

Drying and Degradation Kinetics of the Physicochemical Characteristics of

by Novita Ika. Putri

Submission date: 24-Jul-2024 03:10PM (UTC+0700)

Submission ID: 2421718125

File name: 165-Research_Papers-1633-1-2-20240713.docx (182.57K)

Word count: 4771

Character count: 28665

19
1 **DRYING AND DEGRADATION KINETICS OF THE PHYSICOCHEMICAL**
2 **CHARACTERISTICS OF PARIJOTO FRUIT (*MEDINILLA SPECIOSA*)**
3 **WITH CALCIUM CHLORIDE PRE-TREATMENT**

4
5 **ABSTRACT**
6

7 Parijoto (*Medinilla speciosa*) is an Indonesian local plant with high levels of bioactive compounds
8 crucial in improving overall health. However, these bioactive compounds are susceptible to high
9 temperatures from prolonged heating processes and environmental factors such as oxygen, light,
10 and pH. Therefore, a significant decline in the parijsoto fruit quality may occur during drying, which
11 prompts a need for a solution to prevent damage to the bioactive compounds in the fruits. As a
12 food additive, calcium chloride (CaCl_2) can help maintain cell wall strength and prevent damage
13 from enzymatic, mechanical, and microbial activities in food products. The study aimed to
14 investigate the impact of soaking with CaCl_2 (10 minutes) and drying temperatures (60, 70, and
15 80°C) for 8 hours on physicochemical characteristics such as antioxidant activity, total anthocyanin
16 content, and colour. The moisture ratio, colour intensity, antioxidant activity and total anthocyanin
17 content at hourly intervals during drying were measured. The results indicated that soaking in
18 CaCl_2 can lead to osmotic dehydration, accelerating the drying rates and preserving the
19 anthocyanin content. The kinetics of the degradation of anthocyanins and antioxidant activity were
20 established, as well as the drying kinetic model for parijsoto fruits. The Page model was found to
21 be the most relevant and suitable drying kinetics model based on the drying design in this study
22 compared to the other two models.
23

24 **Keywords:** Parijoto fruit; Degradation kinetic, Drying kinetic, Calcium chloride

25
26 **ABSTRAK**
27

28 Parijoto (*Medinilla speciosa*) adalah tanaman lokal Indonesia yang mengandung senyawa bioaktif
29 tinggi yang penting untuk meningkatkan kesehatan secara keseluruhan. Namun, senyawa bioaktif
30 ini rentan terhadap suhu tinggi dari proses pemanasan yang panjang dan faktor lingkungan seperti
31 oksigen, cahaya, dan pH. Oleh karena itu, penurunan kualitas buah parijsoto yang signifikan dapat
32 terjadi selama pengeringan, sehingga diperlukan solusi untuk mencegah kerusakan pada senyawa
33 bioaktif di buah tersebut. Sebagai bahan tambahan makanan, kalsium klorida (CaCl_2) dapat
34 membantu menjaga kekuatan dinding sel dan mencegah kerusakan akibat aktivitas enzimatik dan
35 mikroba pada produk pangan. Penelitian ini bertujuan untuk menginvestigasi dampak perendaman
36 dengan CaCl_2 (10 menit) dan suhu pengeringan (60, 70, dan 80°C) selama 8 jam terhadap
37 karakteristik fisiko-kimia seperti aktivitas antioksidan, total kandungan antosianin, dan warna.
38 Perbandingan rasio kadar air, intensitas warna, aktivitas antioksidan, dan kandungan total
39 antosianin diuji setiap jam selama proses pengeringan. Hasil penelitian menunjukkan bahwa
40 perendaman dalam CaCl_2 dapat menyebabkan dehidrasi osmotic sehingga mempercepat laju
41 pengeringan, dan menjaga kandungan antosianin. Pada studi ini, dilakukan pula pemodelan
42 kinetika degradasi antosianin dan aktivitas antioksidan, serta model kinetika pengeringan untuk

43 buah parijoto. Model *Page* terbukti menjadi model kinetika pengeringan yang paling relevan dan
44 sesuai berdasarkan desain pengeringan dalam studi ini.
45

46 **Kata kunci:** Buah parijoto; Kinetika degradasi, Kinetika pengeringan, Kalsium klorida

47

48 **1. INTRODUCTION**

49

50 Parijoto (*Medinilla speciosa*) is a local Indonesian plant that grows, often uncultivated, in Kudus,
51 Central Java. Parijoto is currently often cultivated as a decorative plant. However, the fruit of
52 parijoto contains a high amount of bioactive compounds such as ascorbic acid, carotenoids,
53 flavonoids, vitamin E, flavonol glycoside and phenolic compounds which may act as antioxidants
54 (Angriani, 2019). Antioxidant compounds play an essential role in the health of the body, as they
55 can protect the body from oxidative damage, inhibit oxidative stress, reduce inflammation, and
56 boost the immune system (Haeraniet al., 2018).

57

58 Previous research has shown that anthocyanin compound in parijoto fruit can be used as a natural
59 blue colourant (Priska et al., 2018). Anthocyanin can also act as antioxidant, anticancer,
60 antidiabetics, and antiinflammation (Basri, 2021; Tan et al., 2021). However, the bioactive
61 compounds in the parijoto fruit are very vulnerable to damage, especially the anthocyanin
62 compound and the antioxidant components such as flavonoids and phenolics (Wachidah, 2013).
63 The damage to such compounds can be caused by high-temperature processes and environmental
64 conditions such as oxygen, light, and pH (Feng et al., 2015). Drying, on the other hand, is a
65 standard preservation method because it can increase the storage life and facilitate the distribution,
66 supply, and ease-of-use. Therefore, it is necessary to prevent the damage of bioactive compounds
67 due to the drying temperature of the parijoto fruit, e.g by pre-treatments.

68

69 Using organic acid solutions (citric acid, acetic acid) and salt solutions (Na^+ , Ca^{2+}) with specific
70 concentrations as a pre-drying treatment can retain bioactive compounds in food materials.
71 Calcium chloride (CaCl_2) is a salt classified as a food additive. According to a study by Guo et al.
72 (2023), the lifespan of lychee fruit increased because CaCl_2 increased the strength of the cell wall
73 and prevented the activity of polyphenol oxidase (PPO) enzymes and ¹²¹trobes. Looking at the
74 potential of parijoto fruit as a novel health-promoting food ingredient, this study aims to firstly
75 examine the effect of CaCl_2 and temperature in the drying process of parijoto fruit. Secondly, this
76 study also aims to establish the drying and degradation kinetics, which will be useful in developing
77 parijoto fruit products that are shelf-stable with optimum bioactive compound activities.

78

79 **2. MATERIALS AND METHOD**

80

81

82 *2.1. Materials*

83

84 Fresh parijoto fruits were obtained from Kudus, Central Java. Other materials used in this study
85 are CaCl_2 , KCl , $\text{CH}_{14}\text{OONa}$, 2-diphenyl-1-picrylhydrazyl (DPPH), and metanol 99.98%. All the
86 chemicals used are of analytical grade unless specified.

87

88 2.2. Methods

89

90 2.2.1. Parijoto fruit preparation and pre-treatment

91

92 Parijoto fruits were separated from the branch, sorted and then washed under a running tap water.
93 Half of the cleaned parijoto fruits were submerged in CaCl_2 2% solution for 10 min. (sample code
94 : Ca) while the other half were not submerged as a control (sample code : K).

