
CHAPTER 5
IMPLEMENTATION AND RESULTS

5.1. Implementation

Chapter 5 explain the implementation and testing of projects about Diabetes Prediction

using Decision Tree and XGBoost algorithm. Below is the code to implement Diabetes

Prediction using Decision Tree and XGBoost algorithm

Figure 5.1 Import some library

Importing some libraries :

1. Numpy : Numpy is the fundamental package for scientific computing
2. Pandas : Pandas is used for data analysis and manipulation tool
3. Matplotlib : Matplotlib is used for visualize the data
4. Seaborn : Seaborn is used for visualize the data
5. Sklearn train test split : train test split is used to split the train and test data

Figure 5.2 Import the dataset

Importing Pima Indian Diabetes Dataset (PIDD) using pandas. The raw dataset consist of 768

rows and 9 columns. This dataset was collected from Kaggle. The attributes that will be used in

this project are : Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes

Pedigree Function, Age, and Outcome. A detailed description of all attributes is given in here :

● Pregnancies : Number of times a woman got pregnant

● Glucose : Glucose concentration in oral glucose tolerance test for 120 min

26

● Blood Pressure : Diastolic Blood Pressure

● Skin Thickness : Fold Thickness of Skin

● Insulin : Serum Insulin for 2 h

● BMI : Body Mass Index (weight/(height)^2)

● Diabetes Pedigree Function : Diabetes pedigree Function

● Age : Age (years)

● Outcome : Class variable (class value 1 for positive 0 for Negative for diabetes)

Exploratory Data Analysis

Figure 5.3 Show all column in Dataset

Figure 5.4 Show dataset info

Figure 5.5 Show dataset first 10 column

Figure 5.6 Show the sum of null data before changing the zero value

Code Explanation :

● diabetes_df.columns : Show all of the columns in the dataset

● diabetes_df.info() : Show the dataset info such as : the number of non-null data and data

types

27

● diabetes_df.isnull().head(10) : Show the first 10 rows in the dataset to check if there is

null data. False means non null data and True means null data

● diabetes_df.isnull().sum() : Show the sum of null data in each column before changing

the zero value into null

Data Preprocessing

Data Preprocessing helps transform data so that a better machine learning model can be

built, providing higher accuracy. The data preprocessing performs various functions: outlier

detection and removal, filling missing values, and Oversampling minority data. In the dataset,

268 samples are classified as diabetic, and 500 were non-diabetics.

We have to check the null value in the dataset. There are no null value in the dataset but

there are 5 attributes that impossible to have 0 value. They are : glucose, blood pressure, skin

thickness, insulin, and BMI. All the zero values were replaced with the median value of that

attribute to prevent inconsistent value. [1]

Figure 5.7 Changing zero value into null value

We have to change the value on Glucose, Blood Pressure, Skin Thickness, Insulin, and BMI

because its impossible to have 0 value on these column. The function of deep = True parameter

is to make a copy of the index and data in the data frame

Figure 5.8 null value from 5 attributes mentioned above

28

Figure 5.9 Fill null value with median

In this part, we have to change all of the null values with median. The column to be filled with

median score are : Glucose, Blood Pressure, Skin Thickness, Insulin, and BMI. inplace = True

parameter is used to save the modification from data frame diabetes_df_copy. the modification is

filling the null value with the median value

Figure 5.10 Checking on unbalanced data

Visualize the 1 and 0 values on Outcome column to check if the data is balanced or not and print

the 1 and 0 value counts

The class (Outcome) imbalance problem is solved by oversampling the minority class

using synthetic minority oversampling technique (SMOTE). There are 268 samples classified as

diabetic and 500 samples classified as non-diabetic. Now, we have to balance the class into 500

samples classified as diabetic and 500 classified as non-diabetic to prevent inconsistent result.

Figure 5.11 Oversampling method

Oversampling the minority class (Value 1) by equating the number of values with the majority

class (Value 0) using Synthetic Minority Oversampling Technique (SMOTE).

