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 CHAPTER 5

IMPLEMENTATION AND RESULTS 

5.1. Implementation 

The implementations of this research will be explained in this sub-chapter. The original 

dataset has a target value of 0, 1, 2, 3, and 4. The value with 1, 2, 3, and 4 that represent as the 

presence of heart disease will be replaced with 1. So, the target value will only have 0 as False 

and 1 as True.  The process of replacing the target value can be seen below 

1. df['target'] = df['target'].replace({ 
2.                     2 : 1, 
3.                     3 : 1, 
4.                     4 : 1, 
5.                 }) 

In line 1 code above, the data column “target” call replace function to replace the chosen 

value with the target value. The value 2-4 will be replaced with value 1 in the line 2-4 code 

above. The result of the dataset “target” column using this code can be seen in Figure 5.1 below. 

 

Figure 5.1 Heart Disease target column 

Next, each of the handling missing values will be analyzed to see which handling missing 

values have better gained performance on the model. The first one is dropping missing data rows 

can be done using the code below. 

1. check = df.isin(['?']) 
2. selectedRow = df[check.any(axis=1)] 
3. df_dropping = df.drop(selectedRow.index) 

In line 1, the code will check if there is “?” data in the dataset rows. In line 2, getting the 

selected row that has “?” in the dataset and the selected row can be seen Figure 5.2 in below. 

After that, the code in line 3 will drop 6 of the selected row using the index and leave the dataset 

only to 297 rows. 
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Figure 5.2 Missing data value rows 

From the previous checking, we know that only the “ca” and “thal” columns have the 

missing value with “?” data. So, replacing the median and the mode will only replace the “ca” 

and “thal” column values. The replacing with median can be seen in the code below. 

1. df_median = df.replace({ 
2.         '?' : np.nan 
3.     }) 
4.  
5. df_median['ca'] = df_median['ca'].fillna(df_median['ca'].median()) 
6. df_median['thal'] = df_median['thal'].fillna(df_median['thal'].median()) 

In line 1-3 code above, replace the “?” data with NaN (Not A Number) value and put it 

into the df_median variable. Line 5 and 6 code above will replace the NaN value with the median 

of each column “ca” and “thal” value using the fillna function.  The replacing with mode can be 

seen in the code below. 

1. df_mode = df.replace({ 
2.         '?' : np.nan 
3.     }) 
4.  
5. df_mode['ca'] = df_mode['ca'].fillna(df_mode['ca'].mode()[0]) 
6. df_mode['thal'] = df_mode['thal'].fillna(df_mode['thal'].mode()[0]) 

Code line 1-3 will replace the “?” data value with the NaN value and put it into the 

df_mode  variable. In line 5 and 6 will replace the NaN value with the mode of each column “ca” 

and “thal” value using the fillna function. Making the boxplot can be seen in the code below. 
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1. def make_boxplot(data, text): 
2.     plt.boxplot(data, 

3.         vert=True, 

4.         labels=[text]) 

5.      

6.     plt.title(text) 

7.     plt.ylabel("Value") 

8.     plt.grid(axis = 'y') 

9.     plt.show() 

Line 1 of the code defined make_boxplot function with data and text as parameter above. 

Line 2-4 make boxplot visualisation using the data as parameter, vertical position for the boxplot, 

and labels using text value. Line 6 set the title of the boxplot. Line 7 set the y axis label of the 

boxplot with “Value”. Line 8 set y axis grid of the boxplot and line 9 show the boxplot. The 

function of removing outliers can be seen in code below. 

1. def remove_outliers(feature): 

2.     Q1 = np.percentile(X_outliers[feature], 25, 

3.                     interpolation = 'midpoint') 

4.      

5.     Q3 = np.percentile(X_outliers[feature], 75, 

6.                     interpolation = 'midpoint') 

7.     IQR = Q3 - Q1 

8.  

9.     upper_value = (Q3+1.5*IQR) 

10.     lower_value = (Q1-1.5*IQR) 
11.     upper = np.where(X_outliers[feature] >= upper_value) 
12.     lower = np.where(X_outliers[feature] <= lower_value) 
13.  
14.     X_outliers.drop(upper[0], inplace=True) 
15.     X_outliers.drop(lower[0], inplace=True) 
16.     X_outliers.reset_index(drop=True, inplace=True) 
17.  
18.     Y_outliers.drop(upper[0], inplace=True) 
19.     Y_outliers.drop(lower[0], inplace=True) 
20.     Y_outliers.reset_index(drop=True, inplace=True) 
21.  
22.     print("Upper : ", upper_value) 
23.     print("Lower : ", lower_value) 

Line 1 of the code above defined remove_outliers function with feature as parameter. 

