
17

IMPLEMENTATION AND RESULTS

5.1. Experiment Setup

Pre-trained SSD MobileNet V2 320x320, obtained from the Tensorflow 2 detection

model zoo, is the model used in this research. The model was trained on 27 May 2021, using a

pro version of Google research collab with a RAM of 27.3 GB and a Tensorflow version of

2.5.0. Before this training, installing Tensorflow object detection API is needed to obtain files

such as model_main_tf2.py and generate_tfrecord.py.

Next, the testing for the trained model was done using NVIDIA Jetson Nano Developer

Kit - B01 New Revision that has RAM of 4 GB. The operating system for this device is

Linux4Tegra which is based on Ubuntu 18.04. It has a GPU of NVIDIA Maxwell and 128

CUDA cores with a CPU of ARM A57, four cores, and 1.43 GHz. Next, is to install Tensorflow

version 2.10.0 and Python version 3.7 before running the code.

The placement of the hardware in this research was done by placing it on a table, in a

room with good lighting and a good Wifi network. The camera was placed on top of the table

in the corner of the room and the picture is taken parallel to the camera level / eye-level

5.2. Collecting Data

The dataset has 853 images and it’s saved into two different folders, one being training

and the other for testing with a ratio of 80:20. The total number of images for training is 683

and for testing is 170, this division was done manually.

5.3. Pre-processing Data

After the dataset is ready, the next step is to preprocess it, which starts with image

labeling. The image labeling was done by running a Python command “python labelImg.py”

which will launch the LabelImg tool. Figure 5.1 shows the image labeling process. LabelImg

is an open-source image labeling application that uses QT for its graphical interface and written

in Python.

18

Figure 5.1 Image Labeling for Dataset

Since the result of the labeling is a file with the extension .XML, it needs to be

converted to .CSV by running “!python xml_to_csv.py --type train”. The function to convert

in xml_to_csv.py code is written below :

1. def xml_to_csv(img_files, xml_files):
2. xml_list = []

Lines 3 to 5 are to import the XML data by reading from a file.

3. for i, xml_file in enumerate(xml_files):
4. tree = ET.parse(xml_file)
5. root = tree.getroot()

Then, lines 6 and 7 are to iterate over each node of the tree to obtain each element, its

attribute, and all of its sub-elements in order to construct the dataframe. The elements consist

of the filename, size, and object. The size element has sub-elements of width and height,

whereas the object has sub-elements of name and bndbox which has other sub-elements of

xmin, ymin, xmax, and ymax.

6. for member in root.findall('object'):
7. value = (root.find('filename').text,

 int(root.find('size').find('width').text),

 int(root.find('size').find('height').text),

 member[0].text,

 int(member.find("bndbox").find('xmin').text),

 int(member.find("bndbox").find('ymin').text),

 int(member.find("bndbox").find('xmax').text),

 int(member.find("bndbox").find('ymax').text)

)

8. xml_list.append(value)

A set of data from each iteration that can be thought as an observation in a pandas

DataFrame will be returned in lines 9 to 11.

9. column_name = ['filename', 'width', 'height', 'class', 'xmin',

'ymin', 'xmax', 'ymax']

10. xml_df = pd.DataFrame(xml_list, columns=column_name)

19

11. return xml_df

The previous step's result is train labels.csv, and it can be seen on Figure 5.2 :

Figure 5.2 Sample Output of train_labels.csv

Next, to recap the classes, the label map file is required. To generate a label map, run

the command “python generate_labelmap.py”. The code to generate_labelmap.py is written

below:

1. with open("label_map.pbtxt", "w") as f:
2. for idx, label in enumerate(df["class"].unique()):
3. idx+=1
4. f.write("item{\n")
5. f.write("id: %d\n" % (idx))
6. f.write("name: '" + label + "'\n")
7. f.write("}\n\n")
8. print("DONE")

The previous step’s result can be seen on Figure 5.3. It is saved as label_map.pbtxt file.

