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ANALYSIS AND DESIGN 

4.1. Analysis 

This chapter provides a detailed explanation and discusses one by one about the methods 

of solving the problem that have been mentioned in the previous chapter. The main object of this 

purpose is to compare which neural network models have better accuracy between Convolutional 

Neural Networks (CNN) and Long Short-Term Memory Neural Networks (LSTM) for text 

sentiment analysis. 

4.1.1. Dataset 

In this research the dataset was scrapped from zero with the help of snscrape python library. 

By using snscrape it is not necessary to create a Twitter developer account because snscrape 

doesn’t need acces token and secret token like Tweepy. The query that was used for scrapping are 

"(good OR hate) (@TheBatman) until:2022-06-05 since:2022-03-05" which is tweet that contain 

good or hate and tag @TheBatman with the timeframe of March 5th  2022 which is the day the 

Batman movie being premiered in Indonesia until June 5th 2022.  

 

Figure 4.1 Example of the raw dataset that has been taken using the snscrape library 
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First, the dataset needs to be labeled one by one with the help of reviewers with positive 

and negative. In this research two reviewers were asked to manually label each of the tweet. 

 

Figure 4.2 Show the reviewed and labeled tweet from two reviewers 

After the dataset has been reviewed, I need to find the kappa value of the dataset to 

determine if the dataset that I will use is worth using or not.  

Table 4.1. Kappa Value Table 

 Reviewer 2  

Reviewer 1 Positive Negative Total 

Positive 1593 87 1680 

Negative 118 152 270 

Total 1711 239 1950 

 

From the table above it is shown there are 1950 total of dataset that have been successfully 

scrapped, from reviewer 1 and reviewer 2 both agree that there are 1593 positive data and there 

are 87 where reviewer 1 believe the tweets are positive but reviewer 2 believe the tweets are 

negative. And then there are 118 tweets where reviewer 1 believes the tweets are negative but 

reviewer 2 said otherwise and lastly reviewer 1 and reviewer 2 agree that there are 152 negative 

tweets. After that, I need to find the Observed agreement which is a state where both reviewers 

have the same agreement. 
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𝑂𝑎 =
(𝑃𝑎 + 𝑁𝑎)

𝑇𝑜
=

1593 + 152

1950
= 0,894871795  

Pa is the positive agreement, Na is the negative agreement, and To is the total of the dataset. 

After that the agreement of chance are needed, to find the agreement of chance I can use 

𝐴𝑐 = (
𝑃1

𝑇𝑜
) ∗ (

𝑃2

𝑇𝑜
) +  (

𝑃3

𝑇𝑜
) ∗ (

𝑃4

𝑇𝑜
) = (

1711

1950
) ∗ (

1680

1950
) +  (

239

1950
) ∗ (

270

1950
) = 0,772915   

And finally, after finding the observed agreement and the agreement of chance I can find 

the kappa value using 

𝐾 =
𝑂𝑎 − 𝐴𝑐

1 − 𝐴𝑐
=

(0,894871785 − 0,772915)

(1 − 0,772915)
= 0,537053122 

From the calculation above, it can be concluded that the dataset is of moderate agreement. 

And lastly, after finding the kappa value, the non-agreement between 2 reviewers will be deleted. 

 

Figure 4.3 shows the dataset that were ready to be used.    
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4.1.2. Preprocessing 

After preparing the dataset, the next step is preprocessing the data. Preprocessing the 

dataset is an important step in any machine learning project, including sentiment analysis using 

neural networks. Preprocessing helps to ensure that the data is in a format that the model can learn 

from efficiently and effectively. 

There are a few specific reasons why preprocessing is important for sentiment analysis 

using neural networks: 

1. Removing noise and unnecessary information: The raw data may contain a lot of 

irrelevant or redundant information that could hinder the model’s ability to learn 

effectively. Preprocessing helps to remove this noise and select only the most 

relevant and important data for the model to learn from. 