95

96 2.2.2. Drying process

97

98 Drying was done using a dryer cabinet HetoPowerDry LL1500 . Parijoto fruits were placed on a
99 tray and wet¹⁸ spread evenly. The control and pre-treated samples were dried at 60, 70, and 80°C
100 for 8 hours. During the drying process, the mass of the parijoto fruits was weighed every 1 hour.
101 After drying, the samples were grinded with mortar and pestle for further chemical analysis of the
102 antioxidant activity and total anthocyanin.

103

104 2.2.3. Ultrasound-assisted methanol extraction for chemical analysis

105

106 Five grams of the grinded dried parijoto fruit was suspended in 50 ml methanol. The mixture was
107 subjected to ultrasound in a sonication bath (BioBase, China) at frequency 40 kHz for 30 min and
108 then was let to sit for another 1 h. The mixture was filtered and the filtrate were diluted into 100
109 ml using methanol. The extract was stored until further analysis for anthocyanin and antioxidant
110 activity analysis.

111

112

113 2.2.4. Total anthocyanin analysis

114

115 Anthocyanin analysis was done using pH differential method described in Turmanidze *et al.*
116 (2016). The methanol extract obtained was further diluted 2x using methanol. Two milliliters of
117 the diluted samples were mixed with 2 ml of KCl buffer solution pH 1 and CH_3COONa buffer
118 solution pH 4.5. The mixture was incubated in a dark room for 15 min. The absorbance of the
119 mixture was measured using UV-Vis spectrophotometer (UV1280, Shimadzu, Japan) at
120 wavelength 520 and 700 nm. Total anthocyanin in the extract were measured using the equations
121 below:

$$4 \quad A = (A_{520} - A_{700})_{\text{pH } 1} - (A_{520} - A_{700})_{\text{pH } 4.5} \quad (1)$$

$$122 \quad 123 \quad \text{Total Anthocyanin (mg/L)} = \frac{A \times MW \times DF \times 1000}{\epsilon \times L} \quad (2)$$

124

125 where A is the absorbance value at different wavelength, MW is the molecular weight of
126 cyanidine-3-glucoside (449.2 g/mol), DF is the dilution factor (20), ϵ is the molar absorptivity of
127 cyanidine-3-glucoside (26900 L/mol.cm) and L is the cuvet width (1 cm).

128

129 2.2.5. Antioxidant activity analysis

130
 131 Antioxidant activity was measured using the method described in Ahmet *et al.* (2015). The
 132 methanol extract was diluted into 1500 ppm using methanol. Afterwards, 0.3 ml of the diluted
 133 sample were reacted with 9 ml of DPPH solution (Merck, Germany) in the dark room for 30 min.
 134 Blank solution were prepared using 0.3 ml methanol and 9 ml DPPH solution. After 30 min, the
 135 absorbance of the sample (A_{sample}) and blank solution (A_{blank}) was measured using UV-Vis
 136 spectrophotometer (UV1280, Shimadzu, Japan) at 517 nm. The antioxidant activity is calculated
 137 using the equation below.

138

$$Antioxidant\ activity\ (\%) = \left[\frac{(A_{blank} - A_{sample})}{A_{blank}} \right] \times 100 \quad (3)$$

140
 141 2.2.6. Degradation kinetics
 142

143 The degradation kinetic of the total anthocyanin content and antioxidant activity was fitted into
 144 the first order kinetic equation (eq. 4). The degradation kinetic coefficient (k) was obtained from
 145 the regression of the experimental data (Fogler, 2006 in Peron *et al.*, 2017).

146

$$\ln(C_t) = \ln(C_0) - kt \quad (4)$$

147
 148 C_t = Concentration of total anthocyanin or Antioxidant activity at time t
 149 C_0 = Initial concentration of total anthocyanin or Antioxidant activity
 150 k = degradation kinetics coefficient
 151 t = time (h)

152 Furthermore, half-life time ($t_{1/2}$), the time in which the component's degradation reached half of
 153 its initial value, was calculated using eq. 6 below (Peron *et al.*, 2017).

$$t_{1/2} = \frac{0.5}{k} \quad (6)$$

154
 155 $t_{1/2}$ = half-life time
 156 k = degradation kinetic coefficient

157
 158 2.2.7. Drying kinetics
 159

160 Water content analysis was done using gravimetric method, which 2.5 g sample was dried in a
 161 porcelain dish at 100°C. Water content analysis was carried out throughout the drying process and
 162 the drying kinetic model was done through the moisture ratio (MR) calculation in eq 7 below.

163

$$MR = \frac{M_t}{M_0} \quad (7)$$

164 M_t = moisture content (d.b) at time t
 165 M_0 = initial moisture content (d.b)

166
 167 The MR data obtained will be used to determine the drying kinetic based on the three types of
 168 semi-empirical models (Turan & Firatligil, 2019), which can be seen in Table 1. Mathematical
 169 modelling was done using nonlinear regression. Increasing R^2 values and increasing RMSE values
 170 are factors in determining the relevant kinetic drying model (Vardin & Yilmaz, 2018). RMSE
 171 determination was done following eq 8.

172

$$RMSE = \left[\frac{1}{N} \sum_{i=1}^N (MR_{exp,i} - MR_{pre,i})^2 \right]^{\frac{1}{2}} \quad (8)$$

177
 178 N = number of observation
 179 $MR_{exp,i}$ = MR experimental
 180 $MR_{pre,i}$ = MR prediction
 181

182 Table 1. Drying kinetic models

Model	Equation
Lewis	$MR = \exp(-kt)$
Henderson & Pabis	$MR = a \cdot \exp(-kt)$
Page	$MR = \exp(-kt^n)$

183
 184 2.2.8. Effective moisture diffusivity
 185

186 Effective moisture diffusivity coefficient (D_{eff}) describes the effectiveness of water diffusion
 187 processes in a drying process (Chen et al., 2016). The D_{eff} was calculated based on the value of k
 188 (slope) of the linear regression of eq. 9 below.

189
 190 $\ln(MR) = \ln\left(\frac{6}{\pi^2}\right) - \left(\frac{\pi^2 D_{eff}}{r^2}\right)(t) \quad (9)$

191 $k = -\frac{\pi^2 D_{eff}}{r^2} \quad (10)$

192
 193 MR = moisture ratio
 194 r = material's radius
 195 t = time

196 Activation energy (E_a) is the minimum energy needed to start the reaction (Syah et al., 2020). The
 197 value of E_a of the moisture diffusion process was obtained through a regression of eq 11 below.

198 $D_{eff} = D_0 \cdot e^{\left(-\frac{E_a}{R}\right)\left(\frac{1}{T}\right)} \quad (11)$

