

DRYING AND DEGRADATION KINETICS OF THE PHYSICOCHEMICAL CHARACTERISTICS OF PARIJOTO FRUIT (*MEDINILLA SPECIOSA*) WITH CALCIUM CHLORIDE PRE-TREATMENT

Novita Ika Putri^{1*}

Bernardus David Lai¹

Gelbert Jethro Sanyoto¹

Victoria Kristina Ananingsih¹

¹Food Technology Department, Soegijapranata Catholic University, Semarang, 50212, Indonesia,

ABSTRACT

Parijoto (*Medinilla speciosa*) is an Indonesian plant rich in bioactive compounds beneficial for human health. However, these compounds are susceptible to high temperatures, which can lead to significant quality degradation during drying. To address this, calcium chloride (CaCl₂) pre-treatment is proposed to help maintain cell wall integrity and prevent damage from enzymatic, mechanical, and microbial activities in *parijoto* fruits. The study aims to investigate the impact of soaking with CaCl₂ (10 min) and drying temperatures (60, 70, and 80°C) over 8 hours on the antioxidant activity, total anthocyanin content, and color of *parijoto*. This study also aims to determine the kinetic model of the quality degradation and drying rate of *parijoto*. Moisture ratio, color intensity, antioxidant activity and anthocyanin content of *parijoto* were measured at hourly intervals during drying. The results indicated that soaking in CaCl₂ led to accelerating drying rates and preservation of anthocyanin content. Degradation kinetics of anthocyanins and antioxidant activity were established using the first order kinetic equation. The values of k and t_{1/2} showed faster antioxidant activity degradation during drying at higher temperature, while the rate of anthocyanin degradation did not significantly change. CaCl₂ soaking decreased the degradation rate of the anthocyanin content. Page model (MR = was found to be the most suitable drying kinetics model compared to the other models studied. Drying *parijoto* at 80°C gave the fastest drying rate with insignificant degradation to the anthocyanin and color. The result of this study could be used to determine a suitable drying condition for *parijoto*.

Keywords: *Parijoto* fruit; Degradation kinetic, Drying kinetic, Calcium chloride

ABSTRAK

Parijoto (*Medinilla speciosa*) adalah tanaman Indonesia yang kaya akan senyawa bioaktif yang bermanfaat bagi kesehatan manusia. Namun, senyawa ini rentan terhadap suhu tinggi yang dapat menyebabkan penurunan kualitas yang signifikan selama pengeringan. Untuk mengatasi hal ini, perendaman dengan kalsium klorida (CaCl₂) telah diusulkan sebagai metode untuk membantu menjaga integritas dinding sel dan mencegah kerusakan akibat aktivitas enzimatik, mekanik, dan mikroba pada buah parijoto. Penelitian ini bertujuan untuk menyelidiki dampak perendaman dengan CaCl₂ (10 menit) dan pengeringan pada suhu (60, 70, dan 80°C) selama 8 jam terhadap aktivitas antioksidan, total kandungan antosianin, dan warna buah parijoto. Penelitian ini juga bertujuan untuk menentukan model kinetika untuk degradasi kualitas dan kecepatan pengeringan buah parijoto. Rasio kadar air, intensitas warna, aktivitas antioksidan, dan kandungan total antosianin pada buah parijoto diuji setiap jam selama proses pengeringan. Hasil penelitian menunjukkan bahwa perendaman dalam CaCl₂

Article Information

Article Type: Research Article
Journal Type: Open Access
Volume: 6 Issue 2

Manuscript ID
V6N11633-1

Received Date
13 July 2024

Accepted Date
20 February 2025

Published Date
28 February 2025

DOI:
10.33555/jffn.v6i2.3

***Corresponding author:**
Novita Ika Putri

Email:
novitaika@unika.ac.id

Citation:

Putri, N. I., Lai, B. D., Sanyoto, G. J., Ananingsih, V. K. 2025. Drying and Degradation Kinetics of the Physicochemical Characteristics of Parijoto Fruit (*Medinilla Speciosa*) with Calcium Chloride Pre-Treatment. J. Functional Food & Nutraceutical, 6(2), pp. 67-82

Copyright: ©2023 Swiss German University. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

mempercepat laju pengeringan dan mempertahankan kandungan antosianin. Kinetika degradasi antosianin dan aktivitas antioksidan ditentukan dengan persamaan kinetika reaksi ordo 1. Nilai k dan $t_{1/2}$ menunjukkan bahwa aktivitas antioksidan terdegradasi lebih cepat ketika suhu pengeringan meningkat, sedangkan kandungan total antosianin tidak mengalami perubahan laju degradasi yang signifikan. Perendaman dengan CaCl_2 menurunkan laju degradasi total antosianin. Kinetika pengeringan untuk buah parijoto dengan Model Page () terbukti menjadi model kinetika pengeringan yang paling relevan dibandingkan dengan dua model lain yang dipelajari. Pengeringan buah parijoto pada suhu 80°C memberikan laju pengeringan tercepat dengan penurunan kandungan antosianin dan warna yang tidak signifikan. Oleh karena itu, hasil penelitian ini dapat digunakan untuk menentukan proses pengeringan yang sesuai untuk buah parijoto.

Kata kunci: Buah parijoto; Kinetika degradasi, Kinetika pengeringan, Kalsium klorida

INTRODUCTION

Parijoto (*Medinilla speciosa*) is a local Indonesian plant that grows, often uncultivated, in Kudus, Central Java. *Parijoto* is currently often cultivated as a decorative plant. However, the fruit of *parijoto* contains a high number of bioactive compounds such as ascorbic acid, carotenoids, flavonoids, vitamin E, flavonol glycoside and phenolic compounds which may act as antioxidants (Angriani, 2019). Antioxidant compounds play an essential role in the health of the body, as they can protect the body from oxidative damage, inhibit oxidative stress, reduce inflammation, and boost the immune system (Haerani et al., 2018).

