

15

IMPLEMENTATION AND RESULTS

5.1. Implementation

The implementation was done using Python programming language on Google

Colaboratory. This subchapter is about how the code in the models from loading the dataset ,

preparing the dataset , training the dataset with both algorithms ,analyzing the results and lastly

comparing the results of both algorithms.

First, import the necessary libraries , set the seed to 42, so we can get the same result every

time we run the code, and then load the dataset and do the data preprocessing

1. data = pd.read_csv('/content/drive/My Drive/TA/Dataset/diabetes.csv')

2. data.shape

Line 1 is by using the pandas library to load and read the dataset that has data type of csv.

And the line 2 is for check the dataset shape, and the output as below

Figure 5.1 Dataset shape

Figure 5.1 shows that the dataset has 520 rows and 17 columns or the 520 record and 17

attributes. Next, we need to check is there any missing values in the dataset by using code as

below

3. data.info()

The output of line 3 as below.

16

Figure 5.2 Dataset Information

Figure 5.2 shows how many non-null or not NaN and not empty rows for each column.

The data shows that each column has the same amount of data which is 520 rows non-null, and

as for the datatype of “Age” is int64 and for the rest is object. And as we can know from Figure

5.1 that the dataset has 520 rows and from Figure 5.2 shows that each column has 520 rows of

non null , so there are no missing values in the dataset.

4. data.head(10)

Line 4 is for showing the head of the dataset, the parameter “10” can be changed depending

on how many we want to, for example here we use 10 to show the top 10 record of the dataset,

the, and the output as below.

Figure 5.3 The Top 10 of the Dataset

17

Next step is data processing, label encoder was used for one hot encoding to change the

value “yes”, “positive”, “male” into 1 and “no”, “negative”, “female” into 0 [16].

5. labels = data.columns[1:]

6. labels

Line 5 is done for excluding the first columns, in this case its “Age” because “Age” data

type is in int64, and we change the attribute from “Gender” to “class”. the [1:] indicates the

columns after the first columns which is the “Age”, and the output as below.

Figure 5.4 Labels

Next, we do label encoding to change the non numeric values into numeric values [16] ,

[17].

7. for i in labels:

8. data[i].loc[data[i].isin(['Yes'])] = 1

9. data[i].loc[data[i].isin(['No'])] = 0

10. data[i].loc[data[i].isin(['Positive'])] = 1

11. data[i].loc[data[i].isin(['Negative'])] = 0

12. data[i].loc[data[i].isin(['Male'])] = 1

13. data[i].loc[data[i].isin(['Female'])] = 0

14. data[i] = data[i].astype(int)

15. data.head(10)

In line 7, “ i ” indicates each value in variable “labels”, and loop from the first value in

“labels” until the last value. Line 8 to 13 is to change the values into either 1 or 0, so where data

in label “i” if its value is “Yes”, it will be changed into 1 and so on as the code above. Line 14 is

to change the datatype from object into int. And the output is as below.

Figure 5.5 Top 10 of the Dataset After The Label Encoding

18

After the label encoding is done, then splitting the dataset into 2 variables X and Y, where

Y is the target or labels which the “class” attribute.

16. X = data.drop('class',axis=1)

17. Y = data['class'] #target/labels

Line 1 is for defining X where drop the ‘class’ and the axis is 1 or columns [23], so the

attribute “class” will not be included in the the X set, and as for the line 2 is for defining Y equal

to the “class” attribute in the dataset so the X contains all the data except for “class”, while Y

contain only the “class” attribute.

18. def cm(target, prediction):

19. TP = 0

20. TN = 0

21. FP = 0

22. FN = 0

23. j = 0

24. for i in enumerate(target):

25. if i[1] == 1:

26. if prediction[j] == 1:

27. TP += 1

28. else:

29. FN += 1

30. elif i[1] == 0:

31. if prediction[j] == 1:

32. FP += 1

33. else:

34. TN += 1

35. j += 1

36. return TP, TN, FP, FN

The code above is to define a function to calculate the confusion matrix. Line 19 to 23 is

to declare variables to save the value. Line 24 looping for every value in target (the real value).