● Line 1 : importing resample from sklearn

● Line 3 : create majority data frame (all of the rows where the Outcome value is 0)

29

● Line 4 : create minority data frame (all of the rows where the Outcome value is 1)

● Line 6-8 : Oversampling technique by calling resample library. n_samples = 500 is used

to generate the minority value until 500 data, random_state = 0 is used to determines

random number generation for shuffling the data

● Line 11 : Combining the majority dataframe which is all of outcome variable with value

is 0 and upsampled minority dataframe after processing in line 6-9

Random state = 42 in Oversampling part

Figure 5.12 Using Random state = 42

There are outliers in Pregnancies, Blood Pressure, Skin Thickness, Insulin, BMI,

Diabetes Pedigree Function and Age. We check the outliers using a box plot for each

attributes.

Figure 5.13 Showing Outlier in each attributes using boxplot

From line 1-8 is used to showing boxlot in each attributes from Pregnancies to Age.

● x=diabetes_df_copy2 : used to define the dataset

● [“Pregnancies - Age”] : used to define the column to show the boxplot

30

Figure 5.14 Outlier Detection using boxplot

We have to remove those outliers using Z-Score because Z-Score can give better outlier

detection than other methods. After some rows containing outliers are removed, the number of

rows which was originally 1000 becomes only 941 rows. the applicable Z-Score threshold is

between -3 and 3 for 2 diagnostic categories (True or False). [15]

Figure 5.15 Applying Z-Score to remove the rows with outlier

The function of this part is to remove outlier using Z-Score. the range of Z-Score values between

3 to - 3. Here are the explanation of the code :

● Line 1 : importing scipy to use stats

● Line 2 : applying z-score into dataframe and changing negative Z-Score value into

positive using np.absolute

31

● Line 3 : creating a new clean dataframe by printing all of the old dataframe where the z

value less than 3, applied in all of column (axis = 1)

● Line 4 : Print the shape of the new dataframe

Figure 5.16 Showing the new dataframe after cleaned with Z-Score

Figure 5.17 Showing all of the data with outlier

● data_clean : show the new dataframe after cleaned with Z-Score

● diabetes_df_copy2[~diabetes_df_copy2.index.isin(data_clean.index)] : Print rows in the

diabetes_df_copy2 dataframe that are not in the data_clean data frame

Data Correlation

After data preprocessing, we have to check the class correlation with other variable using

Correlation Matrix. Correlation Matrix are used to see the relevance between columns. Here my

column target is the "Output" column, and the relevance between the columns has a positive

value. Then I will use all columns as indicators.

Figure 5.18 Showing correlation matrix

● sns.heatmap(data_clean.corr(), annot=True) : Showing correlation matrix between

column

32

Figure 5.19 Show column relevances using Correlation Matrix Heatmap

Figure 5.20 Splitting X and y. X is the attributes, y is the result output

5.2. Results

We divided the dataset into 4 categories : 90% train and 10% test data, 80% train

and 20% test data, 70% train and 30% test data, 60% train and 40% test data. Various

operations and analyses using random state (0 and 42) in oversampling method and

Decision Tree at the same time and data balance (imbalanced and balanced dataset) are

represented here :

Algorithm Evaluation
metric

Train : Test

90:10 80:20 70:30 60:40
Decision Tree Accuracy 88.42 88.88 82.33 79.57

Precision 83.92 86.81 81.50 78.50
Recall 95.91 89.77 83.80 82.19

F1-Score 89.52 88.26 82.63 80.30
XGBoost Accuracy 78.94 83.06 82.33 78.51

Precision 79.59 78.57 83.33 80.55

33

Recall 79.59 87.50 80.98 75.91
F1-Score 79.59 82.79 82.14 78.16

Table 5.1 Model Evaluation with Random State = 0, Balanced Dataset

Figure 5.21 Decision Tree Model Evaluation with Random State = 0, Balanced Dataset

34

Figure 5.22 XGBoost Model Evaluation with Random State = 0, Balanced Dataset

With ratio of 90:10, For the Decision Tree, the model gets 88.42 % accuracy, precision

gets 83.92%, recall gets 95.91%, and F1-Score gets 89.52%. For the XGBoost, the model gets

78.94 % accuracy, precision gets 79.59%, recall gets 79.59%, and F1-Score gets 79.59%.