2. Handling missing or incomplete data: It is not uncommon for real-world datasets to 

contain missing or incomplete data. Preprocessing can help to identify and handle 

missing or incomplete data in a way that does not negatively impact the model’s 

performance 

3. Normalizing and scaling the data: Neural networks can be sensitive to the scale of 

the input data. Preprocessing can help to normalize and scale the data to a consistent 

range, which can improve the model’s performance. 

4. Encoding categorical data: Categorical data, such as text data, needs to be encoded 

in a way that the model can understand. Preprocessing can help to encode this data 

in a way that is suitable for the model. 

Overall, preprocessing the dataset is an important step in preparing the data for sentiment 

analysis using neural networks. It helps to ensure that the data is clean, consistent, and in a format 

that the model can learn from effectively. 

 

Figure 4.1 Unprocessed dataset 

 

Figure 4.2 Preprocessed dataset  
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4.1.3. GloVe Word Embedding 

GloVe (short for “Global Vectors for Word Representation”) is a word embedding method 

for neural networks that has gained a lot of popularity in recent years. Word embeddings are a way 

to represent words as numeric vectors, which can then be fed into a neural network as input. The 

goal of word embeddings is to capture the meaning of words in a way that is more efficient and 

effective than traditional methods such as one-hot encoding. 

The GloVe algorithm is trained on a large dataset of co-occurring words, and it learns to 

represent each word as a vector of real numbers. The resulting word vectors have the property that 

words that appear in similar contexts are assigned similar vectors. This means that words that are 

semantically similar will have similar representations in the GloVe Space. 

 

Figure 4.1 Visual illustration about word embedding 

There are several benefits in using GloVe word embeddings in neural network models: 

1. Improve performance: Word embeddings can improve the performance of a neural 

network by providing a more efficient and effective way to encode the input data. 
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One-hot encoding, which is a common alternative, is inefficient because it requires 

a separate dimension for each word in the vocabulary, which can be very large. 

Word embeddings, on the other hand, can compress the information into a much 

lower-dimensional space, which can make the model more efficient and easier to 

train. 

2. Handling out-of-vocabulary (OOV) words: GloVe word embeddings can handle 

OOV words (words that are not in the training dataset) more effectively than one-

hot encoding. With one-hot encoding, OOV words are typically represented as a 

vector of all zeros, which does not provide any useful information to the model. 

With GloVe word embeddings, OOV words can be represented by their closest 

neighbors in the word vector space, which can provide some information to the 

model even if it has not seen the word before. 

3. Transfer learning: GloVe word embeddings are pre-trained on a large dataset and 

can be used as a starting point for another task. Which can save time and resources, 

and it can also improve the performance of the model. 

4. Interpretability: Because GloVe word embeddings are numeric vectors, it is possible 

to perform mathematical operations on them (e.g., addition, subtraction). This can 

make it easier to understand and interpret the relationships between words. For 

example, we can find the vector representation of the word “king” and subtract the 

vector representation of the word “man” to get the vector representation of the word 

“queen”. This kind of interpretability can be useful for debugging and for 

understanding how the model is making decisions. 

 

Although GloVe word embeddings are good, there are also some potential drawbacks 

when using GloVe word embeddings: 

1. Lack of fine-tuning: Because GloVe word embeddings are pre-trained on a large 

dataset, they may not be perfectly suited to some specific tasks. 

2. Large size: The GloVe word embedding model is quite large, with millions of 

parameters. This can be an issue if working with a small dataset or if limited in 

terms of computational resources. 
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Despite these drawbacks, GloVe word embeddings are still a powerful tool for neural 

network models, particularly when working with natural language data. They can 

improve the performance of the model, handle OOV words effectively, facilitate 

transfer learning, and provide interpretability. 
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From the formulation above, it needs to be discussed how neural network models work. As 

explained below: 

Firstly, neural networks are made up of layers of neurons. These neurons are the core 

processing units of the network. 

Neural networks are made up of layers of neurons, these neurons are the core processing 

units of the network. We have the input layer which receives the input and in this case its three 

different kinds of shape. While the output layer predicts our final output, and in between them exist 

the hidden layers which perform most of the computations required by our network. 