Previous research has shown that anthocyanin compound in *parijoto* fruit can be used as a natural blue colorant (Priska et al., 2018). Anthocyanin can also act as antioxidant, anti-cancer, anti-diabetics, and anti-inflammation (Basri, 2021; Tan et al., 2021). However, the bioactive compounds in the *parijoto* fruit are very vulnerable to damage, especially the anthocyanin compound and the antioxidant components such as flavonoids and phenolics (Wachidah, 2013). The damage to such compounds can be caused by high-temperature processes and environmental conditions such as oxygen, light, and pH (Feng et al., 2015). Drying, on the other hand, is a standard preservation method because it can increase the storage life and facilitate the distribution, supply, and ease-of-use. Therefore, it is necessary to prevent the damage of bioactive compounds due to the drying temperature of the *parijoto* fruit, e.g. by pre-treatments.

Using organic acid solutions (citric acid, acetic acid) and salt solutions (Na^+ , Ca^{2+}) with specific concentrations as a pre-drying treatment can retain bioactive compounds in food materials. Calcium chloride (CaCl_2) is a salt classified as a food additive. According to a study by Guo et al. (2023), the lifespan of lychee fruit increased because CaCl_2

increased the strength of the cell wall and prevented the activity of polyphenol oxidase (PPO) enzymes and microbes. Looking at the potential of *parijoto* fruit as a novel health-promoting food ingredient, this study aims to firstly examine the effect of CaCl_2 and temperature in the drying process of *parijoto* fruit. Secondly, this study also aims to establish the drying and degradation kinetics, which will be useful in developing *parijoto* fruit products that are shelf-stable with optimum bioactive compound activities.

MATERIALS AND METHOD

Materials

Fresh ripe *parijoto* fruits [A1] [A2] were obtained from Kudus, Central Java. Other materials used in this study are CaCl_2 (E. Merck, Germany), KCl (E. Merck, Germany), CH_3COONa (E. Merck, Germany), 2-diphenyl-1-picrylhydrazyl (Sigma Aldrich, USA), and methanol 99.98% (E. Merck, Germany). All the chemicals used are of analytical grade unless specified.

Parijoto fruit preparation and pre-treatment

Parijoto fruits were separated from the branch, sorted and then washed under a running tap water. Half of the cleaned *parijoto* fruits were submerged in CaCl_2 2% solution for 10 min. (sample code: Ca) while the other half were not submerged as a control (sample code: K).

Drying process

Drying was done using a dryer cabinet ED 115 (Binder, Germany). *Parijoto* fruits were placed on a tray and were spread evenly. The control and pre-treated samples were dried at 60 °C (sample code: K60 and Ca60), 70°C (sample code : K70 and Ca70), and 80°C (sample code : K80 and Ca80) for 8 hours. During the drying process, the mass of the *parijoto* fruits was weighed every 1 hour. After drying, the samples were grinded with mortar and pestle for

further chemical analysis of the antioxidant activity and total anthocyanin.

Ultrasound-assisted methanol extraction for chemical analysis

Five grams of the grinded dried *parijoto* fruit was suspended in 50 ml methanol[A1] [A2] (Ananingsih et al., 2024). The mixture was subjected to ultrasound in a sonication bath (BioBase, China) at frequency 40 kHz for 30 min and then was let to sit for another 1 h. The mixture was filtered and the filtrate were diluted into 100 ml using methanol. The extract was stored until further analysis for anthocyanin and antioxidant activity analysis.

Total anthocyanin analysis

Anthocyanin analysis was done using pH differential method described in Turmanidze et al. (2016). The methanol extract obtained was further diluted 2x using methanol. Two milliliters of the diluted samples were mixed with 2 ml of KCl buffer solution pH 1 and CH₃COONa buffer solution pH 4.5. The mixture was incubated in a dark room for 15 min. The absorbance of the mixture was measured using UV-Vis spectrophotometer (UV1280, Shimadzu, Japan) at wavelength 520 and 700 nm. Total anthocyanin in the extract were measured using the equations below:

$$A = (A_{520} - A_{700})_{pH\ 1} - (A_{520} - A_{700})_{pH\ 4.5} \quad (1)$$

$$Total\ Anthocyanin\ (mg/L) = \frac{(A \times MW \times DF \times 1000)}{(\epsilon \times L)} \quad (2)$$

where A is the absorbance value at different wavelength, MW is the molecular weight of cyanidine-3-glucoside (449.2 g/mol), DF is the dilution factor (20), ϵ is the molar absorptivity of cyanidine-3-glucoside (26900 L/mol.cm) and L is the cuvette width (1 cm).

Antioxidant activity analysis

Antioxidant activity was measured using the method described in Ahmed et al. (2015). The methanol extract was diluted into 1500 ppm using methanol. Afterwards, 0.3 ml of the diluted sample were reacted with 9 ml of DPPH solution (Merck, Germany) in the dark room for 30 min. Blank solution were prepared using 0.3 ml methanol and 9 ml DPPH solution. After 30 min, the absorbance of the sample (A_{sample}) and blank solution (A_{blank}) was measured using UV-Vis spectrophotometer (UV1280, Shimadzu, Japan) at 517 nm. The antioxidant activity is calculated using the equation below.

$$Antioxidant\ activity\ (\%) = \left[\frac{(A_{blank} - A_{sample})}{A_{blank}} \right] \times 100 \quad (3)$$

Degradation kinetics

The degradation kinetic of the total anthocyanin content and antioxidant activity was fitted into the first order kinetic equation (eq. 4). The degradation kinetic coefficient (k) was obtained from the regression of the experimental data (Fogler, 2006 in Peron et al., 2017).

