SYNERGY EFFECT OF α-PHELLANDRENE AND 5-FLUOROURACIL ON ANTI-PROLIFERATION IN COLORECTAL CANCER CELLS

a-水芹烯與5-氟尿嘧啶抑制人類大腸癌細胞株增生之

協同作用

MASTER THESIS

By: Anita Caroline Susanto S.T.P (20.13.0004)

林秀玲 (611004071)

FOOD TECHNOLOGY DOUBLE DEGREE MASTER PROGRAM

SOEGIJAPRANATA CATHOLIC UNIVERSITY

PROVIDENCE UNIVERSITY

TAIWAN

2023

SYNERGY EFFECT OF α-PHELLANDRENE AND 5-FLUOROURACIL ON ANTI-PROLIFERATION IN COLORECTAL CANCER CELLS

α-水芹烯與5-氟尿嘧啶抑制人類大腸癌細胞株增生之

協同作用

MASTER THESIS

Submitted to the Department of Food Technology, Soegijapranata Catholic University, and Department of Food and Nutrition, Providence University In partial fulfillment for obtaining the Master's double degree

By:

Anita Caroline Susanto S.T.P (20.13.0004)

林秀玲 (611004071)

FOOD TECHNOLOGY DOUBLE DEGREE MASTER PROGRAM

SOEGIJAPRANATA CATHOLIC UNIVERSITY

PROVIDENCE UNIVERSITY

TAIWAN

2023

ABSTRACT

Alpha-phellandrene (α -PA), an important component of dill, has been shown to have many physiological effects, including chemoprevention. However, the synergy effect of α -PA with chemotherapy medicines is limited. Colorectal cancer (CRC) ranked second as the most common cause of death globally, and it has a high incidence rate in Taiwan and Indonesia. One of the most frequently used medicines for chemotherapy for colorectal cancer is 5-fluorouracil (5-FU). Unfortunately, high doses and long-term use of 5-FU can generate side effects, such as those toxicity and inflammation, for CRC patients. This study investigates the synergy effect of α -PA combined with 5-FU on antiproliferation in human colorectal HT-29 cancer cells. This study analyzed cell viability, cell proliferation, cell cycle and its regulators, apoptosis and its regulators, and cell death via the NF- κ B pathway towards HT-29 after 50, 100, or 250 μ M α -PA combined 5 μ M 5-FU treatment for 72 h. Our results show that combining 250 μ M α -PA and 5-FU treatment can reduce cell viability and fluorodeoxyuridine (FdU) incorporation level more than the 5-FU alone group (p<0.05). Reducing FdU levels means the combination of α -PA and 5-FU has a synergy effect inhibiting cell proliferation. Cell proliferation is also inhibited by 250 μ M α -PA combined 5-FU due to cell cycle arrest in the G1 phase (p<0.05). As compared to the 5-FU treatment alone group, the combination treatment of 100 and 250 μ M α -PA and 5-FU can more efficiently activate p21, 50 and 100 μ M α -PA combined 5-FU can significantly decrease CDK2 levels (p < 0.05), and 250 μ M α -PA combined 5-FU can significantly reduce CDK-4 levels (p<0.05) in HT-29 cells. Combination of 50, 100, and 250 μ M α -PA and 5-FU significantly reduce Wnt and p- β catenin expression level, induce β -catenin translocation, and significantly reduce Wnt/ β catenin ratio (p<0.05) in HT-29 cells. Besides, this combination treatment of 50, 100, and 250 μM α-PA and 5-FU can more efficiently induce both early (by Annexin V stained) and late (by PI stained) apoptosis by reducing the mitochondria membrane potential (MMP), increasing Bax, Cytochrome C, Caspase-8, Bid, Caspase-9, and Caspase-3, also reducing Bcl-2 than the 5-FU treatment alone (p < 0.05). The combination treatment of 50, 100, and 250 μ M α -PA and 5-FU also more efficiently activates the NF- κ B pathway by inducing p-IkB, NF-kB (p65) translocation, and NF-kB DNA binding. NF-kB pathway activation resulted in the translocation of NF-KB in the mitochondria, reducing the binding of HK-2 and VDAC-1 complexes and leading to apoptosis. These results show that α -PA is a safe phytochemical that is not toxic to human cells and has efficiency and high potential as a synergic chemotherapy component of 5-FU. These synergic effects reduce cell proliferation, induce apoptosis via intrinsic and extrinsic apoptotic pathways, and activate the NF- κ B signaling pathway.

Keywords: α-PA, 5-FU, apoptosis, cell proliferation, HT-29,