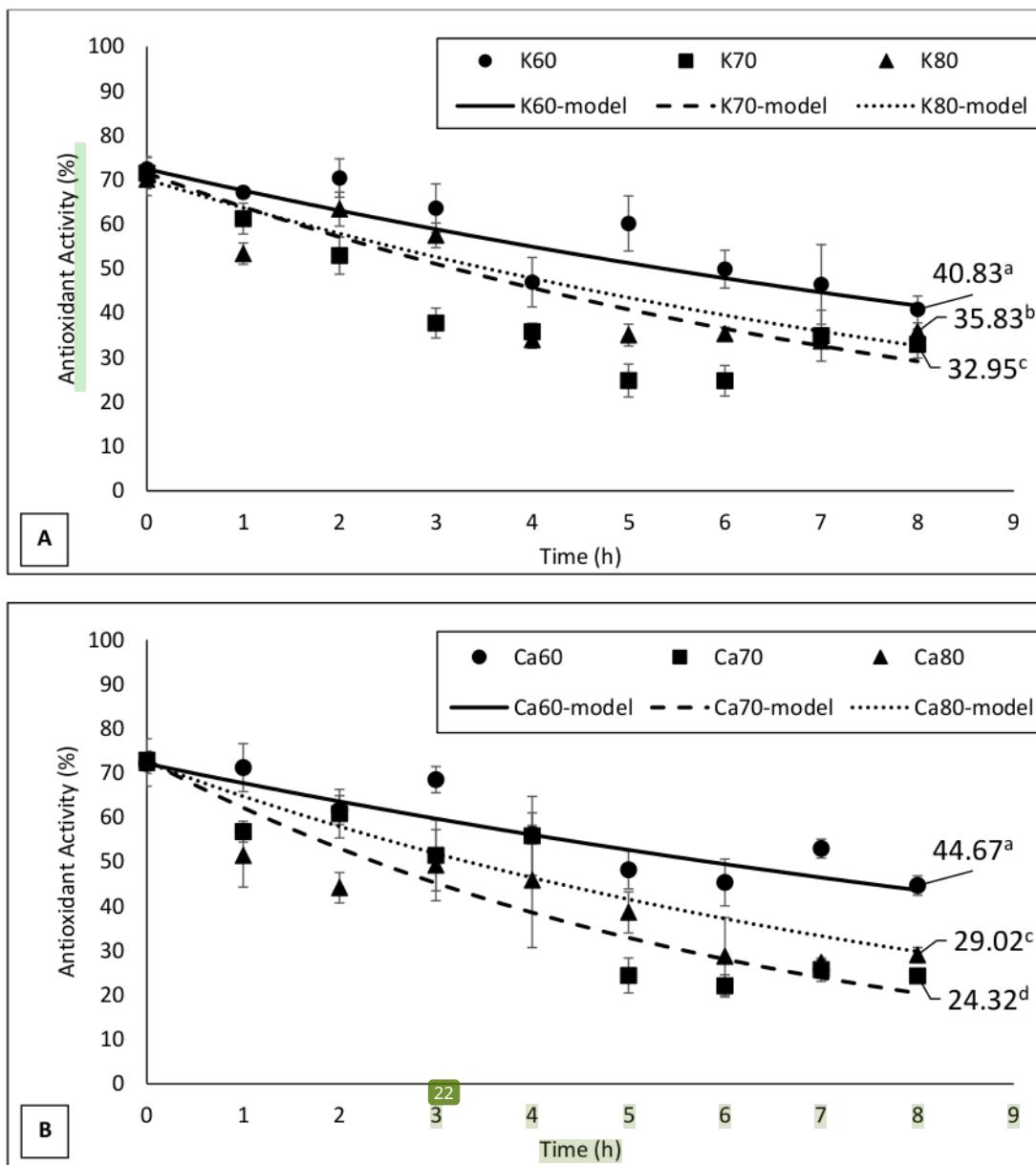
199 ⁷
 200 T = temperature (K)
 201 R = ideal gas constant (8.314 J mol⁻¹ K⁻¹)
 202 D₀ = exponential equation constant

203
 204 2.2.9. Color intensity
 205

206 Colour intensity measurement was done through digital imaging analysis. The digital images of
 207 the pari-joto fruits during drying was captured using a smartphone (Infinix Note 11 Pro, Infinix
 208 Mobile, China). The digital images of pari-joto fruit were taken every hour during drying inside a
 209 modified mini photo studio box. Colour intensity measurements of the digital images based on L*,
 210 a*, and b* colours are conducted using the eyedropper tool in Adobe Photoshop CS3 software
 211 (Adobe, USA). Measurements were taken three times at different points.

212
 213 2.2.10. Data analysis
 214

215 Data analysis and model fitting were carried out using Microsoft Excel and SPSS statistical
 216 software analysis v.23. Analysis of variance was carried out to measure statistical significant
 217 difference at α 0.5.

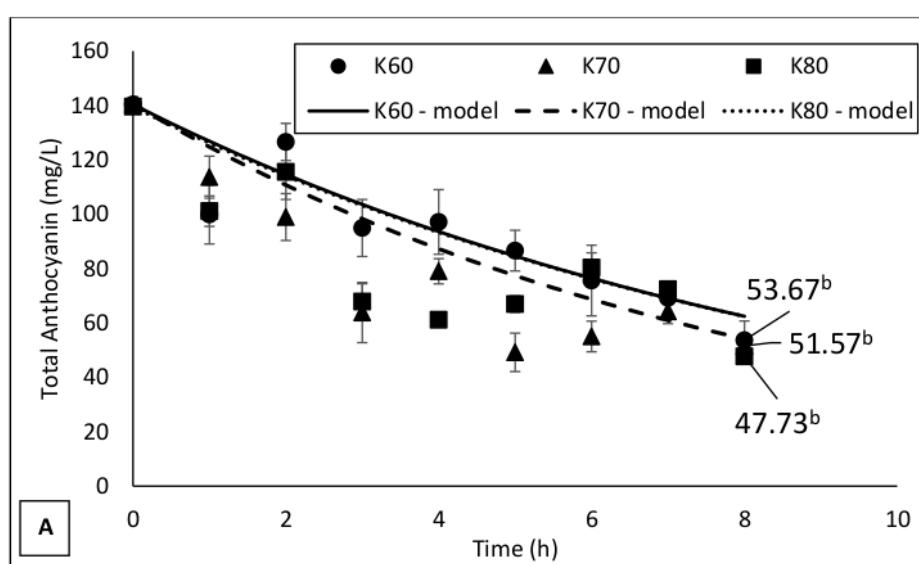

218
 219 3. RESULTS AND DISCUSSION
 220

221 1.1. Antioxidant activity

222

223 Figure 1 shows the antioxidant activity of the parijoto fruit before and after drying. The CaCl_2 5
224 submersion pre-treatment did not significantly influence the antioxidant activity of parijoto fruit,
225 while higher drying temperature significantly decrease the antioxidant activity of parijoto fruits.
226

227


228

229 Figure 1. Antioxidant activity of parijoto fruit dried at different temperature without pre-treatment (A) and with
230 CaCl_2 submersion (B)

231 High temperatures can damage antioxidant compounds in materials, leading to decreased
232 antioxidant activity (Hwang & Do Thi, 2014). According to research by Aloo *et al.* (2022), CaCl_2
233 soaking treatment can maintain the ascorbic acid content and antioxidant compounds in bell
234 peppers after 16 days of storage at room temperature. Similar findings can be observed in this
235 study for parijoto fruits dried at 60°C treatment, which shows higher results in the soaked fruit than
236 the control. Calcium ions in CaCl_2 can form calcium pectate cross-links with pectin molecules in
237 food materials. This can enhance mechanical properties in parijoto fruit, thereby preserving
238 intracellular antioxidant compounds. Goutam *et al.* (2010) in Aloo *et al.* (2022) also mentioned
239 that calcium ions could decrease oxidative enzyme activity, thus maintaining antioxidant activity
240 stability against oxidative degradation in parijoto fruit. However, the positive effect of the CaCl_2
241 soaking was not observed for drying at 70 and 80°C, indicating that the high temperature's
242 destructive effect affects the antioxidant activity more than the protection of the CaCl_2 pre-
243 treatment.