Figure 5.3 Content of label_map.pbtxt

20

The last step for the preprocessing is to create the TFRecord using generate_tfrecord.py

which is provided by Tensorflow. The command “!python generate_tfrecord.py --csv_input

train_labels.csv --image_dir train --labelmap_dir label_map.pbtxt --output_path train.tfrecord”

is used to create TFRecord files.

On the code, an adjustment needs to be made, which is the function of class_text_to_int

on lines 1 to 9. It should reflect the label map, since the label map has three classes, the function

should also have three classes with matching return value and id on the previous label map.

1. def class_text_to_int(row_label):
2. if row_label == 'without_mask':
3. return 1
4. elif row_label == 'with_mask':
5. return 2
6. elif row_label == 'mask_weared_incorrect':
7. return 3
8. else:
9. return 0

5.4. Training Model

After the dataset is ready, the next step is to prepare the model that will be trained by

doing some basic configuration to the existing hyperparameters config to the needs of this

research and saving the file in “.config” format. The configuration for this model was made by

changing the number of classes (num_classes), the batch size (batch_size), training steps, and

set the path to the downloaded model checkpoint, the checkpoint type, the path to label_map,

TFRecord file with the training and testing data. The hyperparameter used for the batch size

was 16 and the training steps of 120000 with a learning rate of 0.008. Training using other

hyperparameters has been carried out, but due to hardware limitations, it is not possible to do

another testing, so the research continues to use these hyperparameters. The following setup is

for the "SSD MobileNet V2 320x320" model:

On line 3, the num_classes is set to 3 because the dataset has 3 classes, with_mask,

mask_weared_incorrect, and without_mask.

1. model {
2. ssd {
3. num_classes: 3

On lines 4 to 9, there’s a function to resize the image and it is set to 300 so it can reduce

the training time.

4. image_resizer {
5. fixed_shape_resizer {
6. height: 300
7. width: 300

21

8. }
9. }

Next is to configure the train_config. On line 10, the batch_size (integer, must be

divisible by 2) dictate the number of images to be fed into memory while training. Since the

GPU has 27.3 GB available, the batch_size is set to 16. The number of training steps is also

adjusted to 120000 on lines 26 and 35 with warmup steps of 1000 on line 28 to improve the

model performance.

10. train_config {
11. batch_size: 16
12. data_augmentation_options {
13. random_horizontal_flip {
14. }
15. }
16. data_augmentation_options {
17. ssd_random_crop {
18. }
19. }
20. sync_replicas: true
21. optimizer {
22. momentum_optimizer {
23. learning_rate {
24. cosine_decay_learning_rate {
25. learning_rate_base: 0.008
26. total_steps: 120000
27. warmup_learning_rate: 0.0001
28. warmup_steps: 1000
29. }
30. }
31. momentum_optimizer_value: 0.9
32. }
33. use_moving_average: false
34. }
35. num_steps: 120000

The path of the SSD model is pointed with the fine_tune_checkpoint. This ensures that

the training of the model is not from scratch.

36. fine_tune_checkpoint:"ssd_mobilenet_v2_320x320_coco17_tpu-
8/cp/ckpt-0"

Its type (fine_tune_checkpoint_type) is set to “detection” from “classification” since

this training is to train the model for object detection.

37. fine_tune_checkpoint_type: "detection"
38. }

For training data, the train input reader must point to the label map path and the path to

the TFRecords.

39. train_input_reader {
40. label_map_path: "/content/dataset/label_map.pbtxt"
41. tf_record_input_reader {
42. input_path: "/content/dataset/train.record"
43. }

22

44. }

The eval_input_reader is similar to train_input_reader, but for the test data for testing

the model.