With ratio of 80:20, For the Decision Tree, the model gets 88.88 % accuracy, precision

gets 86.81%, recall gets 83.80%, and F1-Score gets 82.63 %. For the XGBoost, the model gets

83.06 %, accuracy, precision gets 78.57%, recall 87.50%, and F1-Score gets 82.79%.

With ratio of 70:30, For the Decision Tree, the model gets 82.33 % accuracy, precision

gets 81.50%, recall gets 91.82%, and F1-Score gets 91.77 %. For the XGBoost, the model gets

82.33 % accuracy, precision gets 83.33%, recall gets 80.98%, and F1-Score gets 82.14%.

With ratio of 60:40, For the Decision Tree, the model gets 79.57 % accuracy, precision

gets 78.50%, recall gets 82.19%, and F1-Score gets 80.30 %. For the XGBoost, the model gets

78.51 % accuracy, precision gets 80.55%, recall gets 75.91%, and F1-Score gets 78.16%.

Algorithm Evaluation
metric

Train : Test

90:10 80:20 70:30 60:40

35

Decision Tree Accuracy 80.85 83.51 85.46 83.51
Precision 70.90 77.98 81.64 80.90

Recall 95.12 92.39 91.48 89.89
F1-Score 81.25 84.57 86.28 85.16

XGBoost Accuracy 78.72 82.44 83.68 82.71
Precision 68.42 76.57 80.25 81.51

Recall 95.12 92.39 89.36 86.86
F1-Score 79.59 83.74 84.56 84.10

Table 5.2 Model Evaluation with Random State = 42, Balanced Dataset

Figure 5.23 Decision Tree Model Evaluation with Random State = 42, Balanced Dataset

36

Figure 5.24 XGBoost Model Evaluation with Random State = 42, Balanced Dataset

With ratio of 90:10, For the Decision Tree, the model gets 80.85 % accuracy, precision

gets 70.90%, recall gets 95.12%, and F1-Score gets 81.25%. For the XGBoost, the model gets

78.72 % accuracy, precision gets 68.42%, recall gets 95.12%, and F1-Score gets 79.59%.

With ratio of 80:20, For the Decision Tree, the model gets 83.51 % accuracy, precision

gets 77.98%, recall gets 92.39%, and F1-Score gets 84.57 %. For the XGBoost, the model gets

82.44 %, accuracy, precision gets 76.57%, recall gets 92.39%, and F1-Score gets 83.74%.

With ratio of 70:30, For the Decision Tree, the model gets 85.46 % accuracy, precision

gets 81.64%, recall gets 91.48%, and F1-Score gets 86.28 %. For the XGBoost, the model gets

83.68 % accuracy, precision gets 80.25%, recall gets 89.36%, and F1-Score gets 84.56%.

With ratio of 60:40, For the Decision Tree, the model gets 83.51 % accuracy, precision

gets 80.90%, recall gets 89.89%, and F1-Score gets 85.16 %. For the XGBoost, the model gets

82.71 % accuracy, precision gets 81.51%, recall gets 86.86%, and F1-Score gets 84.10%.

Algorithm Evaluation
metric

Train : Test

90:10 80:20 70:30 60:40

37

Decision Tree Accuracy 75.00 71.52 71.75 69.09
Precision 55.55 55.35 55.00 50.45

Recall 71.42 65.95 63.76 61.11
F1-Score 62.50 60.19 59.06 55.27

XGBoost Accuracy 83.33 77.77 79.16 77.43
Precision 71.42 63.15 67.64 62.88

Recall 71.42 76.59 66.66 67.77
F1-Score 71.42 69.23 67.15 65.24

Table 5.3 Model Evaluation with Random State = 0, Imbalanced Dataset

Figure 5.25 Decision Tree Model Evaluation with Random State = 0, Imbalanced Dataset

38

Figure 5.26 XGBoost Model Evaluation with Random State = 0, Imbalanced Dataset

With ratio of 90:10, For the Decision Tree, the model gets 75.00 % accuracy, precision

gets 55.55%, recall gets 71.42%, and F1-Score gets 62.50%. For the XGBoost, the model gets

83.33 % accuracy, precision gets 71.42%, recall gets 71.42%, and F1-Score gets 71.42%.

