
33 

 

 

IMPLEMENTATION AND RESULTS 

5.1. Implementation 

In this chapter, the implementation and testing of projects development about textual 

sentiment analysis using Convolutional Neural Network (CNN) and Long Short Term Memory 

(LSTM) neural network model. Below is the code of the SNN, CNN and LSTM used to obtain 

results from the project developed. 

1. import pandas as pd 
2. import numpy as np 
3. import re 
4. import nltk 
5. from nltk.corpus import stopwords 
6. from numpy import array 
7.  
8. from keras.preprocessing.text import one_hot, Tokenizer 
9. from keras_preprocessing.sequence import pad_sequences 
10. from keras.models import Sequential 
11. from keras.layers.core import Activation, Dropout, Dense 
12. from keras.layers import Flatten, GlobalMaxPooling1D, Embedding, Conv1D, 

LSTM, Bidirectional 

13. from sklearn.model_selection import train_test_split 
 

import necessary modules and dependencies: 

1. Import pandas: pandas are used to read dataset 

2. Import numpy: numpy is used for processing arrays and also for basic calculations. 

Numpy has the ability to create n-dimensional array objects. 

3. Import re: a regular expression will help to check if a particular string matches a 

given regular expression. 

4. Import nltk: is a toolkit built for working with NLP, in this research nltk will help 

in preprocessing the dataset. 

5. From nltk.corpus import stopwords: is a nltk that includes a list of stop words like 

“a”, “an”, “the”, “of”, etc. These words are words that we do not want to use in this 

research. 

6. From numpy import array: this library provides an array object that is up to 50x 

faster than a traditional python list. Also, it provides a lot of supporting functions 

that make working with n-dimensional arrays very easy. 
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7. From keras.preprocessing.text import one_hot, Tokenizer: is used for vectorizing 

the text corpus. 

8. From keras_preprocessing.sequence import pad_sequences: is a keras function that 

transforms a list of sequences into a numpy array of shape. 

9. From keras.models import sequential: is one of keras libraries that contains a 

sequential API for arranging the keras layers in a sequential order. 

10. From keras.layers.core import activation, dropout, dense: is an essential keras 

library for processing the data in hidden layers. 

11. From keras.layers import layers: use keras as a library to import layers. 

12. From sklearn.model_selection import train_test_split: use to split train data and test 

data. 

 

Figure 5.1 shows the dataset with the corresponding value of each tweet 

14. def preprocess_text(sen): 
15.     '''Cleans text data up, leaving only 2 or more char long non-

stepwords composed of A-Z & a-z only 

16.     in lowercase''' 
17.      
18.     sentence = sen.lower() 
19.  
20.     # Remove html tags 
21.     sentence = remove_tags(sentence) 
22.  
23.     # Remove punctuations and numbers 
24.     sentence = re.sub('[^a-zA-Z]', ' ', sentence) 
25.  
26.     # Single character removal 
27.     sentence = re.sub(r"\s+[a-zA-Z]\s+", ' ', sentence)  # When we remove 

the apostrophe from the word "John's", the apostrophe is replaced by an 

empty space. Hence, we are left with the single character "s" that we are 

removing here. 

28.  
29.     # Remove multiple spaces 
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30.     sentence = re.sub(r'\s+', ' ', sentence)  # Next, we remove all the 
single characters and replace it by a space which creates multiple spaces 

in our text. Finally, we remove the multiple spaces from our text as well. 

31.  
32.     # Remove Stopwords 
33.     pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) 

+ r')\b\s*') 

34.     sentence = pattern.sub('', sentence) 
35.  
36.     return sentence 

 

Lines 14-36 is a function that performs a series of operations on the input review. First in 

line 18 is conversion to lowercase, then line 21 is a function to remove any html tags, line 24 is 

for removing any punctuations and numbers, and line 27 are explained in the code and then line 

30 is for removing any multiple spaces and lastly line 33 is the process of removing stopwords. 

 

Figure 5.2 is an example of raw unprocessed data 

 

Figure 5.3 is a result of preprocessing the data 

37. y = tweet_comments['sentiment'] 
38.  
39. y = np.array(list(map(lambda x: 1 if x=="positive" else 0, y))) 

Lines 37-39 is a process to convert the labeled sentiment of positive and negative into 1 if 

positive and 0 if negative. 

40. X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.20, random_state=20) 

Line 40 is a process of splitting the dataset into a 70:30 training test. 

41. word_tokenizer = Tokenizer() 
42. word_tokenizer.fit_on_texts(X_train) 
43.  
44. X_train = word_tokenizer.texts_to_sequences(X_train) 
45. X_test = word_tokenizer.texts_to_sequences(X_test) 

 

Lines 41-45 is for tokenizing the data with the help of tokenizer class from 

keras.preprocessing module to create a word to index dictionary. In a word to index dictionary, 
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each word in the corpus is used as a key, while a corresponding unique index is used as the value 

of the key. 

46. from numpy import asarray 
47. from numpy import zeros 
48.  
49. embeddings_dictionary = dict() 
50. glove_file = open('a2_glove.6B.100d.txt', encoding="utf8") 
51.  
52. for line in glove_file: 
53.   records = line.split() 
54.   word = records[0] 
55.   vector_dimensions = asarray(records[1:], dtype='float32') 
56.   embeddings_dictionary [word] = vector_dimensions 
57. glove_file.close() 

 

In lines 46-57 is a process to load the glove word embeddings and create a dictionary that 

will contain words as keys and their corresponding embedding list as values. 