Line 25 to 29 is if the target or the real value is 1 and the prediction is 1 then True Positive is

increased by 1, and if the prediction is 0 then the False Negative is increased by 1. Line 30 to 34

is if the target is 0 and the prediction is 1 the False Positive is increased by 1, and if the prediction

is 0 the True Negative is increased by 1. Line 35 is to add 1 into the “j” for the index of the

prediction. Line 36 is to return the values.

19

37. def result(target, prediction):

38. TP, TN, FP, FN = cm(target, prediction)

39. accuracy = (TP+TN)/(TP+TN+FP+FN)

40. recall = TP/(TP+FN)

41. precision = TP/(TP+FP)

42. f1 = 2*((precision*recall)/(precision+recall))

43. return accuracy, recall, precision, f1

The code above is to define a function to calculate the result of the models, later it will be

used for the analysis of the comparison between the two algorithms. Line 37 is to define the

function, line 38 is to call the function cm to calculate the matrix by using the parameter target and

the prediction result and save the result into values TP, TN, FP, FN. Line 39 to calculate the recall,

precision, f1 score and the accuracy of the model. Line 22 is to return the results.

After splitting the dataset into X and Y, then the dataset is split into the training and testing

set for both algorithms.

44. def split(testsize, X, Y):

45. print('Train set = ', (100-testsize),'% , Test set = ', testsize,

 '%')

46. testsize = testsize/100

47. X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

 test_size=testsize, random_state=seed)

48. return X_train, X_test, Y_train, Y_test

Line 44 is to define a function to split the dataset into X_train, Y_train for the train set, and

X_test, Y_test. Line 47 is to call the library to split the dataset with random state , so every time

we run the code the result will be the same. Line 48 is to return the X_train, X_test, Y_train, Y_test.

After the data preprocessing is done, we define the models, so the first one is Artificial

Neural Network with the design that has been explained in the previous chapter. The codes below

are the first ann model with 3 hidden layers.

49. def ann_model1(X_train, Y_train, X_test, Y_test):

50. tf.keras.utils.set_random_seed(seed)

51. ann1 = Sequential()

52. ann1.add(Dense(units= 200, kernel_initializer='uniform',

activation

 = 'relu', input_dim=16))

53. ann1.add(Dense(units= 200, kernel_initializer='uniform', activation

20

 = 'relu'))

54. ann1.add(Dense(units= 150, kernel_initializer='uniform', activation

 = 'relu'))

55. ann1.add(Dense(units = 1, kernel_initializer='uniform', activation
=

 'sigmoid')) #output

56. opt = keras.optimizers.Adam(learning_rate=0.001)

57. ann1.compile(optimizer = opt, loss = 'binary_crossentropy', metrics

 = ['accuracy'])

58. ann1.fit(X_train, Y_train, batch_size = 500, epochs = 500,

 verbose=0)

59. ann_pred_test = ann1.predict(X_test)

60. ann_pred_test=ann_pred_test.round()

61. ann_accuracy, ann_recall, ann_precision, ann_f1 = result(Y_test,

 ann_pred_test)

62. return ann_accuracy, ann_recall, ann_precision, ann_f1

Line 49 is to define a function to call the model and return the result. Line 50 is to set the

random state to a fixed state so the result will be the same as we run it every time. Line 51 initiates

the model as sequential, line 52 to 55 is to define the layers, line 52 defines the first layer with 200

neurons and the activation function is ReLu and with the 16 nodes for input layers. Line 53 is the

second layer with 200 neurons, line 54 is defining the third layer with 150 neurons and both second

and third layer using the same activation function as the first layer. Line 55 is to define the output

layer with sigmoid activation function. Line 56 is to define the optimizer of the model which is

Adam Optimizer with 0.0001 of learning rate. Line 57 is to compile the model or apply the

optimizer to the model using accuracy metrics and binary cross entropy loss. Line 58 is to train the

dataset with the model with 500 of batch size and 500 epochs, the verbose set to 0 is to not show

the training log. Line 59 is to save the result of prediction, line 60 to round the values of the

prediction result. Line 61 is to call the result function to calculate the accuracy, recall, precision,

f1 score and save it into variables. Line 62 is to return the results. The codes below are the second

ANN model.

