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IMPLEMENTATION AND RESULTS 

5.1. Implementation 

The implementation was done using Python programming language on Google 

Colaboratory.  This subchapter is about how the code in the models from loading the dataset , 

preparing the dataset , training the dataset with both algorithms ,analyzing the results and lastly 

comparing the results of both algorithms. 

First, import the necessary libraries , set the seed to 42, so we can get the same result every 

time we run the code, and then load the dataset and do the data preprocessing 

1. data = pd.read_csv('/content/drive/My Drive/TA/Dataset/diabetes.csv') 

2. data.shape 

Line 1 is by using the pandas library to load and read the dataset that has data type of csv. 

And the line 2 is for check the dataset shape, and the output as below 

 

Figure 5.1 Dataset shape 

Figure 5.1 shows that the dataset has 520 rows and 17 columns or the 520 record and 17 

attributes. Next, we need to check is there any missing values in the dataset by using code as 

below 

3. data.info() 

The output of line 3 as below. 
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Figure 5.2 Dataset Information 

Figure 5.2 shows how many non-null or not NaN and not empty rows for each column. 

The data shows that each column has the same amount of data which is 520 rows non-null, and 

as for the datatype of “Age” is int64 and for the rest is object. And as we can know from Figure 

5.1 that the dataset has 520 rows and from Figure 5.2 shows that each column has 520 rows of 

non null , so there are no missing values in the dataset.  

4. data.head(10) 

Line 4 is for showing the head of the dataset, the parameter “10” can be changed depending 

on how many we want to, for example here we use 10 to show the top 10 record of the dataset, 

the, and the output as below. 

 

Figure 5.3 The Top 10 of the Dataset 
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Next step is data processing, label encoder was used for one hot encoding to change the 

value “yes”, “positive”, “male” into 1 and “no”, “negative”, “female” into 0 [16]. 

5. labels = data.columns[1:] 

6. labels 

Line 5 is done for excluding the first columns, in this case its “Age” because “Age” data 

type is in int64, and we change the attribute from “Gender” to “class”. the [1:] indicates the 

columns after the first columns which is the “Age”, and the output as below. 

  

Figure 5.4 Labels 

Next, we do label encoding to change the non numeric values into numeric values [16] , 

[17].  

7. for i in labels:  

8.             data[i].loc[data[i].isin(['Yes'])] = 1  

9.             data[i].loc[data[i].isin(['No'])] = 0  

10.             data[i].loc[data[i].isin(['Positive'])] = 1  

11.             data[i].loc[data[i].isin(['Negative'])] = 0  

12.             data[i].loc[data[i].isin(['Male'])] = 1  

13.             data[i].loc[data[i].isin(['Female'])] = 0 

14.             data[i] = data[i].astype(int) 

15. data.head(10) 

In line 7, “ i ” indicates each value in variable “labels”, and loop from the first value in 

“labels” until the last value. Line 8 to 13 is to change the values into either 1 or 0, so where data 

in label “i” if its value is “Yes”, it will be changed into 1 and so on as the code above. Line 14 is 

to change the datatype from object into int. And the output is as below. 

 

Figure 5.5 Top 10 of the Dataset After The Label Encoding 
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After the label encoding is done, then splitting the dataset into 2 variables X and Y, where 

Y is the target or labels which the “class” attribute. 

16. X = data.drop('class',axis=1) 

17. Y = data['class'] #target/labels 

Line 1 is for defining X where drop the ‘class’ and the axis is 1 or columns [23], so the 

attribute “class” will not be included in the the X set, and as for the line 2 is for defining Y equal 

to the “class” attribute in the dataset so the X contains all the data except for “class”, while Y 

contain only the “class” attribute. 

18. def cm(target, prediction):  

19.     TP = 0 

20.     TN = 0 

21.     FP = 0 

22.     FN = 0 

23.     j = 0 

24.     for i in enumerate(target): 

25.         if i[1] == 1: 

26.             if prediction[j] == 1: 

27.                 TP += 1  

28.             else: 

29.                 FN += 1  

30.         elif i[1] == 0: 

31.             if prediction[j] == 1: 

32.                 FP += 1  

33.             else: 

34.                 TN += 1  

35.         j += 1 

36.     return TP, TN, FP, FN 

The code above is to define a function to calculate the confusion matrix. Line 19 to 23 is 

to declare variables to save the value. Line 24 looping for every value in target (the real value). 