Each pixel is fed as input to each neuron of the first layer, neurons of one layer are 

connected to neurons of the next layer through channels. Each of these channels is assigned a 

numerical value known as weight, the inputs are multiplied to the corresponding weights and their 

sum is sent as input to the neurons in the hidden layer. 

Each of the neurons from the input layer is associated with a numerical value called the 

“bias” which is then added to the input sum, this value is then passed through a threshold function 

called the activation function. 

(𝑥1 ∗ 0,8 + 𝑥3 ∗ 0,2) + 𝐵1 

The result of the activation function will determine if the particular neurons will get 

activated or not. 

An activated neuron transmits data to the neurons of the next layer over the channels, in 

this manner the data is propagated through the network and it is called forward propagation. In the 

output layer, the neuron with the highest value fires and determines the output, the value is basically 

probability.  

The neuron is associated with the square who has the highest probability, hence that is the 

output predicted by the neural network. But, just by looking at the result, neural network has made 

a wrong prediction. Along with the input, our network also has the output fed to it. The predicted 

output is compared against the actual output to realize the error in prediction. 

Backpropagation is an algorithm that back propagates the errors from output nodes to the 

input nodes. Backpropagation works by computing the gradient of the loss function with respect to 
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each weight by the chain rule, computing the gradient one layer at a time, iterating backward from 

the last layer to avoid redundant calculations of intermediate terms in the chain rule, this process 

continues until our weights are assigned such that the neural network models can predict the shapes 

correctly. 

4.1.4. Forward Propagation 

As the name suggests, the input data is fed in the forward direction through the network. 

Each hidden layer accepts the input data, processes it as per the activation function and passes to the 

successive layer. 

In order to generate some output, the input data should be fed in the forward direction only. 

The data should not flow in reverse direction during output generation or otherwise it would form 

an infinite cycle and the output could never be generated. 

At each neuron in a hidden or output layer, the processing happens in two steps: 

1. Preactivation: it is a weighted sum of inputs i.e., the linear transformation of 

weights to inputs available. Based on this aggregated sum and activation function 

the neuron makes a decision whether to pass this information further or not. 

2. Activation: the calculated weighted sum of inputs is passed to the activation 

function. An activation function is a mathematical function which adds non 

linearity to the network. There are four commonly used and popular activation 

functions such as sigmoid, hyperbolic tangent(tanh), ReLu and Softmax. 
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Figure 4.1 200 samples are used to generate the data and it has two classes shown in red and 

green color. 

 

Figure 4.2 shows the neural network structure for the binary classification problem. 

One hidden layer with two neurons, an output layer with a single neuron and sigmoid 

activation function is used. During forward propagation at each node of hidden and output layer 

preactivation and activation takes place. For example, at the first node of the hidden layer, 

a1(preactivation) is calculated first and then h1(activation) is calculated. 

And a1 is a weighted sum of inputs. In this example, the weights are randomly generated. 

Then a11 = w1*x1 + w2*x2 + b1 = 1.76*0.88 + 0.40*(-0.49) + 0 = 1.37 approx. and h11 is the 

value of activation function applied on a11. 

ℎ1 =  
1

1 + 𝑒−𝑎1
= 0.8 𝑎𝑝𝑝𝑟𝑜𝑥. 

Similarly 

A2 = w3*x1 + w4*x2 + b2 = 0.97*0.88 + 2.24*(-0.49) + 0 = -2.29 approx and 
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ℎ2 =  
1

1 + 𝑒−𝑎2
= 0.44 𝑎𝑝𝑝𝑟𝑜𝑥. 

For any layer after the first hidden layer, the input is output from the previous layer. 

A3 = w5*h1 + w6*h2 + b3 = 1.86*0.8 + (-0.97)*0.44 + 0 = 1.1 approx and 

ℎ3 =  
1

1 + 𝑒−𝑎3
= 0.74 𝑎𝑝𝑝𝑟𝑜𝑥. 