$$\ln(C_t) = \ln(C_0) - kt \quad (4)$$

C_t = Concentration of total anthocyanin or Antioxidant activity at time t

C_0 = Initial concentration of total anthocyanin or Antioxidant activity

k = degradation kinetics coefficient

t = time (h)

Furthermore, half-life time ($t_{1/2}$), the time in which the component's degradation reached half of its initial value, was calculated using eq. 5 below (Peron et al., 2017).

$$t_{1/2} = \frac{\ln(0.5)}{k} \quad (5)$$

$t_{1/2}$ = half-life time

k = degradation kinetic coefficient

Drying kinetics

Water content analysis was done in triplicates using gravimetric method, which 2.5 g sample was dried in a porcelain dish at 100°C. Water content analysis was carried out throughout the drying process and the drying kinetic model was done through the moisture ratio (MR) calculation in eq 6 below.

$$MR = \frac{M_t}{M_0} \quad (6)$$

M_t = moisture content (d.b) at time t

M_0 = initial moisture content (d.b)

The MR data obtained will be used to determine the drying kinetic based on the three types of semi-empirical models (Turan & Firatligil, 2019), which can be seen in Table 1. Mathematical modelling was done using nonlinear regression. Increasing R^2 values and increasing RMSE (Root Mean Square Error) values are factors in determining the relevant kinetic drying model (Vardin & Yilmaz, 2018). RMSE determination was done following eq 7.

$$RMSE = \left[\frac{1}{N} \sum_{i=1}^N (MR_{exp,i} - MR_{pre,i})^2 \right]^{\frac{1}{2}} \quad (8)$$

N = number of observations

$MR_{exp,i}$ = MR experimental

$MR_{pre,i}$ = MR prediction

Table 1. Drying kinetic models

Model	Equation
Lewis	$MR = exp(-kt)$
Henderson & Pabis	$MR = a \cdot exp(-kt)$
Page	$MR = exp(-kt^n)$

Effective moisture diffusivity

Effective moisture diffusivity coefficient (D_{eff}) describes the effectiveness of water diffusion processes in a drying process (Chen et al., 2016). The D_{eff} was calculated based on the value of k (slope) of the linear regression of eq. 8 below.

$$\ln(MR) = \ln\left(\frac{6}{\pi^2}\right) - \left(\frac{\pi^2 D_{eff}}{r^2}\right)(t) \quad (8)$$

$$k = -\frac{\pi^2 D_{eff}}{r^2} \quad (9)$$

MR = moisture ratio

r = material's radius

t = time

Activation energy (E_a) is the minimum energy needed to start the reaction (Syah et al., 2020). The value of E_a of the moisture diffusion process was obtained through a regression of eq 10 below.

$$D_{eff} = D_0 \cdot e^{\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right)} \quad (10)$$

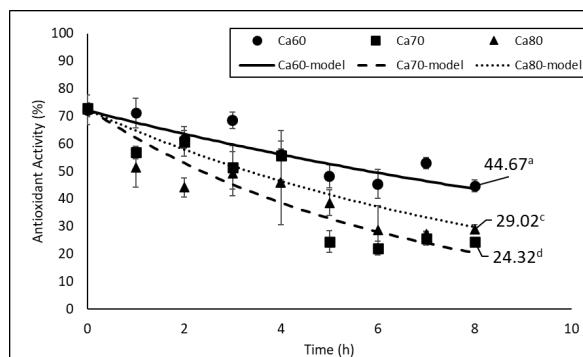
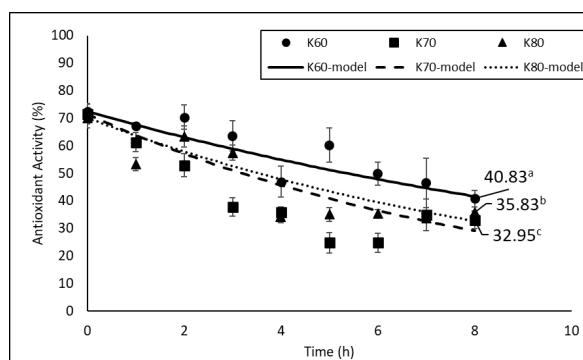
T = temperature (K)

R = ideal gas constant ($8.314 \text{ J mol}^{-1} \text{ K}^{-1}$)

D_0 = exponential equation constant

Color intensity

Color intensity measurement was done through digital imaging analysis. The digital images of the *parijoto* fruits during drying was captured using a smartphone camera (Infinix Note 11 Pro, Infinix Mobile, China) by taking a photo (JPG image file). The photo of *parijoto* fruit were taken every hour during drying inside a modified mini photo studio box to ensure consistent lighting, background and distance between the sample and the camera. Color intensity of *parijoto* fruits is expressed using CIE scale using L^* , a^* , and b^* values. To obtain the L^* , a^* and b^* values, eyedropper tool in Adobe Photoshop CS3 software (Adobe, USA) was used. Measurements were taken three times at different part of the fruit



Data analysis

Data analysis and model fitting were carried out using Microsoft Excel and SPSS[A1] [A2] (Statistical Package for Social Science) software v.23. Analysis of variance was carried out to measure statistically significant difference at α 0.05

RESULTS AND DISCUSSION

Antioxidant Activity

Figure 1 shows the antioxidant activity of the *parijoto* fruit before and after drying. The CaCl_2 submersion pre-treatment did not significantly influence the antioxidant activity of *parijoto* fruit, while higher drying temperature significantly decrease it.