Line 25 to 29 is if the target or the real value is 1 and the prediction is 1 then True Positive is 

increased by 1, and if the prediction is 0 then the False Negative is increased by 1. Line 30 to 34 

is if the target is 0 and the prediction is 1 the False Positive is increased by 1, and if the prediction 

is 0 the True Negative is increased by 1. Line 35 is to add 1 into the “j” for the index of the 

prediction. Line 36 is to return the values. 
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37. def result(target, prediction):  

38.     TP, TN, FP, FN = cm( target, prediction)  

39.     accuracy = (TP+TN)/(TP+TN+FP+FN) 

40.     recall = TP/(TP+FN) 

41.     precision = TP/(TP+FP) 

42.     f1 = 2*((precision*recall)/(precision+recall))  

43.     return accuracy, recall, precision, f1 

The code above is to define a function to calculate the result of the models, later it will be 

used for the analysis of the comparison between the two algorithms. Line 37 is to define the 

function, line 38 is to call the function cm to calculate the matrix by using the parameter target and 

the prediction result and save the result into values TP, TN, FP, FN. Line 39 to calculate the recall, 

precision, f1 score and the accuracy of the model. Line 22 is to return the results. 

After splitting the dataset into X and Y, then the dataset is split into the training and testing 

set for both algorithms. 

44. def split(testsize, X, Y): 

45.     print('Train set = ', (100-testsize),'% , Test set = ', testsize,  

    '%') 

46.     testsize = testsize/100 

47.     X_train, X_test, Y_train, Y_test = train_test_split(X, Y,    

    test_size=testsize, random_state=seed) 

48.     return X_train, X_test, Y_train, Y_test 

Line 44 is to define a function to split the dataset into X_train, Y_train for the train set, and 

X_test, Y_test. Line 47 is to call the library to split the dataset with random state , so every time 

we run the code the result will be the same. Line 48 is to return the X_train, X_test, Y_train, Y_test. 

After the data preprocessing is done, we define the models, so the first one is Artificial 

Neural Network with the design that has been explained in the previous chapter. The codes below 

are the first ann model with 3 hidden layers. 

49. def ann_model1(X_train, Y_train, X_test, Y_test): 

50.     tf.keras.utils.set_random_seed(seed) 

51.     ann1 = Sequential() 

52.     ann1.add(Dense(units= 200, kernel_initializer='uniform',  

activation  

    = 'relu', input_dim=16)) 

53.     ann1.add(Dense(units= 200, kernel_initializer='uniform', activation  
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    = 'relu')) 

54.     ann1.add(Dense(units= 150, kernel_initializer='uniform', activation  

    = 'relu')) 

55.     ann1.add(Dense(units = 1, kernel_initializer='uniform', activation 
=  

   'sigmoid')) #output 

56.     opt = keras.optimizers.Adam(learning_rate=0.001) 

57.     ann1.compile(optimizer = opt, loss = 'binary_crossentropy', metrics  

    = ['accuracy']) 

58.     ann1.fit(X_train, Y_train, batch_size = 500, epochs = 500,  

    verbose=0) 

59.     ann_pred_test = ann1.predict(X_test) 

60.     ann_pred_test=ann_pred_test.round() 

61.     ann_accuracy, ann_recall, ann_precision, ann_f1 = result(Y_test,  

    ann_pred_test) 

62.     return ann_accuracy, ann_recall, ann_precision, ann_f1 

Line 49 is to define a function to call the model and return the result. Line 50 is to set the 

random state to a fixed state so the result will be the same as we run it every time. Line 51 initiates 

the model as sequential, line 52 to 55 is to define the layers, line 52 defines the first layer with 200 

neurons and the activation function is ReLu and with the 16 nodes for input layers. Line 53 is the 

second layer with 200 neurons, line 54 is defining the third layer with 150 neurons and both second 

and third layer using the same activation function as the first layer. Line 55 is to define the output 

layer with sigmoid activation function. Line 56 is to define the optimizer of the model which is 