244 20
245 **1.2. Total Anthocyanin Content**
246

247 Figure 2 shows the total anthocyanin content of the dried parijoto fruits. Drying caused parijoto
248 fruits to lose its anthocyanin content significantly. However, the results show that CaCl_2 pre-
249 treatment significantly preserve the anthocyanin content of parijoto fruits. On the other hand, the
250 drying temperature did not significantly affect the anthocyanin content of the fruit.
251

253

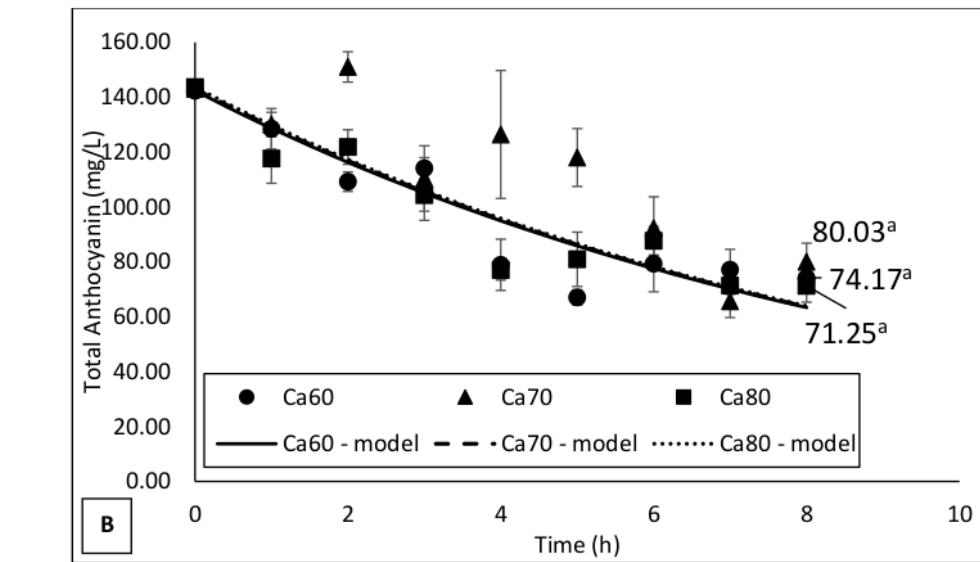

254
255
256

Figure 2. Antioxidant activity of parijoto fruit dried at different temperature without pre-treatment (A) and with CaCl_2 submersion (B)

257
258
259
260
261
262
263
264
265
266
267

Research by Feng et al. (2022) showed that the utilization of CaCl_2 solution can preserve the phenolic compounds and stability of antioxidant compounds in luffa (*Luffa cylindrica*). Calcium pectate cross-links may form during the CaCl_2 pre-treatment and they can strengthen the interaction between pectin and anthocyanin (Lin et al., 2016) which may protect the anthocyanin content from the heat treatment during drying. Furthermore, the formation of calcium pectate cross-links enhances the integrity of the cell and prevents cellular damage which encourage of enzymatic browning in food materials due to the release of the polyphenol oxidase (PPO). Since anthocyanins are natural compounds in parijoto fruit belonging to the phenolic group, damage to anthocyanin compounds from the PPO activity can be prevented. This could explain the higher total anthocyanin content in CaCl_2 -soaked samples compared to the control.

268
269
270
271
272
273
274
275
276

1.3. Degradation kinetic coefficient of antioxidant activity and total anthocyanin content

3

277
278
279
280
281

The values of k , $t_{1/2}$ and E_a obtained from the first order kinetic regression from the antioxidant activity and total anthocyanin content during drying are presented in Table 2. These values are useful in describing the properties degradation kinetics during drying and to compare the susceptibility of the properties to heat degradation. Higher k value indicates faster degradation and thus, a more susceptible material. On the other hand, higher $t_{1/2}$ showed a slower and more difficult degradation, which indicate a more stable material (Peron et al., 2017).

The results of the antioxidant activity analysis show that the degradation rate constant (k) increases with higher drying temperatures. This indicates a faster decline in antioxidant activity with increasing drying temperature, affecting the time for antioxidant activity to reach half its initial value ($t_{1/2}$). Thus, it can be concluded that the antioxidant activity of parijoto fruits is very vulnerable to increase in temperature during drying.

282
283

Table 2. Values of k and $t_{1/2}$

Parameter	Pre-treatment	Temp (°C)	k (h ⁻¹)	$t_{1/2}$ (h)
Antioxidant activity	Control	60	0.0691	10.03
		70	0.1121	6.18
		80	0.0955	7.26
	CaCl ₂	60	0.0628	11.04
		70	0.1590	4.36
		80	0.1109	6.25
Total Anthocyanin content	Control	60	0.1012	6.85
		70	0.1193	5.81
		80	0.1006	6.89
	CaCl ₂	60	0.0885	7.83
		70	0.0882	7.86
		80	0.0869	7.98

284

285 On the contrary, the k value of the total anthocyanin degradation kinetic remained the same with
286 higher drying temperature. This indicate that the temperature difference in this study did not affect
287 the kinetics of the anthocyanin degradation. Interestingly, CaCl₂ treatment caused significant
288 reduction in the k value and increase in the $t_{1/2}$ value. This may be due to calcium pectate
289 interactions with anthocyanins as previously discussed (Lin et al., 2016), which can slow down
290 anthocyanin degradation. However, the CaCl₂ submersion did not slow down the degradation of
291 antioxidant activity of parijoto fruits during drying.

292

293 1.4. *Moisture diffusion properties of parijoto fruits during drying*

294

295 The values of D_{eff} and E_a of parijoto fruits dried with different conditions are presented at Table 3.
296 Higher value of D_{eff} indicates that moisture could diffuse out of the fruit tissue more effectively
297 during drying (Chen et al., 2016). On the other hand, higher E_a indicates that more energy is
298 required to start moisture diffusion out of the tissue.

299

300 With higher drying temperatures, a higher diffusion coefficient could be achieved. CaCl₂
301 submersion as pre-treatment also significantly increased the diffusion coefficient and lowered the
302 activation energy. This indicates that moisture more easily escaped from the tissue and cells of
303 parijoto fruits. Thus, a more efficient and faster drying occurred for parijoto fruits dried with pre-
304 treatment and at higher temperatures. The results correlate well with the drying kinetics in Figure
305 3, discussed below. The presence of salts such as CaCl₂ could induce osmotic dehydration in fruit
306 cells (Udomkun et al., 2014). Osmotic dehydration occurred due to the difference in the osmotic
307 pressure between the materials and the salt solutions used to submerge them. Osmotic dehydration
308 can only partially remove water from the materials and usually uses a pre-treatment as the materials
309 require further processing to be shelf-stable (Berk, 2018).