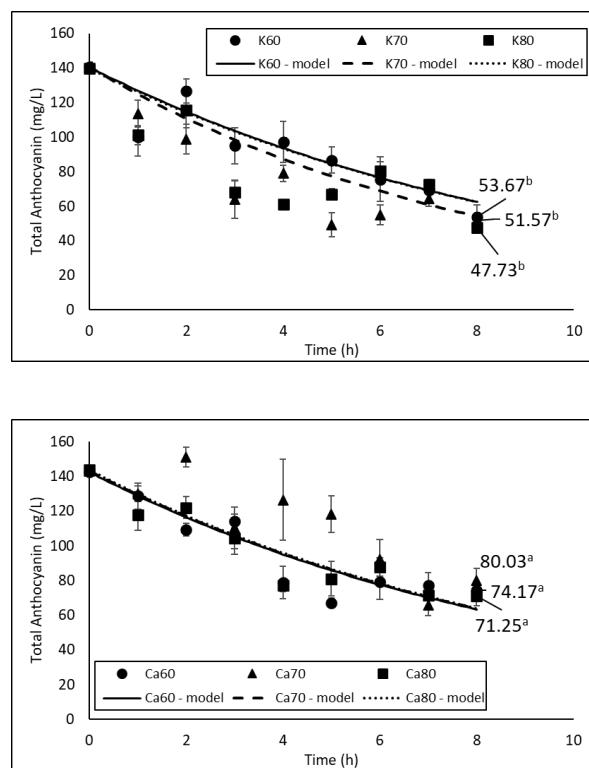


Figure 1. Antioxidant activity of *parijoto* fruit dried at different temperature without pre-treatment (A) and with CaCl_2 submersion (B). The points indicate the mean observation values and the line indicates the modelled kinetic. The numbers indicate the final value of the antioxidant activity and the superscript letters indicate significant statistical difference ($p < 0.05$).

High temperatures can damage antioxidant compounds in materials, leading to decreased antioxidant activity (Hwang & Do Thi, 2014). According to research by Aloo et al. (2022), CaCl_2 soaking treatment can maintain the ascorbic acid content and antioxidant compounds in bell peppers after 16 days of storage at room temperature. Similar findings can be observed in this study for *parijoto* fruits dried at 60°C treatment, which shows slightly higher results in the soaked fruit than the control, which imply the capability of CaCl_2 pre-treatment to maintain *parijoto*'s antioxidant activity. Calcium ions in CaCl_2 can form calcium pectate cross-links with pectin molecules in food materials. This can enhance mechanical properties in *parijoto* fruit, thereby preserving intracellular antioxidant compounds. Goutam et al. (2010) in Aloo et al. (2022) also mentioned that calcium ions could decrease oxidative enzyme activity, thus maintaining antioxidant activity stability against oxidative degradation in *parijoto* fruit. However, the positive effect of the CaCl_2 soaking was not observed for drying at 70 and 80°C, indicating that the high temperature's destructive effect affects the antioxidant activity more than the protection of the CaCl_2 pre-treatment.

Total anthocyanin content

Figure 2 shows the total anthocyanin content of the dried *parijoto* fruits. Drying caused *parijoto* fruits to lose its anthocyanin content significantly. However, the results show that CaCl_2 pre-treatment significantly preserve the anthocyanin content of *parijoto* fruits. On the other hand, the drying temperature did not significantly affect the anthocyanin content of the fruit.

Figure 2. Total anthocyanin content of *parijoto* fruit dried at different temperature without pre-treatment (A) and with CaCl₂ submersion (B). The points indicate the mean observation values and the line indicates the modelled kinetic. The numbers indicate the final value of the total anthocyanin content and the superscript letters indicate significant statistical difference ($p < 0.05$).

Research by Feng et al. (2022) showed that the utilization of CaCl₂ solution can preserve the phenolic compounds and stability of antioxidant compounds in luffa (*Luffa cylindrica*). Calcium pectate cross-links may form during the CaCl₂ pre-treatment and they can strengthen the interaction between pectin and anthocyanin (Lin et al., 2016) which may protect the anthocyanin content from the heat treatment during drying. Furthermore, the formation of calcium pectate cross-links enhances the integrity of the cell and prevents cellular damage which encourage of enzymatic browning in food materials due to the release of the polyphenol oxidase (PPO). Since anthocyanins are natural compounds in *parijoto* fruit

belonging to the phenolic group, damage to anthocyanin compounds from the PPO activity can be prevented. This could explain the higher total anthocyanin content in CaCl₂-soaked samples compared to the control.

Degradation kinetic coefficient of antioxidant activity and total anthocyanin content

The values of k and $t_{1/2}$ obtained from the first order kinetic regression from the antioxidant activity and total anthocyanin content during drying are presented in Table 2. These values are useful in describing the properties degradation kinetics during drying and to compare the susceptibility of the properties to heat degradation. Higher k value indicates faster degradation and thus, a more susceptible material. On the other hand, higher $t_{1/2}$ showed a slower and more difficult degradation, which indicate a more stable material (Peron et al., 2017).

The results of the antioxidant activity analysis show that the degradation rate constant (k) increases with higher drying temperatures. This indicates a faster decline in antioxidant activity with increasing drying temperature, affecting the time for antioxidant activity to reach half its initial value ($t_{1/2}$). Thus, it can be concluded that the antioxidant activity of *parijoto* fruits is very vulnerable to increase in temperature during drying.