Adam Optimizer with 0.0001 of learning rate. Line 57 is to compile the model or apply the 

optimizer to the model using accuracy metrics and binary cross entropy loss. Line 58 is to train the 

dataset with the model with 500 of batch size and 500 epochs, the verbose set to 0 is to not show 

the training log. Line 59 is to save the result of prediction, line 60 to round the values of the 

prediction result. Line 61 is to call the result function to calculate the accuracy, recall, precision, 

f1 score and save it into variables. Line 62 is to return the results. The codes below are the second 

ANN model. 

63. def ann_model2(X_train, Y_train, X_test, Y_test): 

64.     tf.keras.utils.set_random_seed(seed) 

65.     ann2 = Sequential() 

66.     ann2.add(Dense(units= 200, kernel_initializer='uniform',  

activation  
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    = 'relu', input_dim=16)) 

67.     ann2.add(Dense(units= 200, kernel_initializer='uniform', activation 

    = 'relu')) 

68.     ann2.add(Dense(units= 200, kernel_initializer='uniform', activation  

    = 'relu')) 

69.     ann2.add(Dense(units= 150, kernel_initializer='uniform', activation  

    = 'relu')) 

70.     ann2.add(Dense(units = 1, kernel_initializer='uniform', activation 
=  

    'sigmoid')) 

71.     opt = keras.optimizers.Adam(learning_rate=0.001) 

72.     ann2.compile(optimizer = opt, loss = 'binary_crossentropy', metrics  

    = ['accuracy']) 

73.     ann2.fit(X_train, Y_train, batch_size = 500, epochs = 500,  

    verbose=0) 

74.     ann_pred_test2 = ann2.predict(X_test) 

75.     ann_pred_test2=ann_pred_test2.round() 

76.     ann_accuracy2, ann_recall2, ann_precision2, ann_f12 = result(Y_test,  

    ann_pred_test2)  

77.     return ann_accuracy2, ann_recall2, ann_precision2, ann_f12  

Line 64 is to set the random state to a fixed state so the result will be the same as we run it 

every time. Line 65 initiates the model as sequential, line 66 is to define the first layer with 200 

neurons and the activation function is ReLu and with the 16 nodes for input layers. Line 67 is the 

second layer with 200 neurons, line 68 is defining the third layer with 200 neurons, line 69 is 

defining the fourth layer with 150 neurons, all hidden layers are using the same activation function 

as the first layer. Line 70 is to define the output layer with sigmoid activation function. Line 71 is 

to define the optimizer of the model which is Adam Optimizer with 0.0001 of learning rate. Line 

73 is to compile the model or apply the optimizer to the model using accuracy metrics and binary 

cross entropy loss. Line 73 is to train the dataset with the model with 500 of batch size and 500 

epochs, the verbose set to 0 is to not show the training log. Line 74 is to save the result of 

prediction, line 76 to round the values of the prediction result. Line 76 is to call the result function 

to calculate the accuracy, recall, precision, f1 score and save it into variables. Line 77 is to return 

the results. The codes below are the third ANN model. 

78. def ann_model3(X_train, Y_train, X_test, Y_test): 

79.    tf.keras.utils.set_random_seed(seed) 
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80.    ann3 = Sequential() 

81.    ann3.add(Dense(units= 200, kernel_initializer='uniform',  activation 
= 'relu', input_dim=16)) 

82.    ann3.add(Dense(units= 200, kernel_initializer='uniform', activation 
= 'relu')) 

83.    ann3.add(Dense(units= 150, kernel_initializer='uniform', activation 
= 'relu')) 

84.    ann3.add(Dense(units= 150, kernel_initializer='uniform', activation 
= 'relu')) 

85.    ann3.add(Dense(units= 150, kernel_initializer='uniform', activation 
= 'relu')) 

86.    ann3.add(Dense(units = 1, kernel_initializer='uniform', activation = 
'sigmoid')) #output 