58. embedding_matrix = zeros ((vocab_length, 100)) 
59. for word, index in word_tokenizer.word_index.items(): 
60.   embedding_vector = embeddings_dictionary.get(word) 
61.   if embedding_vector is not None: 
62.     embedding_matrix[index] = embedding_vector 
 

Lines 58-62 is a step where an embedding matrix will be created where each row number 

will correspond to the index of the word in the corpus. The matrix will have 100 columns where 

each column will contain the glove word embeddings. 

63. cnn_model = Sequential() 
64.  
65. embedding_layer = Embedding(vocab_length, 100, 

weights=[embedding_matrix], input_length=maxlen , trainable = False) 

66. cnn_model.add(embedding_layer) 
67.  
68. cnn_model.add(Conv1D(128, 5, activation='relu')) 
69. cnn_model.add(GlobalMaxPooling1D()) 
70. cnn_model.add(Dense(1, activation='sigmoid')) 

 

Lines 63-70 is the architecture for the CNN models, CNN mostly used for image but also 

can be used for text data by using Conv1D to extract features from the data. In this architecture, 

the model architecture is CNN with 1 convolutional layer and 1 pooling layer. The embedding 

layer will have an input length of 100 and the output will also be 100 and since in this research 

glove word embedding is used, trainable will be set into false state. 

71. cnn_model_history = cnn_model.fit(X_train, y_train, batch_size=128, 

epochs=20, verbose=1, validation_split=0.2) 
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72. score = cnn_model.evaluate(X_test, y_test, verbose=1) 
73. print("Test score:", score[0]) 
74. print("Test Accuracy:", score[1]) 

 

Lines 71-74 is the process of training the data into the CNN model with an epoch of 20 and 

then the prediction of the test will be conducted in line 72 and the accuracy of the model will be 

shown in line 74. 

75. lstm_model = Sequential() 
76. embedding_layer = Embedding(vocab_length, 100, 

weights=[embedding_matrix], input_length=maxlen , trainable=False) 

77.  
78. lstm_model.add(embedding_layer) 
79. lstm_model.add(Bidirectional(LSTM(128))) 
80. lstm_model.add(Dense(1, activation='sigmoid'))  

 

Lines 75-80 is the model architecture of the LSTM model with the same embedding layer 

and the LSTM model will use Bidirectional to further improve the accuracy. 

81. lstm_model_history = lstm_model.fit(X_train, y_train, batch_size=128, 
epochs=20, verbose=1, validation_split=0.2) 

82. score = lstm_model.evaluate(X_test, y_test, verbose=1) 
83. print("Test Score:", score[0]) 
84. print("Test Accuracy:", score[1]) 

 

Line 81 is the process of training the data into the LSTM model with the same epochs of 

20 and then in line 82 prediction on test data is conducted and line 84 will show the accuracy of 

the model performance. 

5.2. Results 

 

Figure 5.1 model accuracy of CNN 
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Figure 5.2 model accuracy of BidiLSTM 

 

Figure 5.3 model loss of CNN 



39 

 

 

Figure 5.4 model loss of BidiLSTM 

 

From the image above the image shows the training and validation accuracy of a CNN 

model and a LSTM model on a sentiment analysis task. The x-axes represents the epoch number 

(a full pass through the training data), and the y-axis represents the accuracy. The blue curve 

represents the training and accuracy, and the orange curve represents the validation accuracy. 

 From the images, we can see that both the CNN and LSTM models have similar 

performance in terms of accuracy and loss, although the CNN model seems to have slightly better 

performance. The models seem to have reached a plateau in terms of accuracy and loss after about 

5-10 epochs, which means that further training is unlikely to lead to significant improvement in 

performance. 
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Table 5.1. Experimental result of both algorithms. 

Algorithm Model Epochs Batch Size Accuracy 

Convolutional 

Neural 

Network 

Sequential 20 128 89% 

Long Short-

Term Memory 

Neural 

Network 

Sequential 20 128 90% 

 

The experiments that have been done, I obtained the best accuracy from LSTM of 90%. 

Judging from both accuracy, LSTM is indeed better than CNN for textual sentiment analysis using 

neural networks. 
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Table 5.2. Model summary of Convolutional Neural network 

Layer Output Shape Param 

Embedding_7 (None, 40, 100) 415600 

Convi1d_1 (Conv1D) (None, 36, 128) 64128 

Global_max_pooling1d_1 

(GlobalMaxPooling1D) 

(None, 128) 0 

Dense_6 (Dense) (None, 1) 129 

Total Params: 479,857 

Trainable params: 64,257 

Non-trainable params: 415,600 

Test set accuracy: 89% 

Table 5.3.  

Model summary of Bidirectional Long Short Term Memory Neural Network 

Layer Output Shape Param 

Embedding_9 (None, 40, 100) 415600 

Bidirectional_1 

(Bidirectional) 

(None, 256) 234496 

Dense_8 (Dense) (None, 1) 257 

Total Params: 650,353 

Trainable params: 234,753 

Non-trainable params: 415,600 

Test set accuracy: 90% 

  