63. def ann_model2(X_train, Y_train, X_test, Y_test):

64. tf.keras.utils.set_random_seed(seed)

65. ann2 = Sequential()

66. ann2.add(Dense(units= 200, kernel_initializer='uniform',

activation

21

 = 'relu', input_dim=16))

67. ann2.add(Dense(units= 200, kernel_initializer='uniform', activation

 = 'relu'))

68. ann2.add(Dense(units= 200, kernel_initializer='uniform', activation

 = 'relu'))

69. ann2.add(Dense(units= 150, kernel_initializer='uniform', activation

 = 'relu'))

70. ann2.add(Dense(units = 1, kernel_initializer='uniform', activation
=

 'sigmoid'))

71. opt = keras.optimizers.Adam(learning_rate=0.001)

72. ann2.compile(optimizer = opt, loss = 'binary_crossentropy', metrics

 = ['accuracy'])

73. ann2.fit(X_train, Y_train, batch_size = 500, epochs = 500,

 verbose=0)

74. ann_pred_test2 = ann2.predict(X_test)

75. ann_pred_test2=ann_pred_test2.round()

76. ann_accuracy2, ann_recall2, ann_precision2, ann_f12 = result(Y_test,

 ann_pred_test2)

77. return ann_accuracy2, ann_recall2, ann_precision2, ann_f12

Line 64 is to set the random state to a fixed state so the result will be the same as we run it

every time. Line 65 initiates the model as sequential, line 66 is to define the first layer with 200

neurons and the activation function is ReLu and with the 16 nodes for input layers. Line 67 is the

second layer with 200 neurons, line 68 is defining the third layer with 200 neurons, line 69 is

defining the fourth layer with 150 neurons, all hidden layers are using the same activation function

as the first layer. Line 70 is to define the output layer with sigmoid activation function. Line 71 is

to define the optimizer of the model which is Adam Optimizer with 0.0001 of learning rate. Line

73 is to compile the model or apply the optimizer to the model using accuracy metrics and binary

cross entropy loss. Line 73 is to train the dataset with the model with 500 of batch size and 500

epochs, the verbose set to 0 is to not show the training log. Line 74 is to save the result of

prediction, line 76 to round the values of the prediction result. Line 76 is to call the result function

to calculate the accuracy, recall, precision, f1 score and save it into variables. Line 77 is to return

the results. The codes below are the third ANN model.

78. def ann_model3(X_train, Y_train, X_test, Y_test):

79. tf.keras.utils.set_random_seed(seed)

22

80. ann3 = Sequential()

81. ann3.add(Dense(units= 200, kernel_initializer='uniform', activation
= 'relu', input_dim=16))

82. ann3.add(Dense(units= 200, kernel_initializer='uniform', activation
= 'relu'))

83. ann3.add(Dense(units= 150, kernel_initializer='uniform', activation
= 'relu'))

84. ann3.add(Dense(units= 150, kernel_initializer='uniform', activation
= 'relu'))

85. ann3.add(Dense(units= 150, kernel_initializer='uniform', activation
= 'relu'))

86. ann3.add(Dense(units = 1, kernel_initializer='uniform', activation =
'sigmoid')) #output

87. opt = keras.optimizers.Adam(learning_rate=0.001)

88. ann3.compile(optimizer = opt, loss = 'binary_crossentropy', metrics
= ['accuracy'])