87.     opt = keras.optimizers.Adam(learning_rate=0.001) 

88.    ann3.compile(optimizer = opt, loss = 'binary_crossentropy', metrics 
= ['accuracy']) 

89.    ann3.fit(X_train, Y_train, batch_size = 500, epochs = 500, verbose=0) 

90.    ann_pred_test3 = ann3.predict(X_test) 

91.    ann_pred_test3=ann_pred_test3.round() 

92.    ann_accuracy3, ann_recall3, ann_precision3, ann_f13 = result(Y_test, 
ann_pred_test3)  

93.    return ann_accuracy3, ann_recall3, ann_precision3, ann_f13  

Line 79 is to set the random state to a fixed state so the result will be the same as we run it 

every time. Line 80 initiates the model as sequential, line 81 is to define the first layer with 200 

neurons and the activation function is ReLu and with the 16 nodes for input layers. Line 82 is to 

define the second and line 83 to 85 is to define the third to fifth layer with 150 neurons, all hidden 

layers are using the same activation function as the first layer. Line 86 is to define the output layer 

with sigmoid activation function. Line 87 is to define the optimizer of the model which is Adam 

Optimizer with 0.0001 of learning rate. Line 88 is to compile the model or apply the optimizer to 

the model using accuracy metrics and binary cross entropy loss. Line 89 is to train the dataset with 

the model with 500 of batch size and 500 epochs, the verbose set to 0 is to not show the training 

log. Line 90 is to save the result of prediction, line 91 to round the values of the prediction result. 

Line 92 is to call the result function to calculate the accuracy, recall, precision, f1 score and save 

it into variables. Line 93 is to return the results. The codes below are the fourth ANN model. 

94. def ann_model4(X_train, Y_train, X_test, Y_test): 

95.     tf.keras.utils.set_random_seed(seed) 

96.     ann4 = Sequential() 
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97.     ann4.add(Dense(units= 200, kernel_initializer='uniform',  

activation = 'relu', input_dim=16)) 

98.    ann4.add(Dense(units= 200, kernel_initializer='uniform', activation 
= 'relu')) 

99. ann4.add(Dense(units= 200, kernel_initializer='uniform', activation = 
'relu')) 

100. ann4.add(Dense(units= 150, kernel_initializer='uniform', activation = 
'relu')) 

101. ann4.add(Dense(units= 150, kernel_initializer='uniform', activation = 
'relu')) 

102. ann4.add(Dense(units= 150, kernel_initializer='uniform', activation = 
'relu')) 

103. ann4.add(Dense(units = 1, kernel_initializer='uniform', activation = 

'sigmoid')) #output 

104. opt = keras.optimizers.Adam(learning_rate=0.001) 

105. ann4.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = 
['accuracy']) 

106. ann4.fit(X_train, Y_train, batch_size = 500, epochs = 500, verbose=0) 

107. ann_pred_test4 = ann4.predict(X_test) 

108. ann_pred_test4=ann_pred_test4.round() 

109. ann_accuracy4, ann_recall4, ann_precision4, ann_f14 = result(Y_test, 

ann_pred_test4)  

110. return ann_accuracy4, ann_recall4, ann_precision4, ann_f14  

Line 95 is to set the random state to a fixed state so the result will be the same as we run it 

every time. Line 97 to 99 is to define the first layer to third layer with 200 neurons and the 

activation function is ReLu and with the 16 nodes for input layers. Line 100 and 102 is defining 

the fourth to sixth layer with 150 neurons. The rest is the same as the ann models before, it has the 

same optimizer, learning rate, batch , epochs, predict with the models, calculate the accuracy, 

recall, precision , f1 score and return the results. 

Next, we define the XGBoost model, the first xgboost model is with the default parameters 

[17] . The code below is to define the first xgboost model. 