With ratio of 80:20, For the Decision Tree, the model gets 71.52 % accuracy, precision

gets 55.35%, recall gets 65.95%, and F1-Score gets 60.19 %. For the XGBoost, the model gets

77.77 %, accuracy, precision gets 63.15%, recall gets 76.59%, and F1-Score gets 69.23%.

With ratio of 70:30, For the Decision Tree, the model gets 71.75 % accuracy, precision

gets 55.00%, recall gets 63.76%, and F1-Score gets 59.06 %. For the XGBoost, the model gets

79.16 % accuracy, precision gets 67.64%, recall gets 66.66%, and F1-Score gets 67.15%.

With ratio of 60:40, For the Decision Tree, the model gets 69.09 % accuracy, precision

gets 50.45%, recall gets 61.11%, and F1-Score gets 55.27 %. For the XGBoost, the model gets

77.43 % accuracy, precision gets 62.88%, recall gets 67.77%, and F1-Score gets 65.24%.

Algorithm Evaluation
metric

Train : Test

90:10 80:20 70:30 60:40

39

Decision Tree Accuracy 70.83 72.22 72.22 73.26
Precision 47.82 56.86 52.63 53.68

Recall 55.00 61.70 62.50 60.71
F1-Score 51.16 59.18 57.14 56.98

XGBoost Accuracy 79.16 67.44 79.62 81.59
Precision 63.15 74.35 65.62 66.66

Recall 60.00 61.70 65.62 73.80
F1-Score 61.53 67.44 65.62 70.05

Table 4.4 Model Evaluation with Random State = 42, Imbalanced Dataset

Figure 5.27 Decision Tree Model Evaluation with Random State = 42, Imbalanced Dataset

40

Figure 5.28 XGBoost Model Evaluation with Random State = 42, Imbalanced Dataset

With ratio of 90:10, For the Decision Tree, the model gets 70.83 % accuracy, precision

gets 47.82%, recall gets 55.00%, and F1-Score gets 51.16%. For the XGBoost, the model gets

79.16 % accuracy, precision gets 63.15%, recall gets 60.00%, and F1-Score gets 61.53%.

With ratio of 80:20, For the Decision Tree, the model gets 72.22 % accuracy, precision

gets 56.86%, recall gets 61.70%, and F1-Score gets 59.18 %. For the XGBoost, the model gets

67.44 %, accuracy, precision gets 74.35%, recall gets 61.70%, and F1-Score gets 67.44%.

With ratio of 70:30, For the Decision Tree, the model gets 72.22 % accuracy, precision

gets 52.63%, recall gets 62.50%, and F1-Score gets 57.14 %. For the XGBoost, the model gets

79.62 % accuracy, precision gets 65.62%, recall gets 65.62%, and F1-Score gets 65.62%.

With ratio of 60:40, For the Decision Tree, the model gets 73.26 % accuracy, precision

gets 53.68%, recall gets 60.71%, and F1-Score gets 56.98 %. For the XGBoost, the model gets

81.59 % accuracy, precision gets 66.66%, recall gets73.80%, and F1-Score gets 70.05%.