On the contrary, the k value of the total anthocyanin degradation kinetic remained the same with higher drying temperature. This indicate that the temperature difference in this study did not affect the kinetics of the anthocyanin degradation. Notably, CaCl₂ treatment caused significant reduction in the k value and increase in the $t_{1/2}$ value. This may be due to calcium pectate interactions with anthocyanins as previously discussed (Lin et al., 2016), which can slow down anthocyanin degradation. However, the CaCl₂ submersion did not slow down, even increased, the degradation rate of antioxidant activity of *parijoto*

fruits during drying. The significantly faster drying process after CaCl_2 pre-treatment may have affected other compounds which contribute to the antioxidant activity in *parijoto*, such as alkaloid, tannin, saponin and others

Table 2. Values of k (degradation kinetic coefficient) and $t_{1/2}$ (half-life) of the antioxidant activity and total anthocyanin content of *parijoto* fruits dried at various conditions

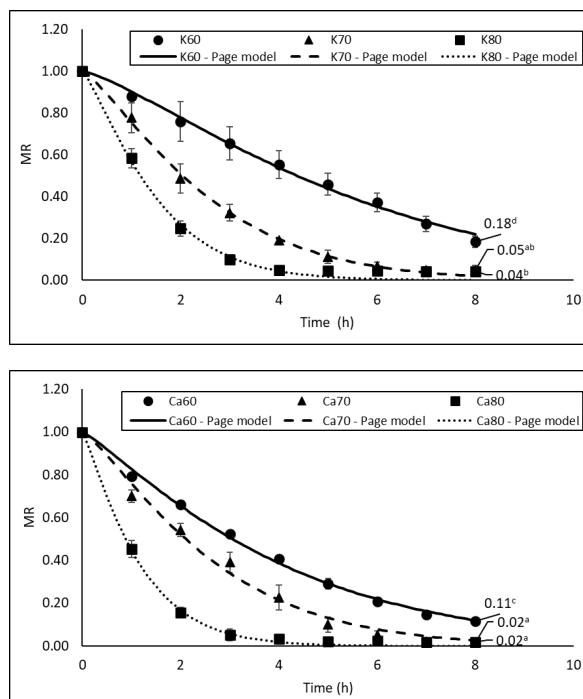
Parameter	Pre-treatment	Temp (°C)	k (h ⁻¹)	$t_{1/2}$ (h)
Antioxidant activity	Control	60	0.0691	10.03
		70	0.1121	6.18
		80	0.0955	7.26
	CaCl_2	60	0.0628	11.04
		70	0.1590	4.36
		80	0.1109	6.25
Total anthocyanin content	Control	60	0.1012	6.85
		70	0.1193	5.81
		80	0.1006	6.89
	CaCl_2	60	0.0885	7.83
		70	0.0882	7.86
		80	0.0869	7.98

Moisture diffusion properties of *parijoto* fruits during drying

The values of D_{eff} and E_a of *parijoto* fruits dried with different conditions are presented at Table 3. Higher value of D_{eff} indicates that moisture could diffuse out of the fruit tissue more effectively during drying (Chen *et al.*, 2016). On the other hand, higher E_a indicates that more energy is required to start moisture diffusion out of the tissue.

With higher drying temperatures, a higher diffusion coefficient could be achieved. CaCl_2 submersion as pre-treatment also significantly increased the diffusion coefficient and lowered the activation energy. This indicates that moisture more easily escaped from the tissue and cells of *parijoto* fruits. Thus, a more efficient and faster drying occurred for

parijoto fruits dried with pre-treatment and at higher temperatures. The results correlate well with the drying kinetics in Figure 3, discussed below. The presence of salts such as CaCl_2 could induce osmotic dehydration in fruit cells (Udomkun *et al.*, 2014). Osmotic dehydration occurred due to the difference in the osmotic pressure between the materials and the salt solutions used to submerge them. Osmotic dehydration can only partially remove water from the materials and usually uses a pre-treatment as the materials require further processing to be shelf-stable (Berk, 2018).


Table 3. Effective Moisture Diffusivity (D_{eff}) and Activation Energy (E_a) of *parijoto* fruits dried at various conditions

Pre-treatment	Temp (°C)	D_{eff} (m ² s ⁻¹)	E_a (kJ/mol)
Control	60	3.27×10^{-3}	35.53
	70	6.91×10^{-3}	
	80	6.71×10^{-3}	
CaCl_2	60	4.49×10^{-3}	29.48
	70	9.00×10^{-3}	
	80	8.13×10^{-3}	

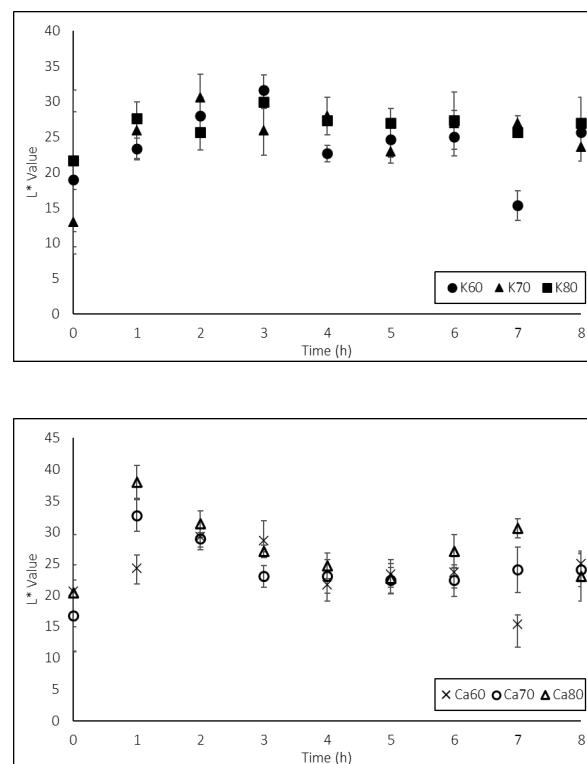
Drying kinetics of *parijoto* fruits

The change in the moisture ratio during drying for all the different treatments is shown in Figure 3. Based on the drying kinetics, a moisture ratio plateau (which indicate no further moisture reduction) was already reached at approximately 7 hours and 4 hours for 70 and 80°C, respectively, with a final moisture ratio of about 0.05 for the control sample and about 0.02 for pre-treated samples. On the other hand, *parijoto* fruits dried at 60°C, both with or without pre-treatment, did not reach the same level of moisture ratio after 8 hours. *Parijoto* fruits with CaCl_2 submersion reached a lower final moisture ratio than the control samples at all temperature levels, indicating a more effective

drying due to the pre-treatment before drying. As discussed, CaCl_2 pre-treatment caused osmotic dehydration, significantly increasing moisture diffusivity out of *parijoto* fruits (Table 3).