So, there are 74% chances the first observation will belong to class 1. By doing this for all 

the other observations, predicted output can be calculated. 

  

Figure 4.3 shows the calculation of the first hidden layer 

 

Figure 4.4 shows the calculation of the second hidden layer 
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Figure 4.5 show the calculation of the output layer 

 

4.1.5. Backpropagation 

Is a mechanism used to update the weights using gradient descent. It calculates the gradient 

of the error function with respect to the neural network’s weights. The calculation proceeds 

backwards through the network. 

∗ 𝑊𝑥 =  𝑊𝑥 − 𝑎 (
𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑊𝑥
) 

Where *Wx is new weight, Wx is the old weight, 𝑎  is the learning rate, and finally 
𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑊𝑥
 

is a derivative error with respect to the weight.  
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4.2. Convolutional Neural Networks 

Convolutional neural networks (CNN) are a type of artificial neural network that are 

particularly well-suited to processing data that has a grid-like structure, such as an image. 

However, CNN can also be applied to 1D data, such as text. In this case, the input text is 

represented as a sequence of words, with each word being a “pixel” in the grid. The 1D CNN 

“slides” a kernel (a small matrix of weights) across the input text, performing a dot product 

between the weights in the kernel and the words at each position. 

Before the 1D CNN can be applied to the text, it must be converted into a numerical 

representation that the network can process. This is typically done by tokenizing the text (splitting 

it into individual words), and then creating a vocabulary of all the unique words in the text. Each 

word in the vocabulary is then assigned a unique integer index. The input text is then converted 

into a sequence of these integer indices. 

After the convolutional layers have extracted the features from the input text, an activation 

function is applied to the output of each filter. The purpose of the activation function is to introduce 

non-linearity into the network, allowing it to learn more complex relationships between the input 

and output data. Commonly used activation functions include ReLU (Rectified Linear Unit), 

sigmoid, and tanh. 

After the activation function has been applied, the output of the convolutional layer is often 

passed through a pooling layer, which reduces the dimensionality of the output. This is done by 

taking the maximum, minimum, or average value of a set of adjacent outputs. Pooling helps to 

reduce the number of parameters in the model, making it more efficient and less prone to 

overfitting. 

After the pooling layers, the output of the 1D CNN is typically passed through one or more 

fully connected (also known as dense) layers. These layers are responsible for combining the 

features extracted by the convolutional layers and learning more complex relationships between 

them. The fully connected layers use weights to combine the inputs from the previous layers and 

produce an output. 

The final layer in the 1D CNN is the output layer, which produces the predicted output for 

the input text. The output layer can have a variety of different forms, depending on the task being 
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performed. For example, in a classification task, the output layer might consist of a single neuron 

with a sigmoid activation function, which outputs a probability value between 0 and 1 indicating 

the likelihood that the input text belongs to a particular class. In a regression task, the output layer 

might consist of a single neuron with a linear activation function, which outputs a continuous 

value. 

Here's a more detailed explanation of how 1D CNN work: 

1. Preprocessing: Before the 1D CNN can be applied, the input text must be converted 

into a numerical representation that the network can process. This is typically done 

by tokenizing the text (splitting it into individual words), and then creating a 

vocabulary of all the unique words in the text. Each word in the vocabulary is then 

assigned a unique integer index. The input text is then converted into a sequence of 

these integer indices. In this research word embedding were added after the 

preprocessing process/ 

2. Convolutional layers: The 1D CNN consists of one or more convolutional layers, 

which are responsible for extracting features from the input text. Each 

convolutional layer applies a set of filters to the input text, with each filter being 

responsible for extracting a specific type of feature. For example, one filter might 

be responsible for detecting the presence of certain words or word combinations, 

while another filter might be responsible for detecting the presence of certain 

patterns in the text. 

3. Activation functions: After the convolutional layers have extracted the features 

from the input text, an activation function is applied to the output of each filter. The 

purpose of the activation function is to introduce non-linearity into the network, 

allowing it to learn more complex relationships between the input and output data. 

