, artinya model akan berusaha menemukan 10 topik 

yang berbeda dalam teks yang diberikan. 
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gensim.models.LdaMulticore: Ini adalah fungsi untuk membuat 

model LDA menggunakan teknik multicore dari pustaka Gensim. 

corpus=corpus: Representasi BoW dari dokumen yang akan 

digunakan untuk melatih model. 

 

id2word=id2word: Kamus yang memetakan kata-kata ke indeks 

numerik, digunakan untuk memahami representasi numerik kata-

kata dalam model. 

 

random_state=100: Seed untuk inisialisasi bilangan acak. Ini 

memastikan bahwa hasil dari model yang sama akan konsisten 

ketika dijalankan kembali dengan seed yang sama. 

 

chunksize=100: Jumlah dokumen yang akan digunakan dalam 

satu batch selama proses pelatihan model. Ini mempengaruhi 

efisiensi dan penggunaan memori saat pelatihan. 

 

passes=10: Jumlah iterasi yang dilakukan oleh model saat melatih 

dataset. Setiap iterasi melibatkan pembaruan bobot pada model. 

 

alpha=0.01: Parameter alpha mengontrol seberapa banyak topik 

yang ada dalam satu dokumen. Nilai yang lebih rendah seperti 

0.01 mengindikasikan bahwa dokumen hanya akan memiliki 

sedikit topik yang dominan. 

 

eta=0.91: Parameter eta mengontrol seberapa banyak kata yang 

terkait dengan satu topik tertentu. Nilai yang lebih tinggi seperti 

0.91 menunjukkan bahwa setiap topik akan memiliki banyak kata 

yang kuat terkait dengannya. Kombinasi dari parameter-parameter 

ini membentuk model LDA yang akan menemukan 10 topik 

dalam data teks, dengan distribusi yang dikendalikan oleh nilai 

alpha dan eta yang telah ditetapkan. 

 

from pprint import pprint 

 

# Print the Keyword in the 10 topics 

pprint(lda_model.print_topics()) 

doc_lda = lda_model[corpus] 
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Perintah ini menggunakan pustaka pprint untuk mencetak topik-

topik yang telah ditemukan oleh model LDA (Latent Dirichlet 

Allocation) yang telah dilatih sebelumnya. 

 

Langkah-langkahnya adalah sebagai berikut: 

from pprint import pprint: Ini mengimpor fungsi pprint dari 

pustaka pprint. pprint (pretty-print) digunakan untuk mencetak 

output dengan tata letak yang lebih baik dan lebih mudah dibaca 

daripada fungsi print biasa. 

 

pprint(lda_model.print_topics()): Perintah ini mencetak topik-

topik yang telah ditemukan oleh model LDA yang telah dilatih 

sebelumnya. Fungsi print_topics() pada objek model LDA 

mengembalikan daftar topik dengan kata-kata kunci yang paling 

berkaitan dengan setiap topik. 

 

doc_lda = lda_model[corpus]: Ini adalah cara untuk menerapkan 

model LDA yang telah dilatih pada seluruh dataset (corpus) yang 

telah digunakan sebelumnya untuk melatih model. Hasilnya 

disimpan dalam variabel doc_lda. Ini akan memberikan distribusi 

topik untuk setiap dokumen dalam corpus, yaitu, seberapa kuat 

setiap dokumen terhubung dengan setiap topik. 
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