111. def xgb_model1(X_train, Y_train, X_test, Y_test): 

112.    xgb_clf = xgb.XGBClassifier(seed=seed, max_depth=6, gamma=0,  

  n_estimators=100, learning_rate=0.3, colsample_bytree=1)  

113.     xgb_model = xgb_clf.fit(X_train, Y_train)  

114.     xgb_pred = xgb_model.predict(X_test) 

115.     xgb_accuracy, xgb_recall, xgb_precision, xgb_f1 = result(Y_test,  

    xgb_pred) 
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116.     return xgb_accuracy, xgb_recall, xgb_precision, xgb_f1 

Line 112 is to define the model with the default parameters, line 113 is to train the model 

with the training set. Line 114 to 116 is to calculate the results and return the results. 

Next we define the second model with hyperparameter tuning with bayesian optimization. 

117. def xgb_tune(max_depth, gamma, n_estimators ,learning_rate, 

min_child_weight,  colsample_bytree): 

118.  cv = KFold(n_splits=10, random_state=seed, shuffle=True) 

119.  estimators = xgb.XGBClassifier(seed=seed, max_depth=int(max_depth),  

gamma=gamma, n_estimators=int(n_estimators), 

learning_rate=learning_rate, colsample_bytree=colsample_bytree) 

120.  result = cross_val_score(estimators, X, Y, cv=cv, scoring='roc_auc') 

121.  result = result.mean()  

122.  return result 

Line 117 is to define the function to set the estimator for bayesian optimization with the 

parameters, line 118 is to define the 10-fold with random state set for fixed state, line 119 is to 

define the estimators for the cross validation. Line 120 is to do cross validation with 10 fold 

validation and with the estimators that we have already defined before and save the results into the 

‘result’ variable. Line 121 to get the mean of the cross validation result, line 122 is to return the 

result, the result will be used in the Bayesian optimization. 

Next set is we run the training by calling the function that we have defined before. 

123. X_train, X_test, Y_train, Y_test = split(20, X, Y) 

124. X_train2, X_test2, Y_train2, Y_test2 = split(25, X, Y) 

125. X_train3, X_test3, Y_train3, Y_test3 = split(30, X, Y) 

126. X_train4, X_test4, Y_train4, Y_test4 = split(40, X, Y) 

127. X_train5, X_test5, Y_train5, Y_test5 = split(50, X, Y) 

Line 123 to 127 is to call the split function to split the dataset with the desired portions, 

and the output is as below. 

 

Figure 5.6 Dataset Splitting 
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128. tune = BayesianOptimization(xgb_tune, {'max_depth': (3, 11), 

129.                             'gamma': (1e-09, 0.5), 

130.                             'n_estimators': (100, 250), 

131.                             'learning_rate': (0.01,1.0), 

132.                             'min_child_weight' : (1, 10), 

133.                             'colsample_bytree' : (0.1, 0.8), 

134.                         }, random_state=seed) 

135. tune.maximize() 

136. parameters = tune.max['params'] 

137. parameters['max_depth']= round(parameters['max_depth']) 

138. parameters['n_estimators']= round(parameters['n_estimators']) 

139. parameters['min_child_weight']= round(parameters['min_child_weight']) 

140. print("Best params :") 

141. print(parameters) 

Line 128 is to define the bayesian optimization with the function xgb_tune as the estimators 

with the search spaces for the hyperparameters, and using fixed random state. Line 135 to run the 

optimization, line 136 to get the parameters with the best score or to get the optimal parameters. 

Line 137 to 139 to round the values so the values are rounded to the nearest integer. Line 140 and 

141 is to print the parameters, and the output is as below. 

 

Figure 5.7 Bayesian Optimization Result 

After we get the optimum parameters, we define the second xgboost model and train it with 

new parameters we get from the optimization. 
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142. def xgb_model2(X_train, Y_train, X_test, Y_test, parameters): 

143.  clf = xgb.XGBClassifier(seed=seed, max_depth=6, gamma=0, 

n_estimators=100, learning_rate=0.3, colsample_bytree=1).fit(X_train, 

Y_train)  

144.    clf = xgb.XGBClassifier(**parameters,seed=seed).fit(X_train, 

Y_train) 

145.    xgb_pred2 = clf.predict(X_test) 

146.   xgb_accuracy, xgb_recall, xgb_precision, xgb_f1 = result(Y_test, 

xgb_pred2) 

147.     return xgb_accuracy, xgb_recall, xgb_precision, xgb_f1 

Line 143 is to define the model with the default parameters first and train it with the training 

set. Line 144 is to set the parameters with the new parameters that we get from hyperparameters 

tuning, and train it with the training set. Line 145 to 146 is to calculate the accuracy, recall. 

precision, and f1 score. Line 147 is to return the results. 