Line 2-3 declare Q1 variable using np.percentile function with data as parameter, 25 as the 

percentile value,  and midpoint interpolation to handle if there is 2 same value at the 25 

percentile value. Line 5-6 is same as line 2-3 but only it declaring Q3 using 75 as the percentile 

Line 9-10 declare boundaries value of the data (upper and lower) using the percentile from Q1 

and Q3 variable. Line 11-12 get the index of data where the value has less than lower value or 

has more than upper value. Line 14-20 drop the outliers data and reset the data index with drop 



29 

 

true which means deleting the current index and replace it with numeric index. Feature selection 

using chi square can be seen in code below. 

1. selection = SelectKBest(score_func=chi2, k=i) 

Line 1 code above declared selection variable and assign SelectKBest() function to get 

the best feature using chi2 as the score_func and i indicate how many selected features (1-13). 

Feature selection using mutual information can be seen in code below. 

1. selection = SelectKBest(score_func=mutual_info_classif, k=i) 

Line 1 code above declared selection variable and assign SelectKBest() function to get 

the best feature using mutual_info_classif as the score_func and i indicate how many selected 

features (1-13). Feature selection using anova can be seen in code below. 

1. selection = SelectKBest(score_func=f_classif, k=i) 

Line 1 code above declared selection variable and assign SelectKBest() function to get 

the best feature using f_classif as the score_func and i indicate how many selected features (1-

13). Feature selection using forward feature selection using code below. 

1. cv = KFold(n_splits=10, shuffle=True, random_state=seed) 
2. selection = SequentialFeatureSelector(model, n_features_to_select=i, 

cv=cv) 

Line 1 calls the 10-fold cross validation function and put it into the cv variable. Line 2 

code above declared selection variable and assign SequentialFeatureSelection() function to get 

the best feature using XGBoost model as parameter, n_features_to_select indicate how many 

selected features (1-12), and 10-fold cross validation. Feature selection using backward feature 

selection using code below. 

1. cv = KFold(n_splits=10, shuffle=True, random_state=seed) 
2. selection = SequentialFeatureSelector(model, n_features_to_select=i, 

direction="backward", cv=cv) 

Line 1 calls the 10-fold cross validation function and put it into the cv variable. Line 2 

code above declared selection variable and assign SequentialFeatureSelection() function to get 

the best feature using XGBoost model as parameter, n_features_to_select indicate how many 

selected features (1-12), direction backward, and 10-fold cross validation . Feature selection 

using recursive feature elimination using code below. 

1. selection = RFE(model, n_features_to_select=i) 
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Line 1 code above declared selection variable and assign RFE() function to get the best 

feature using XGBoost model as parameter, n_features_to_select indicate how many selected 

features (1-13). The code to get the feature importance can be seen in code below. 

1. thresholds = np.sort(model.feature_importances_) 

Line 1 code above declared thresholds variable and assign the feature importance from 

the trained model and will be sorted lowest to highest. The thresholds variable will be used for 

the feature selection in the code below. 

1. for thresh in thresholds: 
2.     selection = SelectFromModel(model, threshold=thresh, prefit=True) 
3.     feature_idx = selection.get_support() 
4.     select_X = selection.transform(X.values)  

In line 1 code above call the for looping function and declare thresh variable as the 

looping of each thresholds variable. Line 2 declared the selection variable and assign the 

SelectFromModel function to select the selected feature based on the thresh variable. Line 3 code 

above get the selected feature name. Line 4 transforms the X variable into only feature selected 

data.After preprocessing the data, the XGBoost will be tuned using the code below. 

1. def xgbc(learning_rate, n_estimators, max_depth, min_child_weight, 

gamma, subsample, colsample_bytree): 

2.      
3.     model = XGBClassifier( 
4.         learning_rate = learning_rate, 
5.         n_estimators = int(n_estimators), 
6.         max_depth = int(max_depth), 
7.         min_child_weight = min_child_weight, 
8.         gamma = gamma, 
9.         subsample = subsample, 
10.         colsample_bytree = colsample_bytree, 
11.         seed = seed, 
12.     ) 
13.  
14.     cv = KFold(n_splits=10, shuffle=True, random_state=seed) 
15.     accuracy = cross_val_score(model, X, Y, scoring='accuracy', cv=cv) 
16.  
17.     return np.mean(accuracy) 

Line 1 of the code defined xgbc function with several parameters as shown in the code 

above. Line 3-12 calls the XGBClassifier function with parameters that takes input from the 

xgbc parameter and put it into the model variable. Line 14 calls the 10-fold cross validation 

function and put it into the cv variable. In line 15 will calculate the accuracy of the model with 

10-fold cross validation as the data portioning. Line 17 will return the mean of the accuracy 
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variable as we are using 10-fold which means there will be 10 accuracy from 10 data portioning. 

The hyperparameter tuning using Bayesian Optimization will be done in the code below. 

1. hyperparameter = { 
2.     'learning_rate': (0.1, 1), # default 0.1 
3.     'n_estimators' : (100, 250), # default 100 
4.     'max_depth': (1, 15), # default 3 
5.     'min_child_weight' : (0, 1), # default 1 
6.     'gamma' : (0, 1), # default 0 
7.     'subsample' : (0.4, 1), # default 1 
8.     'colsample_bytree' : (0.4, 1), # default 1 
9. } 
10.  