89. ann3.fit(X_train, Y_train, batch_size = 500, epochs = 500, verbose=0)

90. ann_pred_test3 = ann3.predict(X_test)

91. ann_pred_test3=ann_pred_test3.round()

92. ann_accuracy3, ann_recall3, ann_precision3, ann_f13 = result(Y_test,
ann_pred_test3)

93. return ann_accuracy3, ann_recall3, ann_precision3, ann_f13

Line 79 is to set the random state to a fixed state so the result will be the same as we run it

every time. Line 80 initiates the model as sequential, line 81 is to define the first layer with 200

neurons and the activation function is ReLu and with the 16 nodes for input layers. Line 82 is to

define the second and line 83 to 85 is to define the third to fifth layer with 150 neurons, all hidden

layers are using the same activation function as the first layer. Line 86 is to define the output layer

with sigmoid activation function. Line 87 is to define the optimizer of the model which is Adam

Optimizer with 0.0001 of learning rate. Line 88 is to compile the model or apply the optimizer to

the model using accuracy metrics and binary cross entropy loss. Line 89 is to train the dataset with

the model with 500 of batch size and 500 epochs, the verbose set to 0 is to not show the training

log. Line 90 is to save the result of prediction, line 91 to round the values of the prediction result.

Line 92 is to call the result function to calculate the accuracy, recall, precision, f1 score and save

it into variables. Line 93 is to return the results. The codes below are the fourth ANN model.

94. def ann_model4(X_train, Y_train, X_test, Y_test):

95. tf.keras.utils.set_random_seed(seed)

96. ann4 = Sequential()

23

97. ann4.add(Dense(units= 200, kernel_initializer='uniform',

activation = 'relu', input_dim=16))

98. ann4.add(Dense(units= 200, kernel_initializer='uniform', activation
= 'relu'))

99. ann4.add(Dense(units= 200, kernel_initializer='uniform', activation =
'relu'))

100. ann4.add(Dense(units= 150, kernel_initializer='uniform', activation =
'relu'))

101. ann4.add(Dense(units= 150, kernel_initializer='uniform', activation =
'relu'))

102. ann4.add(Dense(units= 150, kernel_initializer='uniform', activation =
'relu'))

103. ann4.add(Dense(units = 1, kernel_initializer='uniform', activation =

'sigmoid')) #output

104. opt = keras.optimizers.Adam(learning_rate=0.001)

105. ann4.compile(optimizer = opt, loss = 'binary_crossentropy', metrics =
['accuracy'])

106. ann4.fit(X_train, Y_train, batch_size = 500, epochs = 500, verbose=0)

107. ann_pred_test4 = ann4.predict(X_test)

108. ann_pred_test4=ann_pred_test4.round()

109. ann_accuracy4, ann_recall4, ann_precision4, ann_f14 = result(Y_test,

ann_pred_test4)

110. return ann_accuracy4, ann_recall4, ann_precision4, ann_f14

Line 95 is to set the random state to a fixed state so the result will be the same as we run it

every time. Line 97 to 99 is to define the first layer to third layer with 200 neurons and the

activation function is ReLu and with the 16 nodes for input layers. Line 100 and 102 is defining

the fourth to sixth layer with 150 neurons. The rest is the same as the ann models before, it has the

same optimizer, learning rate, batch , epochs, predict with the models, calculate the accuracy,

recall, precision , f1 score and return the results.

Next, we define the XGBoost model, the first xgboost model is with the default parameters

[17] . The code below is to define the first xgboost model.