148. ann_accuracy1_1, ann_recall1_1, ann_precision1_1, ann_f11_1 = 

ann_model1(X_train, Y_train, X_test, Y_test) 

149. ann_accuracy1_2, ann_recall1_2, ann_precision1_2, ann_f11_2 = 

ann_model1(X_train2, Y_train2, X_test2, Y_test2) 

150. ann_accuracy1_3, ann_recall1_3, ann_precision1_3, ann_f11_3 = 

ann_model1(X_train3, Y_train3, X_test3, Y_test3) 

151. ann_accuracy1_4, ann_recall1_4, ann_precision1_4, ann_f11_4 = 

ann_model1(X_train4, Y_train4, X_test4, Y_test4) 

152. ann_accuracy1_5, ann_recall1_5, ann_precision1_5, ann_f11_5 = 

ann_model1(X_train5, Y_train5, X_test5, Y_test5) 

153. ann_accuracy2_1, ann_recall2_1, ann_precision2_1, ann_f12_1 = 

ann_model2(X_train, Y_train, X_test, Y_test) 

154. ann_accuracy2_2, ann_recall2_2, ann_precision2_2, ann_f12_2 = 

ann_model2(X_train2, Y_train2, X_test2, Y_test2) 

155. ann_accuracy2_3, ann_recall2_3, ann_precision2_3, ann_f12_3 = 

ann_model2(X_train3, Y_train3, X_test3, Y_test3) 

156. ann_accuracy2_4, ann_recall2_4, ann_precision2_4, ann_f12_4 = 

ann_model2(X_train4, Y_train4, X_test4, Y_test4) 

157. ann_accuracy2_5, ann_recall2_5, ann_precision2_5, ann_f12_5 = 

ann_model2(X_train5, Y_train5, X_test5, Y_test5) 

158. ann_accuracy3_1, ann_recall3_1, ann_precision3_1, ann_f13_1 = 

ann_model3(X_train, Y_train, X_test, Y_test) 

159. ann_accuracy3_2, ann_recall3_2, ann_precision3_2, ann_f13_2 = 

ann_model3(X_train2, Y_train2, X_test2, Y_test2) 

160. ann_accuracy3_3, ann_recall3_3, ann_precision3_3, ann_f13_3 = 

ann_model3(X_train3, Y_train3, X_test3, Y_test3) 

161. ann_accuracy3_4, ann_recall3_4, ann_precision3_4, ann_f13_4 = 

ann_model3(X_train4, Y_train4, X_test4, Y_test4) 
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162. ann_accuracy3_5, ann_recall3_5, ann_precision3_5, ann_f13_5 = 

ann_model3(X_train5, Y_train5, X_test5, Y_test5) 

163. ann_accuracy4_1, ann_recall4_1, ann_precision4_1, ann_f14_1 = 

ann_model4(X_train, Y_train, X_test, Y_test) 

164. ann_accuracy4_2, ann_recall4_2, ann_precision4_2, ann_f14_2 = 

ann_model4(X_train2, Y_train2, X_test2, Y_test2) 

165. ann_accuracy4_3, ann_recall4_3, ann_precision4_3, ann_f14_3 = 

ann_model4(X_train3, Y_train3, X_test3, Y_test3) 

166. ann_accuracy4_4, ann_recall4_4, ann_precision4_4, ann_f14_4 = 

ann_model4(X_train4, Y_train4, X_test4, Y_test4) 

167. ann_accuracy4_5, ann_recall4_5, ann_precision4_5, ann_f14_5 = 

ann_model4(X_train5, Y_train5, X_test5, Y_test5) 