11. xgbcBO = BayesianOptimization( 

12.             f = xgbc,  

13.             pbounds =  hyperparameter, 

14.             random_state = seed 

15.         ) 

16.  

17. xgbcBO.maximize() 

Line 1-9 code above declared hyperparameter variable and assign several parameters that 

will be tuned with the search space. Line 11-15 declares the xgbcBO variable and calls the 

BayesianOptimization function with the xgbc function that was explained before into the 

parameter with the hyperparameter variable as the parameter boundaries. Line 17 will run the 

xgbcBO to tune the hyperparameter.  

5.2. Results 

The result of this research will be shown in this sub-chapter. The result of handling 

missing values analysis can be seen in Table 5.1 below. 

Table 5.1. Handling Missing Values Evaluation 

Handling Missing 

Values 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Dropping missing value 83.36 76.32 78.82 89.37 81.55 

Replacing with median 80.89 76.38 78.40 88.14 80.51 

Replacing with mode 80.89 76.38 78.40 88.14 80.51 

The result of dropping missing value gained 83.36% on precision, 76.32% on recall, 

78.82% on recall, 89.37% on roc area, and 81.55% on accuracy. While replacing with median 

and replacing with mode gained the same 80.89% on precision, 76.38% on recall, 78.40% on f1-
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score, 88.14% on roc area, and 80.51% on accuracy. This happens because the median and the 

mode of the “ca” and “thal” columns have the same value as shown in Error! Reference source 

not found. below. 

Table 5.2. Median and Mode of “ca” and “thal”  

Data Column 
Math 

Median Mode 

ca 0 0 

thal 3 3 

Seeing the result from Table 5.1, dropping missing value have better overall performance 

than replacing with median and replacing with mode. Replacing with median and replacing with 

mode have lower precision which indicates that the model has a larger false positive value than 

the dropping missing value. But, replacing with median and replacing with mode has a slightly 

lower false negative value that makes it has better recall result. Dropping missing value have a 

better F1-score than both replacing with median and replacing with mode since the precision has 

higher results than the other two. Dropping missing value also has better roc area and accuracy 

that indicates this handling missing value is better than replacing with median and replacing with 

mode. So, the dropping missing value will be used in the preprocessing in training the model. 
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Figure 5.3 (a) “trestbps” outliers, (b) “chol” outliers, (c) “thalach” outliers, and (d) “oldpeak” 

outliers 

The outliers of data “trestbps”, “chol”, “thalach”, and “oldpeak” can be seen in Figure 5.3 

above. The “trestbps” have upper bounds at 170 and lower bounds at 90. “chol” have upper 

bounds at 376 and lower bounds at 112. “thalach” have upper bounds at 216.25 and lower 

bounds at 82.25. And “oldpeak” have upper bounds at 4. Data range inside the upper and lower 

bounds of this numerical feature of the heart disease dataset are considered not outliers. 

Table 5.3. Outliers Evaluation 

XGBoost Model 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

With outliers 83.36 76.32 78.82 89.37 81.55 

Without outliers 79.47 73.55 75.16 87.05 79.94 

(

a) 

(b) (a) 

(c) (d) 
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Using the dropping missing value on the preprocessing, the outliers evaluation can be 

seen in Table 5.3 above. The result shows that removing outliers has lower perfomance than data 

with outliers. But, with the outliers has been removed, the data distribution for “trestbps”, “chol”, 

“thalach”, and “oldpeak” is normal and better for the model. 

Table 5.4. Feature Selection Rankings with XGBoost 

Rank 

Feature Selection Techniques 

Chi 

Square 

Mutual 

Information 
ANOVA 

Forward 

Feature 

Selection 

Backward 

Feature 

Selection 

Recursive 

Feature 

Elimination 

Feature 

Importance 

1 thalach thal thal thal ca thal thal 

2 ca cp ca ca oldpeak ca ca 

3 thal ca oldpeak cp cp cp exang 

4 oldpeak slope thalach sex fbs oldpeak cp 

5 exang oldpeak cp slope exang exang sex 

6 chol exang exang fbs age sex oldpeak 

7 age thalach sex exang chol age thalach 

8 cp sex slope age trestbps thalach age 

9 sex chol age chol restecg chol chol 

10 restecg restecg restecg fbs sex fbs restecg 

11 slope fbs trestbps thalach thal trestbps fbs 

12 trestbps trestbps chol oldpeak slope restecg trestbps 

13 fbs age fbs trestbps thalach slope slope 

Each feature rankings from each feature selection can be seen in Table 5.4 above. “thal”, 

“ca”, and “cp” has the most appreance on top 3 rankings from feature selection that are used in 

this research. While the “slope”, “fbs”, and “treshbps” has the most appreance on bottom 3 

rankings from feature selection that are used in this research. This shows that “thal”, “ca”, and 