310

311

312

313

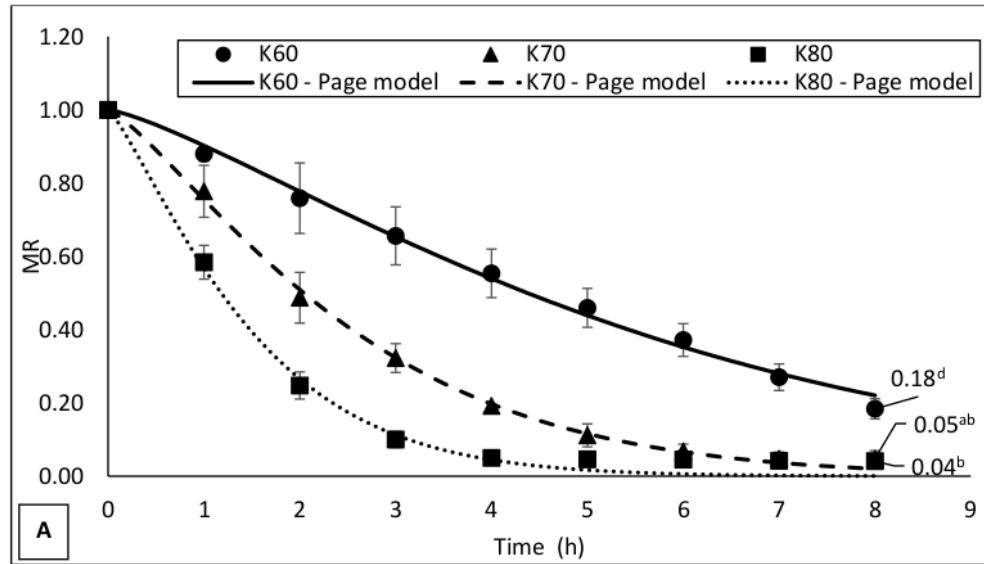

314

Table 3. Effective Moisture Diffusivity dan Energi Aktivasi

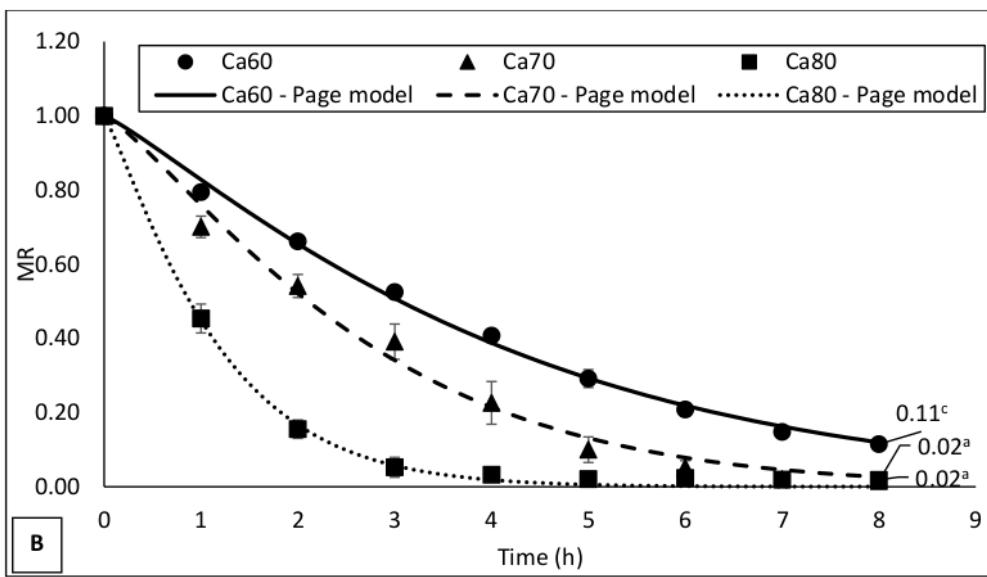
Pre-treatment	Temp (°C)	D_{eff} ($m^2 s^{-1}$)	E_a (kJ/mol)
Control	60	3.27×10^{-3}	35.53
	70	6.91×10^{-3}	
	80	6.71×10^{-3}	
$CaCl_2$	60	4.49×10^{-3}	29.48
	70	9.00×10^{-3}	
	80	8.13×10^{-3}	

318 1.5. Drying kinetics of parijoto fruits

320 The change in the moisture ratio during drying for all the different treatments is shown in Figure
 321 3. Based on the drying kinetics, a moisture ratio plateau (which indicate no further moisture
 322 reduction) was already reached at approximately 7 hours and 4 hours for 70 and 80°C, respectively,
 323 with a final moisture ratio of about 0.05 for the control sample and about 0.02 for pre-treated
 324 samples. On the other hand, parijoto fruits dried at 60°C, both with or without pre-treatment, did
 325 not reach the same level of moisture ratio after 8 hours. Parijoto fruits with $CaCl_2$ submersion
 326 reached a lower final moisture ratio than the control samples at all temperature levels, indicating
 327 a more effective drying due to the pre-treatment before drying. As discussed, $CaCl_2$ pre-treatment
 328 caused osmotic dehydration, significantly increasing moisture diffusivity out of parijoto fruits
 329 (Table 3).

333

334 Figure 3. Moisture ratio of parijoto fruit dried at different temperature without pre-treatment (A) and with CaCl_2
335 submersion (B)


336

337 Three models were fitted into the drying kinetics, i.e. Lewis, Henderson & Pabis and Page model.
338 The coefficients obtained from the model fitting are presented at Table 3. Based on the R^2 and
339 RSME values, Page model best describe the drying kinetics of parijoto fruits using cabiner dryer.
340 Similar model has been used to describe the drying of gilaburu berries (Dönmez & Kadakal, 2024)
341 and aryl of pomegranate (Vardin & Yilmaz, 2018). The value of k increased significantly with
342 higher temperature and with CaCl_2 submersion pre-treatment, which indicate faster drying.
343

344

Table 4. Coefficients of drying kinetics with different models

Pre-treatment	Suhu (°C)	Model	k	n	a	R^2	RMSE
Control	60	Lewis	0.165			0.947	0.099
		Henderson & Pabis	0.174		1.041	0.952	0.119
		Page	0.103	1.292		0.966	0.019
	70	Lewis	0.379			0.977	0.143
		Henderson & Pabis	0.394		1.045	0.980	0.143
		Page	0.281	1.266		0.988	0.015
CaCl_2	60	Lewis	0.648			0.986	0.195
		Henderson & Pabis	0.657		1.016	0.986	0.185
		Page	0.566	1.229		0.989	0.027
	70	Lewis	0.239			0.989	0.112
		Henderson & Pabis	0.246		1.023	0.990	0.117
		Page	0.189	1.163		0.995	0.016
		Lewis	0.369			0.974	0.141

	Henderson & Pabis	0.377	1.027	0.975	0.133
	Page	0.275	1.242	0.984	0.032
80	Lewis	0.857		0.994	0.223
	Henderson & Pabis	0.864	1.006	0.994	0.210
	Page	0.802	1.158	0.995	0.014

