
33

IMPLEMENTATION AND RESULTS

5.1. Implementation

In this chapter, the implementation and testing of projects development about textual

sentiment analysis using Convolutional Neural Network (CNN) and Long Short Term Memory

(LSTM) neural network model. Below is the code of the SNN, CNN and LSTM used to obtain

results from the project developed.

1. import pandas as pd
2. import numpy as np
3. import re
4. import nltk
5. from nltk.corpus import stopwords
6. from numpy import array
7.
8. from keras.preprocessing.text import one_hot, Tokenizer
9. from keras_preprocessing.sequence import pad_sequences
10. from keras.models import Sequential
11. from keras.layers.core import Activation, Dropout, Dense
12. from keras.layers import Flatten, GlobalMaxPooling1D, Embedding, Conv1D,

LSTM, Bidirectional

13. from sklearn.model_selection import train_test_split

import necessary modules and dependencies:

1. Import pandas: pandas are used to read dataset

2. Import numpy: numpy is used for processing arrays and also for basic calculations.

Numpy has the ability to create n-dimensional array objects.

3. Import re: a regular expression will help to check if a particular string matches a

given regular expression.

4. Import nltk: is a toolkit built for working with NLP, in this research nltk will help

in preprocessing the dataset.

5. From nltk.corpus import stopwords: is a nltk that includes a list of stop words like

“a”, “an”, “the”, “of”, etc. These words are words that we do not want to use in this

research.

6. From numpy import array: this library provides an array object that is up to 50x

faster than a traditional python list. Also, it provides a lot of supporting functions

that make working with n-dimensional arrays very easy.

34

7. From keras.preprocessing.text import one_hot, Tokenizer: is used for vectorizing

the text corpus.

8. From keras_preprocessing.sequence import pad_sequences: is a keras function that

transforms a list of sequences into a numpy array of shape.

9. From keras.models import sequential: is one of keras libraries that contains a

sequential API for arranging the keras layers in a sequential order.

10. From keras.layers.core import activation, dropout, dense: is an essential keras

library for processing the data in hidden layers.

11. From keras.layers import layers: use keras as a library to import layers.

12. From sklearn.model_selection import train_test_split: use to split train data and test

data.

Figure 5.1 shows the dataset with the corresponding value of each tweet

14. def preprocess_text(sen):
15. '''Cleans text data up, leaving only 2 or more char long non-

stepwords composed of A-Z & a-z only

16. in lowercase'''
17.
18. sentence = sen.lower()
19.
20. # Remove html tags
21. sentence = remove_tags(sentence)
22.
23. # Remove punctuations and numbers
24. sentence = re.sub('[^a-zA-Z]', ' ', sentence)
25.
26. # Single character removal
27. sentence = re.sub(r"\s+[a-zA-Z]\s+", ' ', sentence) # When we remove

the apostrophe from the word "John's", the apostrophe is replaced by an

empty space. Hence, we are left with the single character "s" that we are

removing here.

28.
29. # Remove multiple spaces

35

30. sentence = re.sub(r'\s+', ' ', sentence) # Next, we remove all the
single characters and replace it by a space which creates multiple spaces

in our text. Finally, we remove the multiple spaces from our text as well.

31.
32. # Remove Stopwords
33. pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english'))

+ r')\b\s*')

34. sentence = pattern.sub('', sentence)
35.
36. return sentence

Lines 14-36 is a function that performs a series of operations on the input review. First in

line 18 is conversion to lowercase, then line 21 is a function to remove any html tags, line 24 is

for removing any punctuations and numbers, and line 27 are explained in the code and then line

30 is for removing any multiple spaces and lastly line 33 is the process of removing stopwords.

Figure 5.2 is an example of raw unprocessed data

Figure 5.3 is a result of preprocessing the data

37. y = tweet_comments['sentiment']
38.
39. y = np.array(list(map(lambda x: 1 if x=="positive" else 0, y)))

Lines 37-39 is a process to convert the labeled sentiment of positive and negative into 1 if

positive and 0 if negative.

40. X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.20, random_state=20)

Line 40 is a process of splitting the dataset into a 70:30 training test.

41. word_tokenizer = Tokenizer()
42. word_tokenizer.fit_on_texts(X_train)
43.
44. X_train = word_tokenizer.texts_to_sequences(X_train)
45. X_test = word_tokenizer.texts_to_sequences(X_test)

Lines 41-45 is for tokenizing the data with the help of tokenizer class from

keras.preprocessing module to create a word to index dictionary. In a word to index dictionary,

36

each word in the corpus is used as a key, while a corresponding unique index is used as the value

of the key.

46. from numpy import asarray
47. from numpy import zeros
48.
49. embeddings_dictionary = dict()
50. glove_file = open('a2_glove.6B.100d.txt', encoding="utf8")
51.
52. for line in glove_file:
53. records = line.split()
54. word = records[0]
55. vector_dimensions = asarray(records[1:], dtype='float32')
56. embeddings_dictionary [word] = vector_dimensions
57. glove_file.close()

In lines 46-57 is a process to load the glove word embeddings and create a dictionary that

will contain words as keys and their corresponding embedding list as values.