“cp” is most significant feature for XGBoost to predict target feature. While the “slope”, “fbs”, 

and “treshbps” is less significant feature for XGBoost to predict target feature. 
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Table 5.5. Chi Square Feature Selection with XGBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Chi Square 

13 82.86 78.65 79.1 90.25 83.32 

12 81.10 78.51 78.70 89.53 82.58 

11 85.65 80.22 81.94 90.52 85.63 

10 82.41 78.13 78.90 90.01 82.96 

9 80.57 76.13 76.93 91.07 81.48 

8 78.75 75.49 75.99 89.28 80.70 

7 80.78 74.08 75.58 88.27 80.33 

6 75.36 72.93 73.12 85.05 77.69 

5 75.21 72.45 71.70 85.43 76.48 

4 73.13 72.22 70.99 86.15 75.73 

3 75.16 75.74 74.22 84.93 78.42 

2 64.34 62.46 61.95 76.25 68.60 

1 60.71 51.91 54.61 64.56 64 

The Chi Square feature selection result can be seen in Table 5.5 above. Top 11 feature 

selected from Chi Square feature selection has the best accuracy result. The top 11 “thalach”, 

“ca”, “thal”, “oldpeak”, “exang”, “chol”, “age”, “cp”, “sex”, “restecg”, and “slope” that are 

selected from Chi Square feature selection gained 83.65% on precision, 76.32% on recall, 

78.82% on f1-score, 89.37% on roc area, and 81.55% on accuracy. 

Table 5.6. Mutual Information Feature Selection with XGBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Mutual Information 

13 82.86 78.65 79.10 90.25 83.32 

12 79.96 79.18 78.45 87.74 82.22 

11 78.43 78.42 77.18 86.81 81.08 

10 80.70 76.37 77.34 88.98 81.44 

9 82.30 78.17 79.28 87.98 83.36 

8 78.30 77.42 77.06 88.36 81.11 

7 80.12 75.36 76.39 87.06 80.71 

6 78.76 76.55 76.58 86.44 80.68 

5 82.80 80.51 80.67 88.73 84.50 
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4 81.96 76.78 78.46 87.96 82.99 

3 83.08 80.40 81.36 88.10 84.86 

2 74.51 65.59 67.81 82.43 74.19 

1 74.69 73.37 72.20 76.33 77.18 

The Mutual Information feature selection result can be seen in Table 5.6 above. Top 3 

feature selected from Mutual Information feature selection has the best accuracy result. The top 3 

“thal”, “cp”, and “ca” that are selected from Mutual Information feature selection gained 83.08% 

on precision, 80.40% on recall, 81.36% on f1-score, 88.10% on roc area, and 84.86% on 

accuracy. 

Table 5.7. ANOVA Feature Selection with XGBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

ANOVA 

13 82.86 78.65 79.10 90.25 83.32 

12 81.10 78.51 78.70 89.53 82.58 

11 81.93 76.31 77.60 90.49 81.21 

10 80.09 75.15 76.14 90.66 80.67 

9 81.48 75.69 76.82 89.81 81.84 

8 79.82 75.75 76.70 88.28 81.07 

7 80.34 75.51 76.54 88.07 81.47 

6 78.76 76.55 76.58 86.44 80.68 

5 78.16 76.80 76.59 86.30 80.31 

4 73.13 72.22 70.99 86.15 75.73 

3 75.57 74.41 73.11 87.14 77.64 

2 75.04 81.52 76.60 86.54 79.91 

1 74.69 73.37 72.20 76.33 77.18 

The ANOVA feature selection result can be seen in Table 5.7 above. Top 13 feature 

selected from ANOVA feature selection has the best accuracy result. This means that using all of 

the feature is still better than using the selected feature that are gained from ANOVA feature 

selection with 82.86% on precision, 78.65% on recall, 79.10% on f1-score, 90.25% on roc area, 

and 83.32% on accuracy. 
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Table 5.8. Forward Feature Selection with XGBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Forward 

13 82.86 78.65 79.10 90.25 83.32 

12 82.53 77.80 78.92 90.58 82.95 

11 83.27 78.84 79.87 90.74 83.73 

10 81.24 81.84 80.40 91.75 84.09 

9 81.90 80.69 80.35 91.93 84.49 

8 81.34 82.45 80.69 92.39 84.47 

7 82.71 81.80 80.99 89.80 84.49 

6 81.22 81.11 80.48 89.58 84.13 

5 80.79 82.07 80.54 90.13 84.13 

4 82.23 80.11 80.81 89.35 84.49 

3 83.08 80.40 81.36 88.10 84.86 

2 75.04 81.52 76.60 86.54 79.91 

1 74.69 73.37 72.20 76.33 77.18 

The Forward feature selection result can be seen in Table 5.8 above. Top 3 feature 

selected from Forward feature selection has the best overall perfomance result. The top 3 “thal”, 

“ca”, and “cp” that are selected from Forward feature selection gained 83.08% on precision, 

80.40% on recall, 81.36% on f1-score, 88.10% on roc area, and 84.86% on accuracy. 