345

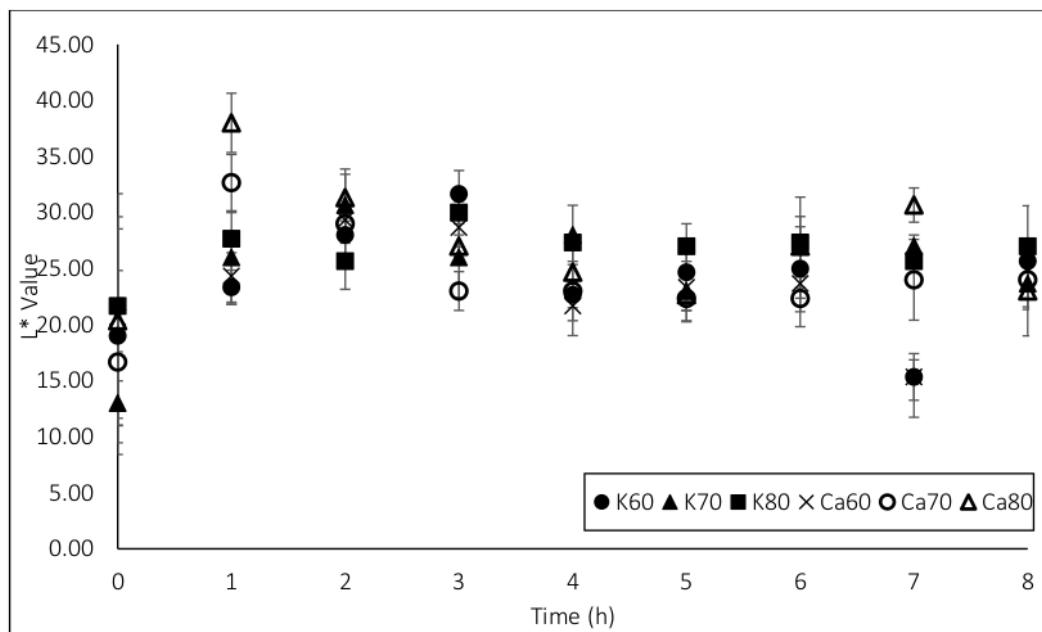
346

347

348 *1.6. Color changes of parijoto fruits during drying*

349

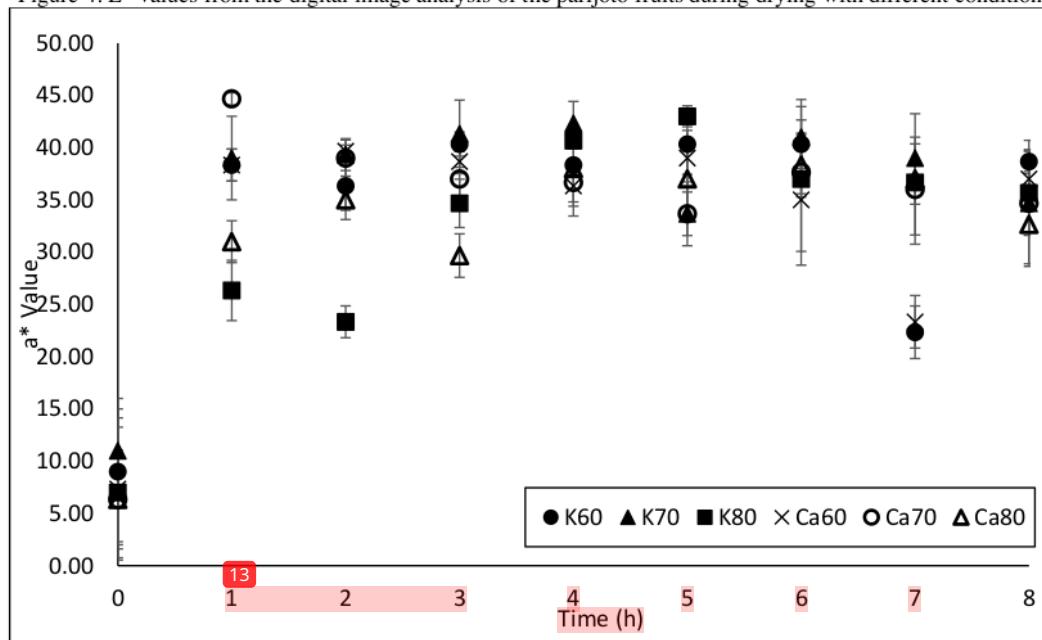
350 ⁸Digital image analysis was carried out to the parijoto fruits during drying. The visual
 351 representations of the color change are shown in Table 5. The results of the analysis (L^* , a^* and
 352 b^* values) are shown in Figure 4-6. Heat from the drying immediately caused a change in the
 353 color profile of parijoto fruits from initially dark purple to reddish color. Slight increase of the L^*
 354 values were observed after drying and a significant increase of the a^* value was observed which
 355 indicates the increased intensity of the red color after drying. On the other hand, the value of b^*
 356 changed from negative to positive, which indicate a change of color hue from dominant blue to
 357 yellow after drying.


358

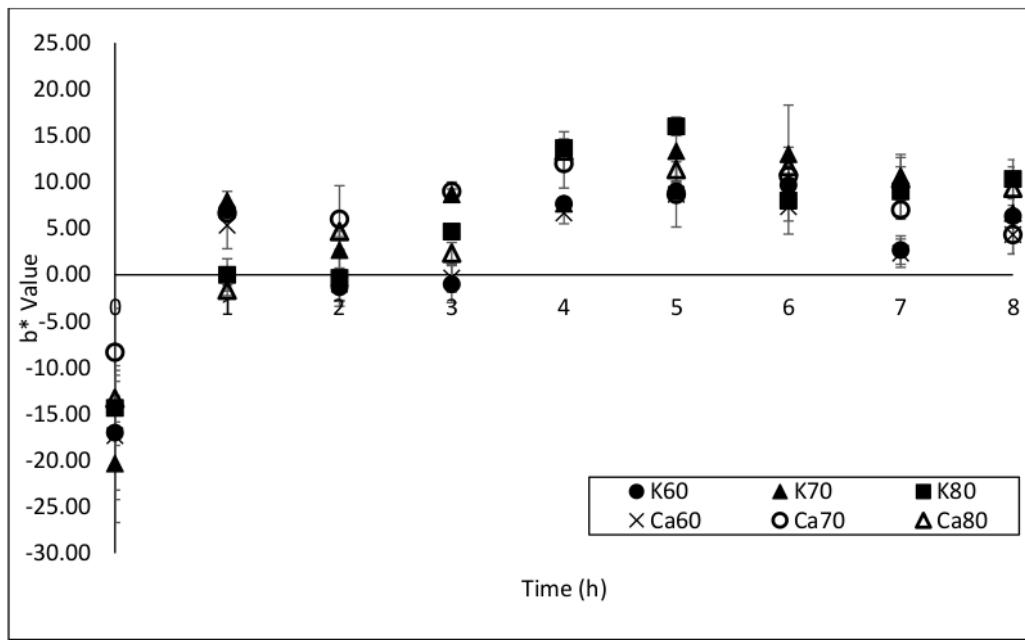
359 $CaCl_2$ pre-treatment seems to have insignificant impact on the color of parijoto fruits after drying.
 360 The change of the color from purple to reddish color due to drying may be caused by the increase
 361 in the acidity level of the fruits, due to the change of the proportion after moisture removal.
 362 Anthocyanin color changed at different acidity level, in which it becomes redder at acidic
 363 environment.

364

365


366

367


Figure 4. L^* values from the digital image analysis of the parijoto fruits during drying with different condition

368

369

Figure 5. a^* values from the digital image analysis of the parijoto fruits during drying with different condition

370

371 Figure 6. b^* values from the digital image analysis of the parijoto fruits during drying with different condition

Table 5. Digital color profile of parijoto fruits throughout drying with different treatments

Treatment	Drying time (h)								
	0	1	2	3	4	5	6	7	8
K60									
K70									
K80									
Ca60									
Ca70									
Ca80									

2. CONCLUSIONS

Drying of parijoto fruit at 60-80°C may cause significant reduction on its antioxidant activity and total anthocyanin content. The antioxidant activity of parijoto fruits are especially susceptible to an increase in temperature during drying. However, with CaCl_2 submersion as pre-drying treatment, the degradation of anthocyanin content can be reduced. CaCl_2 submersion and higher drying temperature can also increase the drying rate of parijoto fruit, which make it possible to dry at a shorter time to prevent further degradation of the anthocyanin content. Higher drying rate correlates to a higher effective diffusion coefficient and the drying kinetics of parijoto fruits can best be described by the Page model.