4. Pooling layers: After the activation function has been applied, the output of the 

convolutional layers is often passed through a pooling layer, which reduces the 

dimensionality of the output. This is done by taking the maximum, minimum, or 

average value of a set of adjacent outputs. Pooling helps to reduce the number of 

parameters in the model, making it more efficient and less prone to overfitting. 
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5. Fully Connected layers: After the pooling layers, the output of the 1D CNN is 

typically passed through one or more fully connected layers. These layers are 

responsible for combining the features extracted by the convolutional layers and 

learning more complex relationships between them. 

6. Output layer: The final layer in the 1D CNN is the output layer, which produces the 

predicted output for the input text. The output layer can have a variety of different 

forms, depending on the task being performed. In this classification task, the output 

layer might consist of a single neuron with a sigmoid activation function. 

 

Figure 4.1 Convolutional 1D architecture 

The neural network structure for this research presented the following configuration: 

• Input layer: 100 inputs to which correspond the Glove 100 dimension word 

embeddings 

• Convolutional layer 

 Composed by 128 filters; 1-D kernel with stride = 1; ReLU Activation function 

• GlobalMaxPooling layer 

 GlobalMaxPooling1D is a layer that performs global max pooling on the 1D 

input. This means that it takes in a 1D input, such as a sequence of words, and 

applies max pooling across all of the elements in the sequence to produce a 

single output value. This layer is useful for tasks such as text classification, 

where the goal is to identify the most important feature in a sequence 

• Dense Layer 

 A dense layer in a convolutional 1D is a fully connected layer. It is called 

“dense” because all the neurons in the layer are connected to the neurons in the 
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previous layer. The dense layer takes the output from the previous layers and 

applies a set of weights to it in order to produce the final output. 
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4.3. LSTM 

Long Short-Term Memory (LSTM) is a type of recurrent neural network that is widely 

used for processing sequential data such as time series, natural language, and speech. LSTM are 

particularly useful for tasks that require the model to remember and use information from long 

sequences, because they are able to retain information for longer periods of time than other types 

of RNN. 

One of the key features of LSTM is their ability to control the flow of information through 

the network using gates. LSTM has three types of gates: input, output, and forget. The input gate 

determines which information from the current input should be passed to the next layer of the 

network, the output gate determines which information from the current state should be output, 

and the forget gate determines which information from the previous state should be discarded. 

The use of gates in LSTM allows them to selectively remember and forget information, 

which is what makes them so effective at processing long sequences. This is in contrast to 

traditional RNN, which have a more difficult time retaining information over long periods of time 

because they do not have the ability to selectively forget information. 

One of the main benefits of LSTM is their ability to handle long-term dependencies in data. 

In natural language, for example, a word may have a different meaning depending on the words 

that come before and after it. LSTM are able to capture these dependencies by retaining 

information from previous states, which allows them to make more informed predictions/ 

There are a few potential drawbacks when using LSTM: 

1. Computational complexity: LSTM are more complex than traditional RNN, which 

can make them more difficult to train and deploy in certain situations. 

2. Difficulty interpreting results: LSTM are black box models, which means that it 

can be difficult to understand exactly how they are making decisions. This can 

make it more difficult to debug and interpret the results. 

3. Data preparation: LSTM requires input data to be in a specific format, which can 

require additional preprocessing. 
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Despite these drawbacks, LSTM is still a powerful tool for processing sequential data 

and has been very successful in a variety of tasks. They are particularly well-suited for 

tasks that require the model to remember and use information from long sequences, 

and they have proven to be very effective in natural language processing. 

 

 

Figure 4.1 LSTM Architecture 

The first process that happening in LSTM cell state are calculating whether the past values 

is being feed through or not in the forget gate using:  

 

𝐹𝑡 =  𝜎[(𝑊𝑓ℎ +  ℎ𝑡−1) + (𝑊𝑓𝑥 +  𝑥𝑡) + 𝑏𝑓 

Ft = Forget gate 

Wfh   = Weight of forget gate 

ht-1 = output of the previous state 

Wfx = weight of the input 

Xt = input value (thebatman) 

bf = bias of forget gate 
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 After finding the output of the forget gate and if the value is 1 then it went into Ctf but if 

the value is 0 then the value is removed and hence why it is called the forget gate. 