Table 5.9. Backward Feature Selection with XGBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Backward 

13 82.86 78.65 79.10 90.25 83.32 

12 81.38 81.65 80.34 91.32 84.09 

11 83.66 78.65 80.24 90.82 84.12 

10 82.45 78.42 79.48 87.99 83.36 

9 80.27 73.91 76.24 87.81 80.75 

8 77.87 74.40 75.80 86.67 80.78 

7 79.01 70.11 73.54 86.78 80.36 

6 75.73 74.20 74.40 86.11 79.59 

5 75.05 72.40 73.26 84.32 78.46 

4 77.95 73.20 75.06 84.41 80 
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3 77.05 72.44 74.09 84.86 79.26 

2 70.42 68.39 68.77 79.35 74.77 

1 71.46 67.82 68.61 74.99 74.30 

The Backward feature selection result can be seen in Table 5.9 above. Top 11 feature 

selected from Backward feature selection has the best accuracy result. The top 11 “ca”, 

“oldpeak”, “cp”, “fbs”, “exang”, “age”, “chol”, “trestbps”, “restecg”, “sex”, and “thal” that are 

selected from Backward feature selection gained 83.66% on precision, 78.65% on recall, 80.24% 

on f1-score, 90.82% on roc area, and 84.12% on accuracy. 

Table 5.10. Recursive Feature Elimination with XGBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Recursive Feature 

Elimination 

13 82.86 78.65 79.10 90.25 83.32 

12 81.28 78.13 78.38 89.08 82.19 

11 79.97 74.55 75.79 88.88 80.73 

10 80.55 78.55 78.09 91.07 82.21 

9 80.57 76.13 76.93 91.07 81.48 

8 78.36 74.58 74.84 89.12 79.93 

7 80.69 73.96 75.54 81.24 81.08 

6 79.78 75.11 76.61 89.12 81.50 

5 79.06 75.06 76.18 88.23 81.11 

4 81.96 76.78 78.46 87.96 82.99 

3 83.08 80.40 81.36 88.10 84.86 

2 75.04 81.52 76.60 86.54 79.91 

1 74.69 73.37 72.20 76.33 77.18 

The Recursive Feature Elimination result can be seen in Table 5.10 above. Top 3 feature 

selected from Recursive Feature Elimination has the best accuracy result. The top 3 “thal”, “ca”, 

and “cp” that are selected from Recursive Feature Elimination gained 83.08% on precision, 

80.40% on recall, 81.36% on f1-score, 88.10% on roc area, and 84.86% on accuracy. 
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Table 5.11. Feature Importance Feature Selection with XGBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Feature Importance 

13 82.86 78.65 79.10 90.25 83.32 

12 81.28 78.13 78.38 89.08 82.19 

11 82 77.84 78.71 89.65 82.98 

10 82.41 78.13 89.90 90.01 82.96 

9 80.57 76.13 76.93 91.07 81.48 

8 78.36 74.58 74.84 89.12 79.93 

7 80.34 75.51 76.54 88.07 81.47 

6 79.78 75.11 76.61 89.12 81.50 

5 81.11 79.45 79.66 89.64 83.70 

4 81.86 81.51 81.02 88.77 84.47 

3 78.03 72.36 74.22 88.23 79.54 

2 75.04 81.52 76.60 86.54 79.91 

1 74.69 73.37 72.20 76.33 77.18 

The Feature Importance feature selection result can be seen in Table 5.11 above. Top 4 

feature selected from Feature Importance feature selection has the best accuracy result. The top 4 

“thal”, “ca”, “exang”, and “cp” that are selected from Feature Importance feature selection 

gained 81.86% on precision, 81.51% on recall, 81.02% on f1-score, 88.77% on roc area, and 

84.47% on accuracy. 
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Table 5.12. Feature Selection Evaluation Comparison with XGBoost 

Feature Selection 
Best Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Chi Square 11 85.65 80.22 81.94 90.52 85.63 

Mutual Information 3 83.08 80.40 81.36 88.10 84.86 

ANOVA 13 82.86 78.65 79.10 90.25 83.32 

Forward Feature 

Selection 
3 83.08 80.40 81.36 88.10 84.86 

Backward Feature 

Selection 
11 83.66 78.65 80.24 90.82 84.12 

Recursive Feature 

Elimination 
3 83.08 80.40 81.36 88.10 84.86 

Feature Importance 4 81.86 81.51 81.02 88.77 84.47 

The comparison of each feature selection can be seen in Table 5.12 above. Chi Square 

Feature Selection with 11 selected feature achieve the highest accuracy among the other feature 

selection. With “thalach”, “ca”, “thal”, “oldpeak”, “exang”, “chol”, “age”, “cp”, “sex”, “restecg”, 

and “slope” feature, the XGBoost model with Chi Square feature selection able to achieve 

85.65% on precision, 80.22% on recall, 81.94% on f1-score, 90.52% on roc area, and 85.63% on 

accuracy. 