111. def xgb_model1(X_train, Y_train, X_test, Y_test):

112. xgb_clf = xgb.XGBClassifier(seed=seed, max_depth=6, gamma=0,

 n_estimators=100, learning_rate=0.3, colsample_bytree=1)

113. xgb_model = xgb_clf.fit(X_train, Y_train)

114. xgb_pred = xgb_model.predict(X_test)

115. xgb_accuracy, xgb_recall, xgb_precision, xgb_f1 = result(Y_test,

 xgb_pred)

24

116. return xgb_accuracy, xgb_recall, xgb_precision, xgb_f1

Line 112 is to define the model with the default parameters, line 113 is to train the model

with the training set. Line 114 to 116 is to calculate the results and return the results.

Next we define the second model with hyperparameter tuning with bayesian optimization.

117. def xgb_tune(max_depth, gamma, n_estimators ,learning_rate,

min_child_weight, colsample_bytree):

118. cv = KFold(n_splits=10, random_state=seed, shuffle=True)

119. estimators = xgb.XGBClassifier(seed=seed, max_depth=int(max_depth),

gamma=gamma, n_estimators=int(n_estimators),

learning_rate=learning_rate, colsample_bytree=colsample_bytree)

120. result = cross_val_score(estimators, X, Y, cv=cv, scoring='roc_auc')

121. result = result.mean()

122. return result

Line 117 is to define the function to set the estimator for bayesian optimization with the

parameters, line 118 is to define the 10-fold with random state set for fixed state, line 119 is to

define the estimators for the cross validation. Line 120 is to do cross validation with 10 fold

validation and with the estimators that we have already defined before and save the results into the

‘result’ variable. Line 121 to get the mean of the cross validation result, line 122 is to return the

result, the result will be used in the Bayesian optimization.

Next set is we run the training by calling the function that we have defined before.

123. X_train, X_test, Y_train, Y_test = split(20, X, Y)

124. X_train2, X_test2, Y_train2, Y_test2 = split(25, X, Y)

125. X_train3, X_test3, Y_train3, Y_test3 = split(30, X, Y)

126. X_train4, X_test4, Y_train4, Y_test4 = split(40, X, Y)

127. X_train5, X_test5, Y_train5, Y_test5 = split(50, X, Y)

Line 123 to 127 is to call the split function to split the dataset with the desired portions,

and the output is as below.

Figure 5.6 Dataset Splitting

25

128. tune = BayesianOptimization(xgb_tune, {'max_depth': (3, 11),

129. 'gamma': (1e-09, 0.5),

130. 'n_estimators': (100, 250),

131. 'learning_rate': (0.01,1.0),

132. 'min_child_weight' : (1, 10),

133. 'colsample_bytree' : (0.1, 0.8),

134. }, random_state=seed)

135. tune.maximize()

136. parameters = tune.max['params']

137. parameters['max_depth']= round(parameters['max_depth'])

138. parameters['n_estimators']= round(parameters['n_estimators'])

139. parameters['min_child_weight']= round(parameters['min_child_weight'])

140. print("Best params :")

141. print(parameters)

Line 128 is to define the bayesian optimization with the function xgb_tune as the estimators

with the search spaces for the hyperparameters, and using fixed random state. Line 135 to run the

optimization, line 136 to get the parameters with the best score or to get the optimal parameters.

Line 137 to 139 to round the values so the values are rounded to the nearest integer. Line 140 and

141 is to print the parameters, and the output is as below.

Figure 5.7 Bayesian Optimization Result

After we get the optimum parameters, we define the second xgboost model and train it with

new parameters we get from the optimization.

26

142. def xgb_model2(X_train, Y_train, X_test, Y_test, parameters):

143. clf = xgb.XGBClassifier(seed=seed, max_depth=6, gamma=0,

n_estimators=100, learning_rate=0.3, colsample_bytree=1).fit(X_train,

Y_train)

144. clf = xgb.XGBClassifier(**parameters,seed=seed).fit(X_train,

Y_train)

145. xgb_pred2 = clf.predict(X_test)

146. xgb_accuracy, xgb_recall, xgb_precision, xgb_f1 = result(Y_test,

xgb_pred2)

147. return xgb_accuracy, xgb_recall, xgb_precision, xgb_f1

Line 143 is to define the model with the default parameters first and train it with the training

set. Line 144 is to set the parameters with the new parameters that we get from hyperparameters

tuning, and train it with the training set. Line 145 to 146 is to calculate the accuracy, recall.

precision, and f1 score. Line 147 is to return the results.