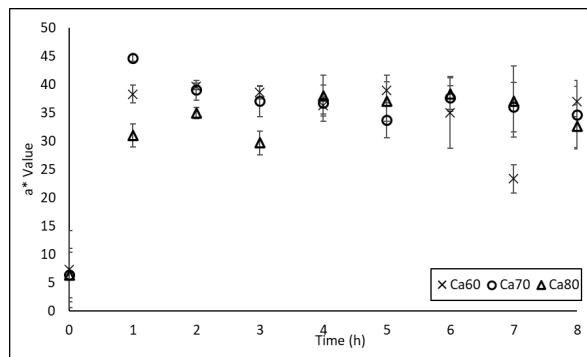
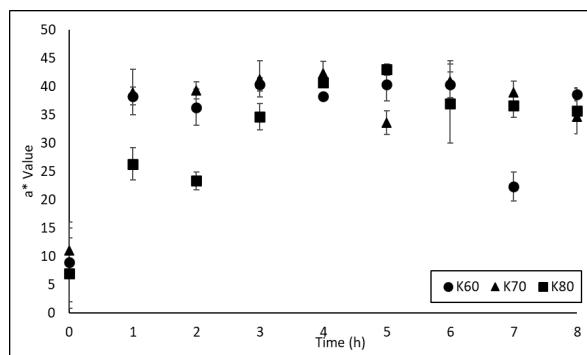
Figure 3. Moisture ratio of *parijoto* fruit dried at different temperature without pre-treatment (A) and with CaCl_2 submersion (B). The points indicate the mean observation values and the line indicates the modelled kinetic. The numbers indicate the final value of the moisture ratio and the superscript letters indicate significant statistical difference ($p < 0.05$).

how fast moisture migrates out of the fruits (Panchariya et.al., 2002), while the value of n does not have significant physical meaning yet. Similar model has been used to describe the drying of gilaburu berries (Dönmez & Kadakal, 2024) and aryl of pomegranate (Vardin & Yilmaz, 2018). The value of k increased significantly with higher temperature and with CaCl_2 submersion pre-treatment, which indicate faster drying and insignificant degradation of anthocyanin content observed (Figure 2), drying at 80°C may be suitable to create functional ingredients from *parijoto* fruits.


Three models were fitted into the drying kinetics, i.e. Lewis, Henderson & Pabis and Page model (Panchariya et.al., 2002). The coefficients obtained from the model fitting are presented at Table 3. Based on the highest R^2 and lowest RSME values (Table 4), Page model best describe the drying kinetics of *parijoto* fruits using cabinet dryer. Page model was used to estimates the value of k and n . The value of k describes the rate of the drying process which show

				n	Putri, N. I., Lai, B. D., Sanyoto, G. J., Ananingsih, V. R. ²	RMSE
Control	60	Lewis	0.165		0.947	0.099
		Henderson & Pabis	0.174	1.041	0.952	0.119
		Page	0.103	1.292	0.966	0.019
	70	Lewis	0.379		0.977	0.143
		Henderson & Pabis	0.394	1.045	0.980	0.143
		Page	0.281	1.266	0.988	0.015
	80	Lewis	0.648		0.986	0.195
		Henderson & Pabis	0.657	1.016	0.986	0.185
		Page	0.566	1.229	0.989	0.027
CaCl ₂	60	Lewis	0.239		0.989	0.112
		Henderson & Pabis	0.246	1.023	0.990	0.117
		Page	0.189	1.163	0.995	0.016
	70	Lewis	0.369		0.974	0.141
		Henderson & Pabis	0.377	1.027	0.975	0.133
		Page	0.275	1.242	0.984	0.032
	80	Lewis	0.857		0.994	0.223
		Henderson & Pabis	0.864	1.006	0.994	0.210
		Page	0.802	1.158	0.995	0.014

Coefficients of drying kinetics of parijoto fruits at various conditions from different models



Color changes of *parijoto* fruits during drying

Digital image analysis was carried out to the *parijoto* fruits during drying. The visual representations of the color change are shown in Table 5. The results of the analysis (L^* , a^* and b^* values) are shown in Figure 4-6. Heat from the drying immediately caused a change in the color profile of *parijoto* fruits from initially dark purple to reddish color in the first hour. Slight increase of the lightness (L^*) values of the *parijoto* fruits were observed after drying and a significant increase of the a^* value was observed which indicates the increased intensity of the red color after drying. On the other hand, the value of b^* changed from negative to positive, which indicate a change of color hue from dominant blue to yellow after drying. The change of the color from purple to reddish color due to drying may be caused by the increase in the acidity level of the fruits, due to the change of the proportion after moisture removal. Anthocyanin color changed at different acidity level, in which it becomes redder at acidic environment (Drețcanu, et.al., 2021).