Table 5.13. Feature Selection XGBoost Comparison 

XGBoost Model 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

With feature selection 85.65 80.22 81.94 90.52 85.63 

Without feature selection 82.86 78.65 79.10 90.25 83.32 

The Chi Square Feature Selection is used in this comparison as it is the best result than 

the other feature selection. XGBoost Algorithm with and without feature selection using 

dropping missing value technique performance can be seen in Table 5.13 above. The XGBoost 

with chi square feature selection gained 85.65% on precision, 80.22% on recall, 81.94% on f1-

score, 90.52% on roc area, and 85.63% on accuracy. While the XGBoost without feature 

selection gained 82.86% on precision, 78.65% on recall, 79.10% on f1-score, 90.25% on roc 
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area, and 83.32% on accuracy. The result shows that XGBoost with feature selection has better 

performance than XGBoost without feature selection. 

Table 5.14. Feature Selection Rankings with AdaBoost 

Rank 

Feature Selection Techniques 

Chi 

Square 

Mutual 

Information 
ANOVA 

Forward 

Feature 

Selection 

Backward 

Feature 

Selection 

Recursive 

Feature 

Elimination 

1 thalach thal thal thal ca thalach 

2 ca cp ca ca slope age 

3 thal ca oldpeak cp cp oldpeak 

4 oldpeak oldpeak thalach slope sex chol 

5 exang exang cp sex chol trestbps 

6 chol thalach exang exang thalach cp 

7 age slope sex restecg chol sex 

8 cp sex slope fbs oldpeak ca 

9 sex chol age trestbps age thal 

10 restecg restecg restecg oldpeak restecg fbs 

11 slope age trestbps age exang slope 

12 trestbps fbs chol chol fbs restecg 

13 fbs trestbps fbs thalach thal exang 

Table 5.15. Feature Importance Rankings with AdaBoost 

Rank Feature Importance 

1 age 

2 thalach 

3 chol 

4 trestbps, oldpeak 

5 ca 

6 Sex, cp, fbs 

7 Restecg, slope, thal 

8 exang 
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Figure 5.4 AdaBoost Feature Importance 

Each feature rankings from each feature selection can be seen in Table 5.14 above. 

“thal”, “ca”, “cp”, and “thalach” has the most appreance on top 3 rankings from feature selection 

that are used in this research. While the “slope”, “fbs”, and “treshbps” has the most appreance on 

bottom 3 rankings from feature selection that are used in this research. This shows that “thal”, 

“ca”, “cp”, and “thalach”  is most significant feature for AdaBoost to predict target feature. 

While the “slope”, “fbs”, and “treshbps” is less significant feature for AdaBoost to predict target 

feature. The feature importance for AdaBoost that can be seen in Table 5.15 above, have several 

feature that have the same importance. As shown in Figure 5.4 above, “thal”, “slope”, and 

“restecg” have the same importance, “fbs”, “cp”, and “sex” have the same importance, “oldpeak” 

and “trestbps” have the same importance. 

Table 5.16. Chi Square Feature Selection with AdaBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Chi Square 

13 77.74 76.22 76.22 86.58 79.59 

12 75.93 74.94 74.25 82.80 78.48 

11 75.05 74.22 73.39 83.64 78.02 

10 76.31 73.60 73.54 83.74 78.39 

9 74.45 71.26 71.69 84.41 78.06 

8 75.64 74.13 73.88 80.79 78.80 

F
ea

tu
re

 

Importance 
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7 71.34 71.84 70.03 79.96 74.60 

6 75.05 76.28 74.88 80.71 78.75 

5 71.72 77.89 73.39 83.61 76.87 

4 71.59 77.27 73.04 84.29 76.48 

3 71.76 76.75 72.80 82.66 76.48 

2 64.02 64.70 62.47 77.25 68.16 

1 66.49 56.76 60.47 67.07 70.07 

The Chi Square feature selection result can be seen in Table 5.16 above. Top 13 feature 

selected from Chi Square feature selection has the best accuracy result. This means that using all 

of the feature is still better than using the selected feature that are gained from Chi Square feature 

selection with 77.74% on precision, 76.22% on recall, 76.22% on f1-score, 86.58% on roc area, 

and 79.59% on accuracy. 

Table 5.17. Mutual Information Feature Selection with AdaBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Mutual Information 

13 77.74 76.22 76.22 86.58 79.59 

12 76.61 77.32 76.23 85.07 79.22 

11 75.05 74.22 73.39 83.64 78.02 

10 74.82 78.32 76.07 85.41 79.22 

9 76.32 74.84 74.91 83.04 79.19 

8 78.12 76.89 76.50 86.46 79.94 

7 76.73 77.55 76.09 85.32 79.56 

6 79.22 77.07 77.43 86.42 81.50 

5 76.89 78.75 76.72 84.32 80.28 

4 75.66 75.13 74.50 82.90 78.42 

3 80.20 81.02 80.08 87.23 83.73 

2 74.95 67.41 69.05 82.92 75.31 

1 74.69 73.37 72.20 76.33 77.18 

The Mutual Information feature selection result can be seen in Table 5.17 above. Top 3 

feature selected from Mutual Information feature selection has the best accuracy result. The top 3 

“thal”, “cp”, and “ca” that are selected from Mutual Information feature selection gained 80.20% 
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on precision, 81.02% on recall, 80.08% on f1-score, 87.23% on roc area, and 83.73% on 

accuracy. 