45. eval_input_reader {
46. label_map_path: "/content/dataset/label_map.pbtxt"
47. shuffle: false
48. num_epochs: 1
49. tf_record_input_reader {
50. input_path: "/content/dataset/test.record"
51. }
52. }

Other than the above, the hyperparameter used for the training is the same as the one

that is provided by Tensorflow. To start training the model for this research use

model_main_tf2.py which is provided by Tensorflow, so the command “!python

/model_main_tf2.py --alsologtostderr --model_dir=dirOfModel --

pipeline_config_path=file.config” is run. Figure 5.4 displays the result of this training phase,

which is a log of train performance:

Figure 5.4 The Output of Training Steps

5.5. Hardware

The camera is using camera module IMX219 because it’s mainly designed for the

NVIDIA Jetson Nano. For the SD card, the SanDisk Extreme Pro 64GB MicroSD is used

because it is intended for SD cameras capable of recording Full HD, 3D, and 4K video with

raw and burst photos with a capacity of 64GB, that can handle 170MB/s read speeds and write

rates of up to 90 MB/s. The device also utilizes the TL-WN722N USB Wifi Adapter, which

enables the hardware to establish wireless network access on the computer and to access a high-

speed Internet connection, with wireless speeds of up to 150Mbps.

When the model is ready, the next step is to construct the hardware based on the

hardware design in the previous chapter. The result of the construction looks can be seen on

Figure 5.5.

23

Figure 5.5 Hardware Result

This device is placed on top of the table so it is parallel with the object for better

detection purposes, since the parallel position gives clearer images.

5.6. Implementation

After the model is trained and exported, as well as the hardware is ready, the next step

is to implement the trained model into the system that is developed using Python language. The

code for the system is already adjusted to the existing hardware and is written below :

Lines 1 to 9 are related to a database where lines 1 to 6 are to connect and lines 8 and 9

are to input the data into a database.

1. db = mysql.connector.connect(
2. host="localhost",
3. user="root",
4. password="",
5. database="db_pkm2"
6.)
7. eksekusiDb = db.cursor()
8. sql = "INSERT INTO tblDataPelanggar (time, pelanggar_masker, \
9. pelanggar_jarak, bukti_ss) VALUES (%s, %s, %s, %s)"

Lines 10 to 13 are related to load label map.

10. PATH_TO_LABELS = 'label_map.pbtxt'
11. category_index = \

12. label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,\
13. use_display_name=True)

And line 14 is to load the trained model.

14. detection_model = tf.saved_model.load("inference_graph/saved_model")

Line 15 to 18 are the function to detect the center of the bounding box of the object

detected.

15. def deteksi_center(ymin, xmin, ymax, xmax, w, h):
16. cx = ((xmin+xmax)/2)*w

24

17. cy = ((ymin+ymax)/2)*h
18. return int(cx),int(cy)

Line 19 to 40 are the function for calling the model and cleaning up the outputs. Line

21 converts the input to a tensor since it must be a tensor, and the model expects a batch of

images, so an axis is added on line 22, and the inference is run on line 24.

19. def run_inference_for_single_image(model, image):
20. image = np.asarray(image)
21. input_tensor = tf.convert_to_tensor(image)
22. input_tensor = input_tensor[tf.newaxis,...]
23. model_fn = model.signatures['serving_default']
24. output_dict = model_fn(input_tensor)

All outputs are batch tensors, so on lines 25 to 28, it is transformed to numpy arrays,

and the batch dimension is eliminated by taking index[0]. On line 29, the detection_classes

should be ints.

25. num_detections = int(output_dict.pop('num_detections'))
26. output_dict = {key:value[0, :num_detections].numpy()
27. for key,value in output_dict.items()}
28. output_dict['num_detections'] = num_detections
29. output_dict['detection_classes'] =

output_dict['detection_classes'].astype(np.int64)

Lines 30 to 39 are to handle models with masks. The box mask is reframed to the image

size on lines 31 to 39.