148. ann_accuracy1_1, ann_recall1_1, ann_precision1_1, ann_f11_1 =

ann_model1(X_train, Y_train, X_test, Y_test)

149. ann_accuracy1_2, ann_recall1_2, ann_precision1_2, ann_f11_2 =

ann_model1(X_train2, Y_train2, X_test2, Y_test2)

150. ann_accuracy1_3, ann_recall1_3, ann_precision1_3, ann_f11_3 =

ann_model1(X_train3, Y_train3, X_test3, Y_test3)

151. ann_accuracy1_4, ann_recall1_4, ann_precision1_4, ann_f11_4 =

ann_model1(X_train4, Y_train4, X_test4, Y_test4)

152. ann_accuracy1_5, ann_recall1_5, ann_precision1_5, ann_f11_5 =

ann_model1(X_train5, Y_train5, X_test5, Y_test5)

153. ann_accuracy2_1, ann_recall2_1, ann_precision2_1, ann_f12_1 =

ann_model2(X_train, Y_train, X_test, Y_test)

154. ann_accuracy2_2, ann_recall2_2, ann_precision2_2, ann_f12_2 =

ann_model2(X_train2, Y_train2, X_test2, Y_test2)

155. ann_accuracy2_3, ann_recall2_3, ann_precision2_3, ann_f12_3 =

ann_model2(X_train3, Y_train3, X_test3, Y_test3)

156. ann_accuracy2_4, ann_recall2_4, ann_precision2_4, ann_f12_4 =

ann_model2(X_train4, Y_train4, X_test4, Y_test4)

157. ann_accuracy2_5, ann_recall2_5, ann_precision2_5, ann_f12_5 =

ann_model2(X_train5, Y_train5, X_test5, Y_test5)

158. ann_accuracy3_1, ann_recall3_1, ann_precision3_1, ann_f13_1 =

ann_model3(X_train, Y_train, X_test, Y_test)

159. ann_accuracy3_2, ann_recall3_2, ann_precision3_2, ann_f13_2 =

ann_model3(X_train2, Y_train2, X_test2, Y_test2)

160. ann_accuracy3_3, ann_recall3_3, ann_precision3_3, ann_f13_3 =

ann_model3(X_train3, Y_train3, X_test3, Y_test3)

161. ann_accuracy3_4, ann_recall3_4, ann_precision3_4, ann_f13_4 =

ann_model3(X_train4, Y_train4, X_test4, Y_test4)

27

162. ann_accuracy3_5, ann_recall3_5, ann_precision3_5, ann_f13_5 =

ann_model3(X_train5, Y_train5, X_test5, Y_test5)

163. ann_accuracy4_1, ann_recall4_1, ann_precision4_1, ann_f14_1 =

ann_model4(X_train, Y_train, X_test, Y_test)

164. ann_accuracy4_2, ann_recall4_2, ann_precision4_2, ann_f14_2 =

ann_model4(X_train2, Y_train2, X_test2, Y_test2)

165. ann_accuracy4_3, ann_recall4_3, ann_precision4_3, ann_f14_3 =

ann_model4(X_train3, Y_train3, X_test3, Y_test3)

166. ann_accuracy4_4, ann_recall4_4, ann_precision4_4, ann_f14_4 =

ann_model4(X_train4, Y_train4, X_test4, Y_test4)

167. ann_accuracy4_5, ann_recall4_5, ann_precision4_5, ann_f14_5 =

ann_model4(X_train5, Y_train5, X_test5, Y_test5)

168. xgb_accuracy1_1, xgb_recall1_1, xgb_precision1_1, xgb_f11_1 =

xgb_model1(X_train, Y_train, X_test, Y_test)