Table 5.18. ANOVA Feature Selection with AdaBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

ANOVA 

13 77.74 76.22 76.22 86.58 79.59 

12 75.93 74.94 74.25 82.80 78.48 

11 76.81 75.17 75.14 85.24 78.82 

10 74.44 75.98 73.89 84.63 77.66 

9 74.19 72.84 72.13 84.53 76.94 

8 78.12 76.89 76.50 86.46 79.94 

7 76.66 75.17 75.12 86.24 78.82 

6 74.22 76.60 74.45 84.75 78.45 

5 74.28 76.60 74.59 75.15 78.45 

4 71.59 77.27 73.04 84.29 76.48 

3 74.14 75.17 73.31 84.07 77.24 

2 71.85 80.09 74.38 85.29 77.61 

1 74.69 73.37 72.20 76.33 77.18 

The ANOVA feature selection result can be seen in Table 5.18 above. Top 8 feature 

selected from ANOVA feature selection has the best accuracy result. The top 8 “thal”, “ca”, 

“oldpeak”, “thalach”, “cp”, “exang”, “sex”, and “slope” that are selected from ANOVA feature 

selection gained 78.12% on precision, 76.89% on recall, 76.50% on f1-score, 86.46% on roc 

area, and 79.94% on accuracy. 

Table 5.19. Forward Feature Selection with AdaBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Forward 

13 77.74 76.22 76.22 86.58 79.59 

12 80.29 74.26 76.22 85.88 80.73 

11 80.65 77.17 77.73 84.62 81.07 

10 77.85 81.36 78.88 85.76 81.88 

9 81.13 81.71 80.76 87.15 82.64 
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8 79.61 82.42 80.24 89.23 83.35 

7 82.66 82.42 81.77 89.93 84.87 

6 80.25 83.61 81.23 89.58 84.53 

5 79.88 83.49 81.01 89.18 84.13 

4 80.84 82.78 81.22 88.76 84.49 

3 80.20 81.02 80.08 87.23 83.73 

2 71.85 80.09 74.38 85.29 77.61 

1 74.69 73.37 72.20 76.33 77.18 

The Forward feature selection result can be seen in Table 5.19 above. Top 7 feature 

selected from Forward feature selection has the best overall perfomance result. The top 7 “thal”, 

“ca”, “cp”, “slope”, “sex”, “exang”, and “restecg” that are selected from Forward feature 

selection gained 82.66% on precision, 82.42% on recall, 81.77% on f1-score, 89.93% on roc 

area, and 84.87% on accuracy. 

Table 5.20. Backward Feature Selection with AdaBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Backward 

13 77.74 76.22 76.22 86.58 79.59 

12 77.43 75.78 76.30 85.39 81.14 

11 77.50 75.82 76.32 84.33 81.11 

10 75.82 76.30 75.67 83.28 80.38 

9 75.30 74.20 74.31 84.34 79.67 

8 75.22 75.53 74.81 83.23 78.87 

7 75.30 78.02 75.96 84.05 79.22 

6 78.91 73.65 74.97 82.71 78.85 

5 79.67 71.87 74.46 84.03 78.87 

4 86.14 73.92 79.07 87.38 82.25 

3 78.37 79.93 78.54 84.86 80.71 

2 79.68 57.87 66.63 79.34 75.83 

1 71.46 67.82 68.61 74.99 74.30 

The Backward feature selection result can be seen in Table 5.20 above. Top 4 feature 

selected from Backward feature selection has the best accuracy result. The top 4 “ca”, “slope”, 
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“cp”, and “sex” that are selected from Backward feature selection gained 86.14% on precision, 

73.92% on recall, 79.07% on f1-score, 87.38% on roc area, and 82.25% on accuracy. 

Table 5.21. Recursive Feature Elimination with AdaBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Recursive Feature 

Elimination 

13 77.74 76.22 76.22 86.58 79.59 

12 78.80 77.49 77.58 86.02 80.71 

11 76.04 71.98 73.11 82.65 78.09 

10 79.37 71.20 74.40 83.22 79.57 

9 75.83 72.51 73.24 80.37 77.69 

8 71.49 70.44 70.41 82.74 76.98 

7 71.79 73.70 71.82 81.87 76.60 

6 61.50 61.50 60.69 73.26 67.45 

5 61.43 55.24 57.04 67.40 66.25 

4 63.80 58.04 58.98 70.22 67.42 

3 62.22 54.20 56.36 73.38 65.56 

2 61.03 56.61 57.38 70.36 64.80 

1 66.49 56.76 60.47 67.07 70.07 

The Recursive Feature Elimination result can be seen in Table 5.21 above. Top 12 feature 

selected from Recursive Feature Elimination has the best accuracy result. The top 12 “thalach”, 

“age”, “oldpeak”, “chol”, “trestbps”, “cp”, “sex”, “ca”, “thal”, “fbs”, “slope”, and “restecg” that 

are selected from Recursive Feature Elimination gained 78.80% on precision, 77.49% on recall, 

77.58% on f1-score, 86.02% on roc area, and 80.71% on accuracy. 