41

5.3. Evidence based on research which says that XGBoost has higher accuracy
than the Decision Tree

Algorithm Evaluation
metric

Train : Test

90:10 80:20 70:30 60:40
Decision Tree Accuracy 70.83 69.44 66.66 71.52

Precision 50.00 52.45 48.42 53.38
Recall 71.42 68.08 66.66 70.00

F1-Score 58.82 59.25 56.09 60.57
XGBoost Accuracy 79.16 79.16 78.24 76.04

Precision 66.66 66.03 66.17 60.00
Recall 57.14 74.46 65.21 70.00

F1-Score 61.53 70.00 65.69 64.61

Table 5.5 Model Evaluation with Random State = 0, Imbalanced Dataset without Age Attributes

Figure 5.29 Decision Tree Model Evaluation with Random State = 0, Imbalanced Dataset
without Age Attributes

42

Figure 5.30 XGBoost Model Evaluation with Random State = 0, Imbalanced Dataset without
Age Attributes

With ratio of 90:10, For the Decision Tree, the model gets 70.83 % accuracy, precision

gets 50.00%, recall gets 71.42%, and F1-Score gets 58.82%. For the XGBoost, the model gets

79.16 % accuracy, precision gets 66.66%, recall gets 57.14%, and F1-Score gets 61.53%.

With ratio of 80:20, For the Decision Tree, the model gets 69.44 % accuracy, precision

gets 52.45%, recall gets 68.08%, and F1-Score gets 59.25 %. For the XGBoost, the model gets

79.16 %, accuracy, precision gets 66.03%, recall gets 74.46%, and F1-Score gets 70.00%.

With ratio of 70:30, For the Decision Tree, the model gets 66.66 % accuracy, precision

gets 48.42%, recall gets 66.66%, and F1-Score gets 56.09 %. For the XGBoost, the model gets

78.24 % accuracy, precision gets 66.17%, recall gets 65.21%, and F1-Score gets 65.69%.

With ratio of 60:40, For the Decision Tree, the model gets 71.52 % accuracy, precision

gets 53.38%, recall gets 70.00%, and F1-Score gets 60.57 %. For the XGBoost, the model gets

76.04 % accuracy, precision gets 60.00%, recall gets 70.00%, and F1-Score gets 64.61%

43

Algorithm Evaluation
metric

Train : Test

90:10 80:20 70:30 60:40
Decision Tree Accuracy 69.44 71.52 71.29 73.26

Precision 45.45 56.00 51.35 53.33
Recall 50.00 59.57 59.37 66.66

F1-Score 47.61 57.73 55.07 59.25
XGBoost Accuracy 77.77 78.47 79.16 80.20

Precision 62.50 70.00 66.10 66.66
Recall 50.00 59.57 60.93 64.28

F1-Score 55.55 64.36 63.41 65.45

Table 5.6 Model Evaluation with Random State = 42, Imbalanced Dataset without Age
Attributes

Figure 5.31 Decision Tree Model Evaluation with Random State = 42, Imbalanced Dataset
without Age Attributes

44

Figure 5.32 XGBoost Model Evaluation with Random State = 42, Imbalanced Dataset without
Age Attributes

With ratio of 90:10, For the Decision Tree, the model gets 69.44 % accuracy, precision

gets 45.45%, recall gets 50.00%, and F1-Score gets 47.61%. For the XGBoost, the model gets

77.77 % accuracy, precision gets 62.50%, recall gets 50.00%, and F1-Score gets 55.55%.

With ratio of 80:20, For the Decision Tree, the model gets 71.52 % accuracy, precision

gets 56.00%, recall gets 59.57%, and F1-Score gets 57.73 %. For the XGBoost, the model gets

78.47 %, accuracy, precision gets 70.00%, recall gets 59.57%, and F1-Score gets 54.36%.

With ratio of 70:30, For the Decision Tree, the model gets 71.29 % accuracy, precision

gets 51.35%, recall gets 59.37%, and F1-Score gets 55.07 %. For the XGBoost, the model gets

79.16 % accuracy, precision gets 66.10%, recall gets 60.93%, and F1-Score gets 63.41%.

With ratio of 60:40, For the Decision Tree, the model gets 73.26 % accuracy, precision

gets 53.33%, recall gets 66.66%, and F1-Score gets 59.25 %. For the XGBoost, the model gets

80.20 % accuracy, precision gets 66.66%, recall gets 64.28%, and F1-Score gets 65.45%

45