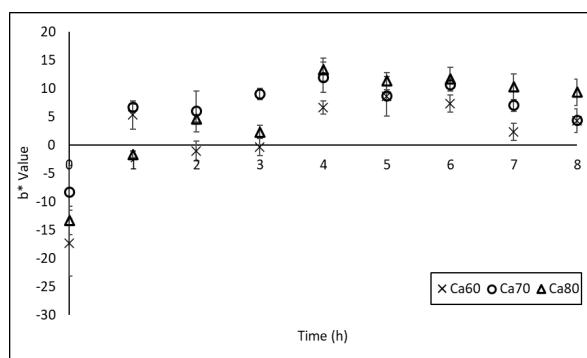
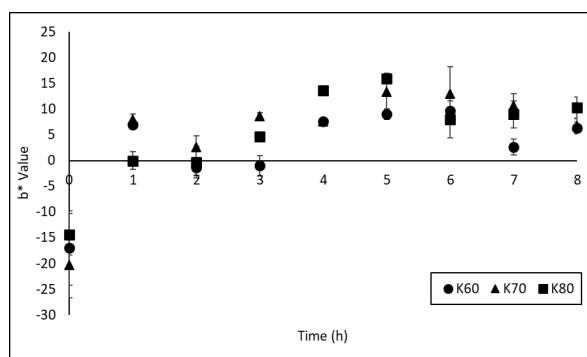



Figure 4. L^* values from the digital image analysis of the *parijoto* fruits during drying at different temperature without (A) and with CaCl_2 pre-treatment (B)

Variations in the visual of *parijoto* fruits and L^* , a^* and b^* values between the different drying conditions are observed during the drying process. However, the final color of *parijoto* fruits after 8 hr of drying was not significantly different between the conditions.

Figure 5. a* values from the digital image analysis of the *parijoto* fruits during drying different temperature without (A) and with CaCl_2 pre-treatment (B)

Figure 6. b* values from the digital image analysis of the *parijoto* fruits during drying different temperature without (A) and with CaCl_2 pre-treatment (B)

Table 5. Digital color profile of *parijoto* fruits throughout drying with different treatments

Treatment	Drying time (h)								
	0	1	2	3	4	5	6	7	8
K60	Dark Blue	Dark Red							
K70	Dark Blue	Dark Red							
K80	Dark Blue	Dark Red							
Ca60	Dark Blue	Dark Red							
Ca70	Dark Blue	Dark Red							
Ca80	Dark Blue	Dark Red							

CONCLUSION

Drying of *parijoto* fruit at 60-80°C may cause significant reduction on its antioxidant activity and total anthocyanin content. The antioxidant activity of *parijoto* fruits is especially susceptible to an increase in temperature during drying. However, with CaCl_2 submersion as pre-drying treatment, the degradation of anthocyanin content can be reduced. CaCl_2 submersion and higher drying temperature can also increase the drying rate of *parijoto* fruit, which make it possible to dry at a shorter time to prevent further degradation of the anthocyanin content. Higher drying rate correlates to a higher effective diffusion coefficient and the drying kinetics of *parijoto* fruits can best be described by the Page model ($MR = \exp(-kt^n)$). In this research, drying of *parijoto* fruits at 80°C gave the fastest drying rate with insignificant degradation to the total anthocyanin content and color.

ACKNOWLEDGEMENT

Completing this research project has been a collaborative effort that is acknowledged with gratitude. The research advisor is sincerely thanked for their invaluable guidance, support, and expertise throughout the research process. Appreciation is also extended to colleagues and fellow researchers for their assistance and cooperation, which contributed to the success of this study. Sincere gratitude is expressed to the Ministry of Research and Higher Education for funding through the Fundamental Research Grant 2024, number 108/E5/PG.02.00.PL/2024, 011 /LL6/PB/AL.04/2024, which significantly facilitated the execution of this study. Additionally, appreciation is extended to the research partners for their valuable contributions, CSR YKBN, Kudus, Indonesia. This acknowledgement reflects the collective endeavor and support that have enriched the outcomes of this study.

REFERENCES

Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative Analysis of Phenolics, Flavonoids, And Antioxidant And Antibacterial Potential Of Methanolic, Hexanic And Aqueous Extracts From *Adiantum Caudatum* Leaves. *Antioxidants*, 4(2), 394-409. <https://doi.org/10.3390/antiox4020394>

Aloo, M. A., Opiyo, A. M., & Saidi, M. (2022). Influence Of Ca Cl₂ Dipping On Postharvest Quality And Shelf Life Of Bell Pepper (*Capsicum annuum* L. Cv. California Wonder). *African Journal of Agricultural Research*, 18(7), 510-521. <https://doi.org/10.5897/ajar2022.16058>

Ananingsih, V.K., Pratiwi, A.R., Soedarini, B., & Putra, Y.A.S., (2024). Formulation of Nanoemulsion Parijoto Fruit Extract (*Medinilla speciosa*) with Variation of Tween Stabilizers. *Frontiers in Nutrition*. 11, <https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1398809>

Angriani, L. (2019). Potensi Ekstrak Bunga Telang (*Clitoria ternatea*) Sebagai Pewarna Alami Lokal Pada Berbagai Industri Pangan. *Canrea Journal*, 2(1), 32-37. <https://agritech.unhas.ac.id/ojs/index.php/canrea/article/view/120>

Basri, F. (2021). Studi Pembuatan Es Krim Dengan Penambahan Ekstrak Bunga Telang (*Clitoria Ternatea L.*) (Doctoral Dissertation, Universitas Bosowa). <https://repository.unibos.ac.id/xmlui/bitstream/handle/123456789/1210/2021%20FEBRIANI%20BASRI%204517032008.pdf?sequence=1>

Berk, Z. (2018). Dehydration. In : Berk, Z. *Food Science and Technology, Food Processing Engineering and Technology*. Third edition. Academic Press. pp. 513-566

Chen, Y., Martynenko, A., & Mainguy, M. (2016). Wine Grape Dehydration Kinetics: Effect Of Temperature And Sample Arrangement. In *Csbe/Scgab 2016 Annual Conference, Halifax, Nova Scotia, Canada, July* (Pp. 3-6). https://library.csbe-scgab.ca/docs/meetings/2016/CSB_E16063.pdf

Enaru, B, Drețcanu, G, Pop, TD, Stănilă, A, and Diaconeasa, Z. Anthocyanins: factors affecting their stability and degradation. *Antioxidants*. (2021) 10:1967. doi: 10.3390/antiox10121967