168. xgb_accuracy1_1, xgb_recall1_1, xgb_precision1_1, xgb_f11_1 = 

xgb_model1(X_train, Y_train, X_test, Y_test) 

169. xgb_accuracy1_2, xgb_recall1_2, xgb_precision1_2, xgb_f11_2 = 

xgb_model1(X_train2, Y_train2, X_test2, Y_test2) 

170. xgb_accuracy1_3, xgb_recall1_3, xgb_precision1_3, xgb_f11_3 = 

xgb_model1(X_train3, Y_train3, X_test3, Y_test3) 

171. xgb_accuracy1_4, xgb_recall1_4, xgb_precision1_4, xgb_f11_4 = 

xgb_model1(X_train4, Y_train4, X_test4, Y_test4) 

172. xgb_accuracy1_5, xgb_recall1_5, xgb_precision1_5, xgb_f11_5 = 

xgb_model1(X_train5, Y_train5, X_test5, Y_test5) 

173. xgb_accuracy2_1, xgb_recall2_1, xgb_precision2_1, xgb_f12_1 = 

xgb_model2(X_train, Y_train, X_test, Y_test, parameters) 

174. xgb_accuracy2_2, xgb_recall2_2, xgb_precision2_2, xgb_f12_2 = 

xgb_model2(X_train2, Y_train2, X_test2, Y_test2, parameters) 

175. xgb_accuracy2_3, xgb_recall2_3, xgb_precision2_3, xgb_f12_3 = 

xgb_model2(X_train3, Y_train3, X_test3, Y_test3, parameters) 

176. xgb_accuracy2_4, xgb_recall2_4, xgb_precision2_4, xgb_f12_4 = 

xgb_model2(X_train4, Y_train4, X_test4, Y_test4, parameters) 

177. xgb_accuracy2_5, xgb_recall2_5, xgb_precision2_5, xgb_f12_5 = 

xgb_model2(X_train5, Y_train5, X_test5, Y_test5, parameters) 

Line 148 to 167 is to call all ann models functions to run the training and calculate the 

result with the training set and test set that we have already defined from line 123 to 127. Line 168 

to 172 is to train the first xgboost model and calculate the result, line 173 to 177 is to train the 

second xgboost model with the new parameters we got from hyperparameters tuning and also 

calculate the results. 

5.2. Results 

In this subchapter, the results of the models will be compared. ANN 1 indicates the first 

ann model that has 3 hidden layers with 200, 200, and 150 neurons respectively, ANN 2 indicates 



 

28 

 

the second ann model which has 4 hidden layers with 200, 200, 200, and 150 neurons respectively. 

ANN 3 indicates the third ann model which has 5 hidden layers with 200,  200, 150, 150, and 150 

neurons respectively. ANN 4 indicates the fourth ann model which has 6 hidden layers with 200, 

200, 200, 150, 150, and 150 neurons respectively. XGBoost 1 is the first xgboost model without 

hyperparameters tuning or with the default parameters [17], and XGboost 2 is the second model 

with hyperparameters tuning. 

Table 5.1 Results Comparison with Train set 80% and Test set 20% 

Model Recall Precision F1 Score Accuracy 

ANN 1 0.958 0.986 0.971 0.962 

ANN 2 0.958 0.986 0.971 0.962 

ANN 3 0.986 0.986 0.986 0.981 

ANN 4 0.972 0.986 0.979 0.971 

XGBoost 1 0.958 1.0 0.978 0.971 

XGBoost 2 0.958 1.0 0.978 0.971 

Table 5.1 shows that with ratio 80:20, ANN 3 has the best overall performance of all 

models, followed by ANN 4, XGBoost 1 and XGBoost 2. ANN 4 and the XGBoost models have 

the same accuracy score but ANN 4 have better recall and F1 score, even though the precision is 

better on the XGBoost models. 