30. if 'detection_masks' in output_dict:
31. detection_masks_reframed =
32. utils_ops.reframe_box_masks_to_image_masks(\
33. output_dict['detection_masks'], \

34. output_dict['detection_boxes'], \

35. image.shape[0], image.shape[1])
36. detection_masks_reframed =

tf.cast(detection_masks_reframed>= \

37. 0.5, tf.uint8)
38. output_dict['detection_masks_reframed'] = \
39. detection_masks_reframed.numpy()
40. return output_dict

Lines 41 to 78 are the procedures to execute on each test image and display the

outcomes. First, the variables to store the data of the violation with the default of 0 is prepared

on lines 42 and 43.

41. def show_inference(model, image_np):
42. totalMelanggarJarak = 0
43. totalMelanggarMasker = 0
44. output_dict = run_inference_for_single_image(model, image_np)

And the result of the detection is visualized on lines 45 to 54.

45. hasil = vis_util.visualize_boxes_and_labels_on_image_array(
46. image_np,
47. output_dict['detection_boxes'],
48. output_dict['detection_classes'],

25

49. output_dict['detection_scores'],
50. category_index,
51. instance_masks=output_dict.get('detection_masks_reframed', \
52. None),
53. use_normalized_coordinates=True,
54. line_thickness=8)

Lines 55 to 78 are to detect the distance violation.

55. box_05 = \

56. output_dict['detection_boxes'] \

57. [output_dict['detection_scores']>=0.5]
58. h, w, c = hasil.shape
59. rekapKoordinat = []

Lines 60 to 63 are to get the coordinate of the object and lines 63 to 66 are to give the

bounding box, a dot (circle of red color) in the middle to mark the center.

60. for index in range(len(box_05)):
61. ymin, xmin, ymax, xmax = box_05[index]
62. rekapKoordinat.append(deteksi_center(ymin, xmin, ymax, \
63. xmax, w, h))
64. for i in range(len(rekapKoordinat)):
65. hasil = cv2.circle(hasil, rekapKoordinat[i], 5, (255, 0, 0),-
66. 5)

Next, lines 67 to 78 are to get the distance between objects and calculate it. On lines 72

to 74, the Euclidean Distance formula is used to compute the distance. If the distance is less

than the threshold on line 75, the value distance violator is added on line 78.

67. rekapJarak = {}
68. if len(rekapKoordinat)>1:
69. for i in range(len(rekapKoordinat)-1):
70. rekapJarak[i] = {}
71. for j in range(i+1, len(rekapKoordinat)):
72. rekapJarak[i][j] = \

73. (np.linalg.norm(np.array(rekapKoordinat[i]) – \
74. np.array(rekapKoordinat[j])))
75. if rekapJarak[i][j] < 300:
76. hasil = cv2.line(hasil, rekapKoordinat[i],\
77. rekapKoordinat[j], (255, 0, 0), 2)

78. totalMelanggarJarak+=1

And on lines 79 to 83, if there’s a violation, the buzzer will make a sound. Line 83 is to

return the value of the violator.

79. if totalMelanggarJarak!=0 or totalMelanggarMasker!=0:
80. mixer.init()
81. mixer.music.load('alert.ogg')
82. mixer.music.play()
83. return(hasil, totalMelanggarJarak, totalMelanggarMasker)

Then, line 84 is to create a video capture object, which would help stream or display

the video, and line 85 is to get the current date and time. Line 86 is to loop for 24 hours. Line

87 is to read the video capture and then it’s converted to RGB on line 88 so it can be an input

26

for the model on line 89. Line 90 is to store the image result and it’s converted back to RGB

on line 91.

84. cap = cv2.VideoCapture(2)
85. terakhir = datetime.datetime.now()
86. while 1:
87. _, img = cap.read()
88. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
89. inferencehasil = show_inference(detection_model, img)
90. final_img = inferencehasil[0]
91. final_img = cv2.cvtColor(final_img, cv2.COLOR_RGB2BGR)

Lines 92 to 101 are to show the total of the distance violation. The color of the text

depends on line 92, if the violation is more than 1, then the color will follow lines 93 to 95.