Table 5.22. Feature Importance Feature Selection with AdaBoost 

Feature Selection 
Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Feature Importance 

13 77.74 76.22 76.22 86.58 79.59 

12 78.80 77.49 77.58 86.02 80.71 

9 72.97 69.11 70.62 82.23 77.36 

6 72.13 67.53 68.56 76.27 74.70 

5 61.43 55.24 57.04 67.40 66.25 
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3 62.76 55.06 56.63 67.61 64.76 

2 61.03 56.61 57.38 70.36 64.81 

1 52.65 50.72 49.18 59.23 56.05 

The Feature Importance feature selection result can be seen in Table 5.22 above. There 

are only 1, 2, 3, 5, 6, 9, 12, and 13 feature selected done in feature importance as there are 

several same importance in the feature shown in Figure 5.4 above. Top 12 feature selected from 

Feature Importance feature selection has the best accuracy result. The top 12 “age”, “thalach”, 

“chol”, “trestbps”, “oldpeak”, “ca”, “sex”, “cp”, “fbs”, “restecg”, and “slope” that are selected 

from Feature Importance feature selection gained 78.80% on precision, 77.49% on recall, 

77.58% on f1-score, 86.02% on roc area, and 80.71% on accuracy. 

Table 5.23. Feature Selection Evaluation Comparison with AdaBoost 

Feature Selection 
Best Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

Chi Square 13 77.74 76.22 76.22 86.58 79.59 

Mutual Information 3 80.20 81.02 80.08 87.23 83.73 

ANOVA 8 78.12 76.89 76.50 86.46 79.94 

Forward Feature 

Selection 
7 82.66 82.42 81.77 89.93 84.87 

Backward Feature 

Selection 
4 86.14 73.92 79.07 87.38 82.25 

Recursive Feature 

Elimination 
13 77.74 76.22 76.22 86.58 79.59 

Feature Importance 12 78.80 77.49 77.58 86.02 80.71 

The comparison of each feature selection can be seen in Table 5.23 above. Forward 

Feature Selection with 7 selected feature achieve the highest accuracy among the other feature 

selection. With 7 “thal”, “ca”, “cp”, “slope”, “sex”, “exang”, and “restecg” feature, the AdaBoost 

model with Forward feature selection able to achieve 82.66% on precision, 82.42% on recall, 

81.77% on f1-score, 89.93% on roc area, and 84.87% on accuracy. 

 

 



48 

 

Table 5.24. Model with Feature Selection Comparison 

Model 
Best Feature 

Selected 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

XGBoost with Chi 

Square feature 

selection 

11 85.65 80.22 81.94 90.52 85.63 

AdaBoost with 

Forward Feature 

Selection 

7 82.66 82.42 81.77 89.93 84.87 

The comparison of XGBoost and AdaBoost using the best feature selection for each 

model can be seen in Table 5.24 above. The result shows that XGBoost with Chi Square feature 

selection have better perfomance than AdaBoost with Forward Feature Selection. XGBoost with 

Chi Square Feature Selection with 11 selected feature (“thalach”, “ca”, “thal”, “oldpeak”, 

“exang”, “chol”, “age”, “cp”, “sex”, “restecg”, and “slope”) gained 85.65% on precision, 80.22% 

on recall, 81.94% on f1-score, 90.52% on roc area, and 85.63% on accuracy. While AdaBoost 

with Forward Feature Selection with 7 selected feature (“thal”, “ca”, “cp”, “slope”, “sex”, 

“exang”, and “restecg”) gained 82.66% on precision, 82.42% on recall, 81.77% on f1-score, 

89.93% on roc area, and 84.87% on accuracy. 

Table 5.25. Model without Feature Selection Comparison 

Model 

Evaluation 

Precision Recall F1-score 
ROC 

Area 
Accuracy 

XGBoost without feature selection 82.86 78.65 79.10 90.25 83.32 

AdaBoost without feature selection 77.74 76.22 76.22 86.58 79.59 

The comparison XGBoost without feature selection and AdaBoost without feature 

selection is shown in Table 5.25 above. The result shows that XGBoost without feature selection 

has better performance than AdaBoost without feature selection. XGBoost gained 82.86% on 

precision, 78.65% on recall, 79.10% on f1-score, 90.25% on roc area, and 83.32% accuracy. 

AdaBoost gained 77.74% on precision, 76.22% on recall, 76.22% on f1-score, 86.58% on roc 

area, and 79.59% on accuracy. 

  