Table 5.2 Results Comparison with Train set 75% and Test set 25% 

Model Recall Precision F1 Score Accuracy 

ANN 1 0.952 0.988 0.97 0.962 

ANN 2 0.952 1.0 0.976 0.969 

ANN 3 0.964 0.988 0.976 0.969 

ANN 4 0.976 0.863 0.916 0.885 

XGBoost 1 0.952 1.0 0.976 0.969 

XGBoost 2 0.964 1.0 0.982 0.977 
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Table 5.2 shows that XGBoost 2 has the best performances over all models, followed by 

ANN 2 , ANN 3 and XGBoost 1. ANN 2 and XGBoost 1 have lower Recall than the ANN 3 but 

they have the same F1 score and have better precision. 

Table 5.3 Results Comparison with Train set 70% and Test set 30% 

Model Recall Precision F1 Score Accuracy 

ANN 1 0.961 0.99 0.975 0.968 

ANN 2 0.912 0.979 0.944 0.929 

ANN 3 0.98 1.0 0.99 0.987 

ANN 4 0.98 0.99 0.985 0.981 

XGBoost 1 0.98 1.0 0.99 0.987 

XGBoost 2 0.98 1.0 0.99 0.987 

Table 5.3 shows that with 70% of the training set and 30% of the test set, both XGBoost 

models and ANN 3 achieve the same result and have the best performances, followed by ANN 4, 

ANN 1 and the last is ANN 2. 

Table 5.4. Results Comparison with Train set 60% and Test set 40% 

Model Recall Precision F1 Score Accuracy 

ANN 1 0.939 0.992 0.965 0.957 

ANN 2 0.939 0.992 0.965 0.957 

ANN 3 0.947 0.984 0.965 0.957 

ANN 4 0.939 0.939 0.939 0.923 

XGBoost 1 0.932 1.0 0.965 0.957 

XGBoost 2 0.924 1.0 0.961 0.952 

Table 5.4 shows that with 60% of the training set and 40% of the test set, ANN 1, ANN 2, 

ANN 3, and XGBoost 1 able to achieve the same accuracy score. ANN 1 has the same results as 

the ANN 2, but has lower recall , precision than the ANN 3. XGBoost 1 has a lower recall than 

the three ann models mentioned. 
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Table 5.5 Results Comparison with Train set 50% and Test set 50% 

Model Recall Precision F1 Score Accuracy 

ANN 1 0.91 1.0 0.953 0.942 

ANN 2 0.904 1.0 0.949 0.938 

ANN 3 0.934 0.994 0.963 0.954 

ANN 4 0.795 0.971 0.874 0.854 

XGBoost 1 0.94 1.0 0.969 0.962 

XGBoost 2 0.946 1.0 0.972 0.965 

Table 5.5 shows that with 50% of the training set and with 50% of the test set, XGBoost 2 

has the best overall performance, followed by XGBoost 1, ANN 3, ANN1, and ANN 4. 

 

Figure 5.8 Accuracy Comparison 

And as we can see from Figure 5.1 that most of the results from different ratios of training 

data XGBoost models are able to outperform the ANN models, although ANN 3 is able to achieve 

better accuracy scores at 80% of training data and achieve the same accuracy score at 70% of 

training data as the XGBoost models. As we can see from the figure above with 80%:20% ANN 

4 also has a  high accuracy score and it's the same as the XGBoost models, as ANN 1 and ANN 2 
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have lower scores than the other models. But with a 75%:25% ratio ANN 4 score decreased below 

90%, and XGBoost 2 have the highest score, followed by ANN 2, ANN 3, and XGBoost  where 3 

of them have the same score. Although the three models have the same accuracy score , as we can 

see from Table XGBoost 1 and ANN 2 has the same result but has lower recall than ANN 3. With 

70%:30 ratio XGBoost models and ANN 3 able to achieve the same accuracy scores. With 

60%:40%, ANN 1, ANN 2, ANN 3, and XGBoost 1 able to achieve the same accuracy scores but 

Table 5.4 shows that XGBoost 1 have lower recall than ANN models, and ANN 3 has the highest 

recall score but ANN 3 have lower precision than ANN 1, ANN 2 and XGBoost 1. And the last 

with 50%:50% ratio, XGBoost 2 have the best accuracy score compared to other models, and ANN 

4 have the lowest score. 