92. if inferencehasil[1] != 0:
93. final_img = cv2.putText(final_img, "Total Kasus Jarak = " +\
94. str(inferencehasil[1]), org=(20,460), fontFace= \

95. cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255), \

96. thickness=3, lineType=cv2.LINE_AA)
97. else:
98. final_img = cv2.putText(final_img, "Total Kasus Jarak = " +\
99. str(inferencehasil[1]), org=(20,460), fontFace= \

100. cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,255,0), \

101. thickness=3, lineType=cv2.LINE_AA)

Then on lines 102 to 111, the data is stored in the database.

102. valueku = \
103. (datetime.datetime.now(), inferencehasil[2],
104. inferencehasil[1], respon["data"]["display_url"])
105. eksekusiDb.execute(sql, valueku)
106. db.commit()
107. else:
108. valueku = (datetime.datetime.now(), inferencehasil[2], \
109. inferencehasil[1], "-")
110. eksekusiDb.execute(sql, valueku)
111. db.commit()

5.7. Evaluation

The test was carried out using ten images given in front of the camera. Some images

were taken from Google pictures and some were from camera video. The test was carried out

on 16 October 2022 at 8 p.m. that took place on Anak Panah Kopi, Gajahmada Street Number

91. Each image was taken at eye level (directly in front of the camera) in a lighting room. Table

5.1 shows the results from the testing.

Table 5.1. Testing Result

No. Actual Predicted TP TN FP FN

Violator Non-Violator Violator Non-Violator

1 0 2 0 2 0 2 0 0

2 2 0 2 0 2 0 0 0

27

3 6 0 5 1 5 0 0 1

4 2 0 2 0 2 0 0 0

5 2 0 2 0 2 0 0 0

6 2 0 2 0 2 0 0 0

7 3 0 3 0 3 0 0 0

8 2 0 2 0 2 0 0 0

9 2 0 0 2 0 0 0 2

10 2 0 2 0 2 0 0 0

From the tests carried out in Table 5.1, it was found that the system accuracy value is

88%, with a precision value of 100%, and a recall value of 87%. These results were calculated

according to the number of objects detected between actual and detected by the MobileNet V2

320x320 SSD using a confusion matrix.

Figure 5.6 Detection Using Images (a) No Violator (b) With Violators (c) With Violators but

One is Undetected

(a) (b)

(c)

28

Figure 5.7 Detection Using Camera Video (a) Violators but One Undetected (b) Violators

Detected

Figure 5.6 shows the detection results using photos and Figure 5.7 shows the detection

results using camera video (real-time). On Figure 5.6(a) the detection is shown with no violator,

Figure 5.6(b) shows the detection with violator, and Figure 5.6(c) shows the undetected

violator. Figure 5.7(a) shows the detection result with an undetected violator and Figure 5.7(b)

shows the detection with fully detected violators.

In Figure 5.6(c) there is a detection error due to the person’s face being taken in side

profiles, which can sometimes be detected and sometimes not by the camera, and another error

in Figure 5.7(a) due to the backlighting. This shows that the object of detection can’t be

detected when there is a backlight and for better detection, it is best when the person’s face is

facing forward.

5.8. Discussion

Taking the experiment results in Figure 5.6 and Figure 5.7(b), the object was detected

with a fairly high accuracy of 88%, this indicates that the SSD MobileNet V2 320x320 method

is capable of detecting objects within a room lighting. In Figure 5.7(a), it can be seen that not

all objects can be detected, because the backlighting made the object became less clear for

detection. Another limitation of this research is only detecting objects that appear directly

parallel in front of the camera because of the short cable connection between the device and

the laptop and the limited space to put the camera.

(a) (b)