𝐶𝑡𝑓 =  𝐶𝑡−1 ∗  𝑓𝑡 

 Ctf = Cell state of forget gate 

 Ct-1 = previous cell state value 

 Ft = Forget gate 

 The next state is to decide what new information that going to be stored in the cell state. 

This step has two parts. First, a sigmoid layer called the input gate layer decides which values we’ll 

update. 

𝑖𝑡 =  𝜎[(𝑊𝑖ℎ +  ℎ𝑡−1) + (𝑊𝑖𝑥 +  𝑥𝑡) + 𝑏𝑖 

it = Input gate sigmoid 

Wih   = Weight of input gate 

ht-1 = output of the previous state 

Wix = weight of the input 

Xt = input value (thebatman) 

bi = bias of input gate 

 

Next, a tanh layer creates a vector of new candidate values: 

𝑔𝑡 =  𝑡𝑎𝑛ℎ[(𝑊𝑔ℎ +  ℎ𝑡−1) + (𝑊𝑔𝑥 +  𝑥𝑡) + 𝑏𝑔 

gt = Input gate tanh 

Wgh   = Weight of input gate 

ht-1 = output of the previous state 

Wgx = weight of the input 

Xt = input value (thebatman) 

bg = bias of tanh input gate 

 

Then, the value of it and gt concatenated using: 

𝐶𝑡𝑖 =  𝑖𝑡 ∗  𝑔𝑡 
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After completing these two steps now the value for cell state can be determined using: 

𝐶𝑡 =  𝐶𝑡𝑖 +  𝐶𝑡𝑓 

Ct = Cell state 

Cti = Cell state of input gate 

Ctf = Cell state of forget gate 

 

Finally, the output gate which can be calculated based on the cell state, but will be a filtered 

version. First, run a sigmoid layer to decide what parts of the cell state are going into the output. 

Then, put the cell state through tanh and multiply it by the output of the sigmoid gate. 

𝑜𝑡 =  𝜎[(𝑊𝑜ℎ +  ℎ𝑡−1) + (𝑊𝑜𝑥 +  𝑥𝑡) + 𝑏𝑜 

ot = Output gate  

Wgh   = Weight of output gate 

ht-1 = output of the previous state 

Wgx = weight of the output 

Xt = input value (thebatman) 

bg = bias of output gate 

ℎ𝑡 =  tanh (𝐶𝑡 ∗  𝑜𝑡) 

ht = output 

Ct = cell state 

Ot = output gate  
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4.4. Design 

The usage of flowchart aims to know the process of a program that makes it easier to 

understand the program to be built. Flowchart can be described as: 

 

Figure 4.1 Flowchart of neural network models 

 

Figure 4.11 is used as an overview of the system itself. Starting from preparing the dataset, 

then the dataset that has been prepared will go into the pre-processing stage to remove any 

unnecessary character that will affect the accuracy. After that, converting the textual dataset into a 

numeric form using a feature extraction technique called word embedding and then the dataset will 

be trained into the neural network models. 

In general, neural network models can only recognize numeric form and then the data will 

be trained with the help of back and forward propagation. The stage in the process is: 

1. Prepare Dataset: dataset contains tweets from Twitter. 

2. Pre-Processing: prepare and process the initial data so that the data used is cleaned 

and ready to use. 

3. Word Embedding: in this stage, the processed data is still in a textual form. 

Therefore, GloVe or Global Vector word embedding needs to be added to transform 

the textual form into numerical form. 

4. SNN, CNN, and LSTM: after the dataset has been transformed into numerical form, 

the data is ready and will be trained using CNN and LSTM models. 
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In this process, the algorithms have a role in training the dataset and determine the 

accuracy of the models itself. 

5. Calculate Accuracy: calculating the accuracy of each model and the results are 

compared between SNN, CNN and LSTM. 

  


