
20

CHAPTER 4

ANALYSIS AND DESIGN

4.1. Analysis

The face image will be cropped and isolated from the another object or background with

Haarcascade face detection library. So that all input images will produce faces that are already

isolated and have the output position of the face that is always the same. The OpenFace models

expect images that have (96x96) RGB as input.The OpenFace process will produce an output

128 Dimensional vectors. This vector is used to compare whether the two faces are equal or not.

There are some conditions that must be met. In the face image that is used for taking

attendance authentication must be have a good light condition. Low light condition will blurry

the shape of the face so it can effect the accuracy of the algorithm. This authentication also

affected by image resolution as well, so it really need a good condition of camera.

The positive results of this research are indicated by when an employee succeed in taking

attendance using their facial identity, while another person can’t using their facial identity to

taking attendance for another employee. The negative results of this research are indicated by

when the system accidently identified a wrong face , such as can’t taking attendance with their

own face , either other person can taking attendance for another employee.

This facial authentication system can replace a manual attendance system that still uses a

signature. This attendance system has a higher efficiency.

4.2. Design

The code of this project is run in the Jupyter Notebook and Visual Studio Code. Jupyter

notebook is used to test the accuracy and calculate the confusion matrix of this research.

Meanwhile, Visual Studio Code is used to run Streamlit which is the Face Authentication website's

User Interface. The reason of using Jupyter Notebook instead of Google Colab is because the

computing speed on the local runtime of my computer's GPU is faster than Google Colab.

21

Figure 4. 1 Face Authentication Flowchart

 The training dataset is stored in a folder of each employee. Each employee required to

upload their face identity images to be used as training data. This image will be collected into one

folder with a name based on the username. This all images will be through the face detection

process and resized to a size of 96x96 which is OpenFace model expects. The detected faces will

22

be isolated by cropping the face from the background. So however the position of the face , it will

be cropped from the background. Here’s how faces isolated :

Figure 4. 2 Face Image Input

 From above input image, image will be proceed to crop and isolated from the image

background and other object. This process called an face detection , which is in this project using

a haarcascade library to doing an detection face job. I use Haarcascade Face Detection because of

how fast it can identify faces. Speed is important because I developed an attendance website for

this research.

After the face detection process , the color form of face image which is in BGR will be

converted to RGB and resize into OpenFace model expect (96x96).

Figure 4. 3 Face Detection and Cropped Representation

23

After identifying faces in an image, the system will crop the faces and turn them into a

feature extraction algorithm, which create feature map to produces a face embedding that

represents the features of the face. In this research, I used an Openface Algorithm to create face

embeddings which is produce a 128D vectors. Here’s how Openface create a face embeddings :

Table 4. 1 Openface Models [11]

Type Output Size #1×1 #3×3

reduce

#3×3 #5×5

reduce

#5×5 pool proj

conv1 (7 × 7 ×

3,2)

48 × 48 × 64

max pool + norm 24 × 24 × 64 m 3 × 3, 2

inception (2) 24 × 24 × 192 64 192

norm + max pool 12 × 12 × 192 m 3 × 3, 2

inception (3a) 12 × 12 × 256 64 96 128 16 32 m, 32p

inception (3b) 12 × 12 × 320 64 96 128 32 64 l2, 64p

inception (3c) 6 × 6 × 640 128 256,2 32 64,2 m 3 × 3, 2

inception (4a) 6 × 6 × 640 256 96 192 32 64 l2, 128p

inception (4e) 3 × 3 × 1024 160 256,2 64 128,2 m 3 × 3, 2

inception (5a) 3 × 3 × 736 256 96 384 l2, 96p

inception (5b) 3 × 3 × 736 256 96 384 m, 96p

avg pool 736

linear 128

 Table 4.1 above shows the convolution in the case of producing a face embedding from a

face image. when the facial image passes through the convolution layer, the face images will be

processed using the inception (3a,3b,3c,4a,4e,5a,5b) to produce a 128-dimensional face

embedding.