Dönmez, A., & Kadakal, Ç. (2024). Hot-Air Drying And Degradation Kinetics Of Bioactive Compounds Of Gilaburu (*Viburnum Opulus* L.) Fruit: Original Scientific Paper. *Chemical Industry & Chemical Engineering Quarterly*, 30(1), 59-72. <https://doi.org/10.2298/CICEQ220614011D>

Feng, S., Luo, Z., Tao, B., & Chen, C. (2015). Ultrasonic-Assisted Extraction And Purification Of Phenolic Compounds From Sugarcane (*Saccharum Officinarum* L.) Rinds. *Lwt-Food Science And Technology*, 60(2), 970-976. <https://doi.org/10.1016/j.lwt.2014.09.066>

Feng, Y., Feng, C., Wang, Y., Gao, S., Sun, P., Yan, Z., Su, X., Sun, Y., & Zhu, Q. (2022). Effect Of CaCl₂ Treatment On Enzymatic Browning Of Fresh-Cut Luffa (*Luffa Cylindrica*). *Horticulturae*, 8(6), 473. <https://doi.org/10.3390/horticulturae8060473>

Guo, X., Li, Q., Luo, T., Han, D., Zhu, D., & Wu, Z. (2023). Postharvest Calcium Chloride Treatment Strengthens Cell Wall Structure To Maintain Litchi Fruit Quality. *Foods*, 12(13), 2478. <https://doi.org/10.3390/foods12132478>

Haerani, A., Chaerunisa, A. Y., & Subarnas, A. (2018). Artikel Tinjauan: Antioksidan Untuk Kulit. *Farmaka*, 16(2), 135-151. <https://doi.org/10.24198/jfv16i2.17789>

Hwang, E. S., & Do Thi, N. (2014). Effects Of Extraction And Processing Methods On Antioxidant Compound Contents And Radical Scavenging Activities Of Laver (*Porphyra Tenera*). *Preventive Nutrition And Food Science*, 19(1), 40. <https://doi.org/10.3746/Pnf.2014.19.1.040>

Lin, Z., Fischer, J., & Wicker, L. (2016). Intermolecular Binding Of Blueberry Pectin-Rich Fractions And Anthocyanin. *Food Chemistry*, 194, 986-993. <https://doi.org/10.1016/j.foodchem.2015.08.113>

Panchariya, P. & Popović, Đorđe & Sharma, A. (2002). Thin-layer modelling of black tea drying process. *Journal of Food Engineering*. 1. 340-358. 10.1016/S0260-8774(01)00126-1.

Peron, D. V., Fraga, S. A. R. A., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (*Euterpe edulis* Martius) and “Italia” grapes (*Vitis vinifera* L.), and the effect of heating on the antioxidant capacity. *Food chemistry*, 232, 836-840. <https://doi.org/10.1016/j.foodchem.2017.04.088>

Priska, M., Peni, N., Carvallo, L., & Ngapa, Y. D. (2018). Antosianin Dan Pemanfaatannya. *Cakra Kimia (Indonesian E-Journal Of Applied Chemistry)*, 6(2), 79-97. <https://doi.org/10.24843/CK.2018.v06.i02>

Syah, H., Tambunan, A. H., Hartulistiyo, E., & Manalu, L. P. (2020). Kinetika Pengeringan Lapisan Tipis Daun Jati Belanda (Thin Layer Drying Kinetics Of Guazuma Ulmifolia Leaves). *Jurnal Keteknikan Pertanian*, 8(2), 53-62. <https://doi.org/10.19028/jtep.08.2.53-62>

Tan, C., Dadmohammadi, Y., Lee, M. C., & Abbaspourrad, A. (2021). Combination Of 82 2025:6(2), pp 67-82J. *Functional Food & Nutraceutical*

Copigmentation And Encapsulation Strategies For The Synergistic Stabilization Of Anthocyanins. *Comprehensive Reviews In Food Science And Food Safety*, 20(4), 3164-3191.DOI: 10.1111/1541-4337.12772

Turan, O. Y., & Firatligil, F. E. (2019). Modelling and characteristics of thin layer convective air-drying of thyme (*Thymus vulgaris*) leaves. *Czech Journal of Food Sciences*, 37(2). <https://doi.org/10.17221/243/2017-CJFS>

Turmanidze, T., Gulua, L., Jgenti, M., & Wicker, L. (2016). Effect Of Calcium Chloride Treatments On Quality Characteristics Of Blackberry Fruit During Storage. *International Journal Of Food And Allied Sciences*, 2(2), 36-41. <https://doi.org/10.24925/turjaf.v4i12.1127-1133.907>

Udomkun, P., Mahayothee, B., Nagle, M., & Müller, J. (2014). Effects Of Calcium Chloride And Calcium Lactate Applications With Osmotic Pretreatment On Physicochemical Aspects And Consumer Acceptances Of Dried Papaya. *International Journal Of Food Science & Technology*, 49(4), 1122-1131. <https://doi.org/10.1111/ijfs.12408>

Vardin, H., & Yilmaz, F. M. (2018). The Effect Of Blanching Pre-Treatment On The Drying Kinetics, Thermal Degradation Of Phenolic Compounds And Hydroxymethyl Furfural Formation In Pomegranate Arils. *Italian Journal Of Food Science*, 30(1). <https://doi.org/10.14674/IJFS-947>

Wachidah, L. N. (2013). Uji Aktivitas Antioksidan Serta Penentuan Kandungan Fenolat Dan Flavonoid Total Dari Buah Parijoto. *Skripsi. Program Studi Farmasi Uin*, Jakarta. <https://repository.uinjkt.ac.id/dspace/bitstream/123456789/25895/1/LELIANA%20NURUL%20WACHIDAH-fkik.pdf>