169. xgb_accuracy1_2, xgb_recall1_2, xgb_precision1_2, xgb_f11_2 =

xgb_model1(X_train2, Y_train2, X_test2, Y_test2)

170. xgb_accuracy1_3, xgb_recall1_3, xgb_precision1_3, xgb_f11_3 =

xgb_model1(X_train3, Y_train3, X_test3, Y_test3)

171. xgb_accuracy1_4, xgb_recall1_4, xgb_precision1_4, xgb_f11_4 =

xgb_model1(X_train4, Y_train4, X_test4, Y_test4)

172. xgb_accuracy1_5, xgb_recall1_5, xgb_precision1_5, xgb_f11_5 =

xgb_model1(X_train5, Y_train5, X_test5, Y_test5)

173. xgb_accuracy2_1, xgb_recall2_1, xgb_precision2_1, xgb_f12_1 =

xgb_model2(X_train, Y_train, X_test, Y_test, parameters)

174. xgb_accuracy2_2, xgb_recall2_2, xgb_precision2_2, xgb_f12_2 =

xgb_model2(X_train2, Y_train2, X_test2, Y_test2, parameters)

175. xgb_accuracy2_3, xgb_recall2_3, xgb_precision2_3, xgb_f12_3 =

xgb_model2(X_train3, Y_train3, X_test3, Y_test3, parameters)

176. xgb_accuracy2_4, xgb_recall2_4, xgb_precision2_4, xgb_f12_4 =

xgb_model2(X_train4, Y_train4, X_test4, Y_test4, parameters)

177. xgb_accuracy2_5, xgb_recall2_5, xgb_precision2_5, xgb_f12_5 =

xgb_model2(X_train5, Y_train5, X_test5, Y_test5, parameters)

Line 148 to 167 is to call all ann models functions to run the training and calculate the

result with the training set and test set that we have already defined from line 123 to 127. Line 168

to 172 is to train the first xgboost model and calculate the result, line 173 to 177 is to train the

second xgboost model with the new parameters we got from hyperparameters tuning and also

calculate the results.

5.2. Results

In this subchapter, the results of the models will be compared. ANN 1 indicates the first

ann model that has 3 hidden layers with 200, 200, and 150 neurons respectively, ANN 2 indicates

28

the second ann model which has 4 hidden layers with 200, 200, 200, and 150 neurons respectively.

ANN 3 indicates the third ann model which has 5 hidden layers with 200, 200, 150, 150, and 150

neurons respectively. ANN 4 indicates the fourth ann model which has 6 hidden layers with 200,

200, 200, 150, 150, and 150 neurons respectively. XGBoost 1 is the first xgboost model without

hyperparameters tuning or with the default parameters [17], and XGboost 2 is the second model

with hyperparameters tuning.

Table 5.1 Results Comparison with Train set 80% and Test set 20%

Model Recall Precision F1 Score Accuracy

ANN 1 0.958 0.986 0.971 0.962

ANN 2 0.958 0.986 0.971 0.962

ANN 3 0.986 0.986 0.986 0.981

ANN 4 0.972 0.986 0.979 0.971

XGBoost 1 0.958 1.0 0.978 0.971

XGBoost 2 0.958 1.0 0.978 0.971

Table 5.1 shows that with ratio 80:20, ANN 3 has the best overall performance of all

models, followed by ANN 4, XGBoost 1 and XGBoost 2. ANN 4 and the XGBoost models have

the same accuracy score but ANN 4 have better recall and F1 score, even though the precision is

better on the XGBoost models.