ACKNOWLEDGEMENT

1

Completing this research project has been a collaborative effort that is acknowledged with gratitude. The research advisor is sincerely thanked for their invaluable guidance, support, and expertise throughout the research process. Appreciation is also extended to colleagues and fellow researchers for their assistance and cooperation, which contributed to the success of this study. Sincere gratitude is expressed to the Ministry of Research and Higher Education for funding through the Fundamental Research Grant 2024, number 108/E5/PG.02.00.PL/2024, 011 /LL6/PB/AL.04/2024, which significantly facilitated the execution of this study. Additionally, appreciation is extended to the research partners for their valuable contributions, CSR YKBN, Kudus, Indonesia. This acknowledgement reflects the collective endeavor and support that have enriched the outcomes of this study.

REFERENCES

Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative Analysis Of Phenolics, Flavonoids, And Antioxidant And Antibacterial Potential Of Methanolic, Hexanic And Aqueous Extracts From *Adiantum Caudatum* Leaves. *Antioxidants*, 4(2), 394-409. <https://doi.org/10.3390/antiox4020394>

Aloo, M. A., Opiyo, A. M., & Saidi, M. (2022). Influence Of CaCl_2 Dipping On Postharvest Quality And Shelf Life Of Bell Pepper (*Capsicum annuum* L. Cv. California Wonder). *African Journal Of Agricultural Research*, 18(7), 510-521. <https://doi.org/10.5897/ajar2022.16058>

Angriani, L. (2019). Potensi Ekstrak Bunga Telang (*Clitoria ternatea*) Sebagai Pewarna Alami Lokal Pada Berbagai Industri Pangan. *Canrea Journal*, 2(1), 32-37. <https://agritech.unhas.ac.id/ojs/index.php/canrea/article/view/120>

Apriana, M., Huda, M. C., Kamal, M. C., Septiani, R. A., Ash-Shidiqi, S. R., & Anggraeni, F. (2022). Artikel Review: Studi Fitokimia Dan Farmakologi Parijoto (*Medinilla Magnifica*). *Jurnal Buana Farma*, 2(3), 36-46. <https://doi.org/10.36805/jbf.v2i3.548>

Basri, F. (2021). Studi Pembuatan Es Krim Dengan Penambahan Ekstrak Bunga Telang (*Clitoria Ternatea* L.) (Doctoral Dissertation, Universitas Bosowa). <https://repository.unibos.ac.id/xmlui/bitstream/handle/123456789/1210/2021%20FEBRIA NI%20BASRI%204517032008.pdf?sequence=1>

Berk, Z. (2018). Dehydration. In : Berk, Z. *Food Science and Technology, Food Processing Engineering and Technology*. Third edition. Academic Press. pp. 513-566

Bhatla, S. C., & Lal, M. A. (2018). *Plant Physiology, Development And Metabolism*. Springer Nature. <https://doi.org/10.1007/978-981-13-2023-1>

Chen, Y., Martynenko, A., & Mainguy, M. (2016). Wine Grape Dehydration Kinetics: Effect Of Temperature And Sample Arrangement. In *Csbe/Scgab 2016 Annual Conference, Halifax, Nova Scotia, Canada, July* (Pp. 3-6). <https://library.csbe-scgab.ca/docs/meetings/2016/CSBE16063.pdf>

Dönmez, A., & Kadakal, Ç. (2024). Hot-Air Drying And Degradation Kinetics Of Bioactive Compounds Of Gilaburu (*Viburnum Opulus L.*) Fruit: Original Scientific Paper. *Chemical Industry & Chemical Engineering Quarterly*, 30(1), 59-72. <https://doi.org/10.2298/CICEQ220614011D>

Feng, S., Luo, Z., Tao, B., & Chen, C. (2015). Ultrasonic-Assisted Extraction And Purification Of Phenolic Compounds From Sugarcane (*Saccharum Officinarum L.*) Rinds. *Lwt-Food Science And Technology*, 60(2), 970-976. <https://doi.org/10.1016/j.lwt.2014.09.066>

Feng, Y., Feng, C., Wang, Y., Gao, S., Sun, P., Yan, Z., Su, X., Sun, Y., & Zhu, Q. (2022). Effect Of CaCl₂ Treatment On Enzymatic Browning Of Fresh-Cut Luffa (*Luffa Cylindrica*). *Horticulturae*, 8(6), 473. <https://doi.org/10.3390/horticulturae8060473>

Gençdağ, E., Özdemir, E. E., Demirci, K., Görgüç, A., & Yilmaz, F. M. (2022). Copigmentation And Stabilization Of Anthocyanins Using Organic Molecules And Encapsulation Techniques. *Current Plant Biology*, 29, 100238. <https://doi.org/10.1016/j.cpb.2022.100238>

Guo, X., Li, Q., Luo, T., Han, D., Zhu, D., & Wu, Z. (2023). Postharvest Calcium Chloride Treatment Strengthens Cell Wall Structure To Maintain Litchi Fruit Quality. *Foods*, 12(13), 2478. <https://doi.org/10.3390/foods12132478>

Haerani, A., Chaerunisa, A. Y., & Subarnas, A. (2018). Artikel Tinjauan: Antioksidan Untuk Kulit. *Farmaka*, 16(2), 135-151. <https://doi.org/10.24198/jf.v16i2.17789>

Hwang, E. S., & Do Thi, N. (2014). Effects Of Extraction And Processing Methods On Antioxidant Compound Contents And Radical Scavenging Activities Of Laver (*Porphyra Tenera*). *Preventive Nutrition And Food Science*, 19(1), 40. <https://doi.org/10.3746/Pnf.2014.19.1.040>

Koh, J., Xu, Z., & Wicker, L. (2020). Blueberry Pectin And Increased Anthocyanins Stability Under In Vitro Digestion. *Food Chemistry*, 302, 125343. <https://doi.org/10.1016/j.foodchem.2019.125343>

Lin, Z., Fischer, J., & Wicker, L. (2016). Intermolecular Binding Of Blueberry Pectin-Rich Fractions And Anthocyanin. *Food Chemistry*, 194, 986-993. <https://doi.org/10.1016/j.foodchem.2015.08.113>

Ly, B. C. K., Dyer, E. B., Feig, J. L., Chien, A. L., & Del Bino, S. (2020). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique For Objective Skin Color Measurement. *Journal Of Investigative Dermatology*, 140(1), 3-12. <https://doi.org/10.1016/j.jid.2019.11.003>

Maesaroh, K., Kurnia, D., & Al Anshori, J. (2018). Perbandingan Metode Uji Aktivitas Antioksidan Dpph, Frap Dan Fic Terhadap Asam Askorbat, Asam Galat Dan Kuersetin. *Chimica Et Natura Acta*, 6(2), 93-100. <https://doi.org/10.24198/cna.v6.n2.19049>

Milanda, T., Lestari, K., & Tarina, N. T. (2021). Antibacterial Activity Of Parijoto (*Medinilla Speciosa* Blume) Fruit Against *Serratia Marcescens* And *Staphylococcus Aureus*. *Indonesian Journal Of Pharmaceutical Science And Technology*, 8(2), 76-85. <https://doi.org/10.24198/ijpst.v8i2.32166>

Mostafa, Y. S., & Sultan, M. Z. (2016). Calcium Chloride Combined With Antioxidants Increases Keeping Quality And Limits Postharvest Decay Of Loquat Fruit. *Acta Hortic.* 1194, 157-164. <https://doi.org/10.17660/ActaHortic.2018.1194.24>

Peron, D. V., Fraga, S. A. R. A., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (*Euterpe edulis* Martius) and “Italia” grapes (*Vitis vinifera* L.), and the effect of heating on the antioxidant capacity. *Food chemistry*, 232, 836-840. <https://doi.org/10.1016/j.foodchem.2017.04.088>