58. embedding_matrix = zeros ((vocab_length, 100))
59. for word, index in word_tokenizer.word_index.items():
60. embedding_vector = embeddings_dictionary.get(word)
61. if embedding_vector is not None:
62. embedding_matrix[index] = embedding_vector

Lines 58-62 is a step where an embedding matrix will be created where each row number

will correspond to the index of the word in the corpus. The matrix will have 100 columns where

each column will contain the glove word embeddings.

63. cnn_model = Sequential()
64.
65. embedding_layer = Embedding(vocab_length, 100,

weights=[embedding_matrix], input_length=maxlen , trainable = False)

66. cnn_model.add(embedding_layer)
67.
68. cnn_model.add(Conv1D(128, 5, activation='relu'))
69. cnn_model.add(GlobalMaxPooling1D())
70. cnn_model.add(Dense(1, activation='sigmoid'))

Lines 63-70 is the architecture for the CNN models, CNN mostly used for image but also

can be used for text data by using Conv1D to extract features from the data. In this architecture,

the model architecture is CNN with 1 convolutional layer and 1 pooling layer. The embedding

layer will have an input length of 100 and the output will also be 100 and since in this research

glove word embedding is used, trainable will be set into false state.

71. cnn_model_history = cnn_model.fit(X_train, y_train, batch_size=128,

epochs=20, verbose=1, validation_split=0.2)

37

72. score = cnn_model.evaluate(X_test, y_test, verbose=1)
73. print("Test score:", score[0])
74. print("Test Accuracy:", score[1])

Lines 71-74 is the process of training the data into the CNN model with an epoch of 20 and

then the prediction of the test will be conducted in line 72 and the accuracy of the model will be

shown in line 74.

75. lstm_model = Sequential()
76. embedding_layer = Embedding(vocab_length, 100,

weights=[embedding_matrix], input_length=maxlen , trainable=False)

77.
78. lstm_model.add(embedding_layer)
79. lstm_model.add(Bidirectional(LSTM(128)))
80. lstm_model.add(Dense(1, activation='sigmoid'))

Lines 75-80 is the model architecture of the LSTM model with the same embedding layer

and the LSTM model will use Bidirectional to further improve the accuracy.

81. lstm_model_history = lstm_model.fit(X_train, y_train, batch_size=128,
epochs=20, verbose=1, validation_split=0.2)

82. score = lstm_model.evaluate(X_test, y_test, verbose=1)
83. print("Test Score:", score[0])
84. print("Test Accuracy:", score[1])

Line 81 is the process of training the data into the LSTM model with the same epochs of

20 and then in line 82 prediction on test data is conducted and line 84 will show the accuracy of

the model performance.

5.2. Results

Figure 5.1 model accuracy of CNN

38

Figure 5.2 model accuracy of BidiLSTM

Figure 5.3 model loss of CNN

39

Figure 5.4 model loss of BidiLSTM

From the image above the image shows the training and validation accuracy of a CNN

model and a LSTM model on a sentiment analysis task. The x-axes represents the epoch number

(a full pass through the training data), and the y-axis represents the accuracy. The blue curve

represents the training and accuracy, and the orange curve represents the validation accuracy.

 From the images, we can see that both the CNN and LSTM models have similar

performance in terms of accuracy and loss, although the CNN model seems to have slightly better

performance. The models seem to have reached a plateau in terms of accuracy and loss after about

5-10 epochs, which means that further training is unlikely to lead to significant improvement in

performance.

40

Table 5.1. Experimental result of both algorithms.

Algorithm Model Epochs Batch Size Accuracy

Convolutional

Neural

Network

Sequential 20 128 89%

Long Short-

Term Memory

Neural

Network

Sequential 20 128 90%

The experiments that have been done, I obtained the best accuracy from LSTM of 90%.

Judging from both accuracy, LSTM is indeed better than CNN for textual sentiment analysis using

neural networks.

41

Table 5.2. Model summary of Convolutional Neural network

Layer Output Shape Param

Embedding_7 (None, 40, 100) 415600

Convi1d_1 (Conv1D) (None, 36, 128) 64128

Global_max_pooling1d_1

(GlobalMaxPooling1D)

(None, 128) 0

Dense_6 (Dense) (None, 1) 129

Total Params: 479,857

Trainable params: 64,257

Non-trainable params: 415,600

Test set accuracy: 89%

Table 5.3.

Model summary of Bidirectional Long Short Term Memory Neural Network

Layer Output Shape Param

Embedding_9 (None, 40, 100) 415600

Bidirectional_1

(Bidirectional)

(None, 256) 234496

Dense_8 (Dense) (None, 1) 257

Total Params: 650,353

Trainable params: 234,753

Non-trainable params: 415,600

Test set accuracy: 90%