Table 5.2 Results Comparison with Train set 75% and Test set 25%

Model Recall Precision F1 Score Accuracy

ANN 1 0.952 0.988 0.97 0.962

ANN 2 0.952 1.0 0.976 0.969

ANN 3 0.964 0.988 0.976 0.969

ANN 4 0.976 0.863 0.916 0.885

XGBoost 1 0.952 1.0 0.976 0.969

XGBoost 2 0.964 1.0 0.982 0.977

29

Table 5.2 shows that XGBoost 2 has the best performances over all models, followed by

ANN 2 , ANN 3 and XGBoost 1. ANN 2 and XGBoost 1 have lower Recall than the ANN 3 but

they have the same F1 score and have better precision.

Table 5.3 Results Comparison with Train set 70% and Test set 30%

Model Recall Precision F1 Score Accuracy

ANN 1 0.961 0.99 0.975 0.968

ANN 2 0.912 0.979 0.944 0.929

ANN 3 0.98 1.0 0.99 0.987

ANN 4 0.98 0.99 0.985 0.981

XGBoost 1 0.98 1.0 0.99 0.987

XGBoost 2 0.98 1.0 0.99 0.987

Table 5.3 shows that with 70% of the training set and 30% of the test set, both XGBoost

models and ANN 3 achieve the same result and have the best performances, followed by ANN 4,

ANN 1 and the last is ANN 2.

Table 5.4. Results Comparison with Train set 60% and Test set 40%

Model Recall Precision F1 Score Accuracy

ANN 1 0.939 0.992 0.965 0.957

ANN 2 0.939 0.992 0.965 0.957

ANN 3 0.947 0.984 0.965 0.957

ANN 4 0.939 0.939 0.939 0.923

XGBoost 1 0.932 1.0 0.965 0.957

XGBoost 2 0.924 1.0 0.961 0.952

Table 5.4 shows that with 60% of the training set and 40% of the test set, ANN 1, ANN 2,

ANN 3, and XGBoost 1 able to achieve the same accuracy score. ANN 1 has the same results as

the ANN 2, but has lower recall , precision than the ANN 3. XGBoost 1 has a lower recall than

the three ann models mentioned.

30

Table 5.5 Results Comparison with Train set 50% and Test set 50%

Model Recall Precision F1 Score Accuracy

ANN 1 0.91 1.0 0.953 0.942

ANN 2 0.904 1.0 0.949 0.938

ANN 3 0.934 0.994 0.963 0.954

ANN 4 0.795 0.971 0.874 0.854

XGBoost 1 0.94 1.0 0.969 0.962

XGBoost 2 0.946 1.0 0.972 0.965

Table 5.5 shows that with 50% of the training set and with 50% of the test set, XGBoost 2

has the best overall performance, followed by XGBoost 1, ANN 3, ANN1, and ANN 4.

Figure 5.8 Accuracy Comparison

And as we can see from Figure 5.1 that most of the results from different ratios of training

data XGBoost models are able to outperform the ANN models, although ANN 3 is able to achieve

better accuracy scores at 80% of training data and achieve the same accuracy score at 70% of

training data as the XGBoost models. As we can see from the figure above with 80%:20% ANN

4 also has a high accuracy score and it's the same as the XGBoost models, as ANN 1 and ANN 2

31

have lower scores than the other models. But with a 75%:25% ratio ANN 4 score decreased below

90%, and XGBoost 2 have the highest score, followed by ANN 2, ANN 3, and XGBoost where 3

of them have the same score. Although the three models have the same accuracy score , as we can

see from Table XGBoost 1 and ANN 2 has the same result but has lower recall than ANN 3. With

70%:30 ratio XGBoost models and ANN 3 able to achieve the same accuracy scores. With

60%:40%, ANN 1, ANN 2, ANN 3, and XGBoost 1 able to achieve the same accuracy scores but

Table 5.4 shows that XGBoost 1 have lower recall than ANN models, and ANN 3 has the highest

recall score but ANN 3 have lower precision than ANN 1, ANN 2 and XGBoost 1. And the last

with 50%:50% ratio, XGBoost 2 have the best accuracy score compared to other models, and ANN

4 have the lowest score.