Pratama, A. N., & Busman, H. (2020). Potensi Antioksidan Kedelai (Glycine Max L) Terhadap Penangkapan Radikal Bebas. *Jurnal Ilmiah Kesehatan Sandi Husada*, 9(1), 497-504. <https://doi.org/10.35816/jiskh.v1i1.333>

Priska, M., Peni, N., Carvallo, L., & Ngapa, Y. D. (2018). Antosianin Dan Pemanfaatannya. *Cakra Kimia (Indonesian E-Journal Of Applied Chemistry)*, 6(2), 79-97. <https://doi.org/10.24843/CK.2018.v06.i02>

Riswati, B., Kunarto, B., & Pratiwi, E. (2019). Ekstraksi Antosianin Buah Parijoto (*Medinilla Speciosa* Blume) Menggunakan Asam Asetat Pada Berbagai Lama Waktu Ultrasonic Assisted Extraction Dan Stabilitasnya Selama Pemanasan. *Fakultas Teknologi Pertanian. Universitas Semarang*. <https://repository.usm.ac.id/files/journalmhs/D.131.16.0070-20210303091437.pdf>

Sidiq, Y., & Mumpuni, K. E. (2014). Identifikasi Variasi Genetik Parijoto (*Medinilla Javanensis* Bl.) Bl. Dan *Medinilla Verrucosa* (Bl.) Bl. Dengan Penanda Molekular Sebagai Sumber Belajar. In *Proceeding Biology Education Conference: Biology, Science, Environmental, And Learning* (Vol. 11, No. 1). <https://www.neliti.com/id/publications/175617/identifikasi-variasi-genetik-parijoto-medinilla-javanensisblbldan-medinilla-verr>

Suhartatik, N., & Mustofa, A. (2018). Stabilitas Minuman Isotonik Antosianin Beras Ketan Hitam Dengan Senyawa Kopigmentasi Ekstrak Bunga Belimbing (*Averrhoa Carambola*). *Agritech*, 38(1), 1-6. <https://doi.org/10.22146/agritech.15395>

Syah, H., Tambunan, A. H., Hartulistiyoso, E., & Manalu, L. P. (2020). Kinetika Pengeringan Lapisan Tipis Daun Jati Belanda (Thin Layer Drying Kinetics Of Guazuma Ulmifolia Leaves). *Jurnal Keteknikan Pertanian*, 8(2), 53-62. <https://doi.org/10.19028/jtep.08.2.53-62>

Tan, C., Dadmohammadi, Y., Lee, M. C., & Abbaspourrad, A. (2021). Combination Of Copigmentation And Encapsulation Strategies For The Synergistic Stabilization Of Anthocyanins. *Comprehensive Reviews In Food Science And Food Safety*, 20(4), 3164-3191. DOI: 10.1111/1541-4337.12772

Turan, O. Y., & Firatligil, F. E. (2019). Modelling and characteristics of thin layer convective air-drying of thyme (*Thymus vulgaris*) leaves. *Czech Journal of Food Sciences*, 37(2). <https://doi.org/10.17221/243/2017-CJFS>

Turmanidze, T., Gulua, L., Jgenti, M., & Wicker, L. (2016). Effect Of Calcium Chloride Treatments On Quality Characteristics Of Blackberry Fruit During Storage. *International Journal Of Food And Allied Sciences*, 2(2), 36-41. <https://doi.org/10.24925/turjaf.v4i12.1127-1133.907>

Udomkun, P., Mahayothee, B., Nagle, M., & Müller, J. (2014). Effects Of Calcium Chloride And Calcium Lactate Applications With Osmotic Pretreatment On Physicochemical Aspects And Consumer Acceptances Of Dried Papaya. *International Journal Of Food Science & Technology*, 49(4), 1122-1131. <https://doi.org/10.1111/ijfs.12408>

Vardin, H., & Yilmaz, F. M. (2018). The Effect Of Blanching Pre-Treatment On The Drying Kinetics, Thermal Degradation Of Phenolic Compounds And Hydroxymethyl Furfural Formation In Pomegranate Arils. *Italian Journal Of Food Science*, 30(1). <https://doi.org/10.14674/IJFS-947>

Wachidah, L. N. (2013). Uji Aktivitas Antioksidan Serta Penentuan Kandungan Fenolat Dan Flavonoid Total Dari Buah Parijoto. *Skripsi. Program Studi Farmasi Uin, Jakarta.* <https://repository.uinjkt.ac.id/dspace/bitstream/123456789/25895/1/LELIANA%20NURUL%20WACHIDAH-fkik.pdf>

Zulaikhah, S. T. (2017). The Role Of Antioxidant To Prevent Free Radicals In The Body. *Sains Medika Journal Of Medical & Health*, 8(1). <https://doi.org/10.30659/sainsmed.v8i1.1012>

Drying and Degradation Kinetics of the Physicochemical Characteristics of

ORIGINALITY REPORT

PRIMARY SOURCES

1	www.frontiersin.org Internet Source	2%
2	cmuj.cmu.ac.th Internet Source	1%
3	Fazaeli, Mahboubeh, Shima Yousefi, and Zahra Emam-Djomeh. "Investigation on the effects of microwave and conventional heating methods on the phytochemicals of pomegranate (<i>Punica granatum L.</i>) and black mulberry juices", <i>Food Research International</i> , 2013. Publication	<1%
4	Submitted to University of Stellenbosch, South Africa Student Paper	<1%
5	journal.walisongo.ac.id Internet Source	<1%
6	link.springer.com Internet Source	<1%

7 www.studymode.com <1 %
Internet Source

8 "Proceeding of the 2nd International Conference on Tropical Agriculture", Springer Science and Business Media LLC, 2018 <1 %
Publication

9 Mali Nachaisin, Jindaporn Jamradloedluk, Chalida Niamnuy. "Application of Combined Far-Infrared Radiation and Air Convection for Drying of Instant Germinated Brown Rice", Journal of Food Process Engineering, 2015 <1 %
Publication

10 Submitted to Eastern Mediterranean University <1 %
Student Paper

11 Moncef Chouaibi, Ahmed Snoussi, Samar Attouchi, Giovanna Ferrari. " Influence of drying processes on bioactive compounds profiles, HMF, color parameters and antioxidant activities of Tunisian eggplant (L.) ", Journal of Food Processing and Preservation, 2021 <1 %
Publication

12 Nasser A. Al-Tayyar, Ahmed M. Youssef, Rashad R. Al-Hindi. "Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens" <1 %

of fruits and vegetables: A review",
Sustainable Materials and Technologies, 2020

Publication

13 acp.copernicus.org <1 %
Internet Source

14 air.unimi.it <1 %
Internet Source

15 Duc, L.A.. "Thin layer drying characteristics of
rapeseed (Brassica napus L.)", Journal of
Stored Products Research, 201101 <1 %
Publication

16 pdfs.semanticscholar.org <1 %
Internet Source

17 www.bartleby.com <1 %
Internet Source

18 Hai-Ming Yu, Chun-Cheng Zuo, Qiu-Ju Xie.
"Drying Characteristics and Model of Chinese
Hawthorn Using Microwave Coupled with Hot
Air", Mathematical Problems in Engineering,
2015 <1 %
Publication

19 Submitted to Universitas Mulawarman <1 %
Student Paper

20 depositonce.tu-berlin.de <1 %
Internet Source

ejournal.poltekkesaceh.ac.id

Internet Source

21

<1 %

epdf.tips

Internet Source

<1 %

22

Exclude quotes On

Exclude bibliography On

Exclude matches

< 10 words