
26

 CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1. Implementation

The implementations of this research will be explained in this sub-chapter. The original

dataset has a target value of 0, 1, 2, 3, and 4. The value with 1, 2, 3, and 4 that represent as the

presence of heart disease will be replaced with 1. So, the target value will only have 0 as False

and 1 as True. The process of replacing the target value can be seen below

1. df['target'] = df['target'].replace({
2. 2 : 1,
3. 3 : 1,
4. 4 : 1,
5. })

In line 1 code above, the data column “target” call replace function to replace the chosen

value with the target value. The value 2-4 will be replaced with value 1 in the line 2-4 code

above. The result of the dataset “target” column using this code can be seen in Figure 5.1 below.

Figure 5.1 Heart Disease target column

Next, each of the handling missing values will be analyzed to see which handling missing

values have better gained performance on the model. The first one is dropping missing data rows

can be done using the code below.

1. check = df.isin(['?'])
2. selectedRow = df[check.any(axis=1)]
3. df_dropping = df.drop(selectedRow.index)

In line 1, the code will check if there is “?” data in the dataset rows. In line 2, getting the

selected row that has “?” in the dataset and the selected row can be seen Figure 5.2 in below.

After that, the code in line 3 will drop 6 of the selected row using the index and leave the dataset

only to 297 rows.

27

Figure 5.2 Missing data value rows

From the previous checking, we know that only the “ca” and “thal” columns have the

missing value with “?” data. So, replacing the median and the mode will only replace the “ca”

and “thal” column values. The replacing with median can be seen in the code below.

1. df_median = df.replace({
2. '?' : np.nan
3. })
4.
5. df_median['ca'] = df_median['ca'].fillna(df_median['ca'].median())
6. df_median['thal'] = df_median['thal'].fillna(df_median['thal'].median())

In line 1-3 code above, replace the “?” data with NaN (Not A Number) value and put it

into the df_median variable. Line 5 and 6 code above will replace the NaN value with the median

of each column “ca” and “thal” value using the fillna function. The replacing with mode can be

seen in the code below.

1. df_mode = df.replace({
2. '?' : np.nan
3. })
4.
5. df_mode['ca'] = df_mode['ca'].fillna(df_mode['ca'].mode()[0])
6. df_mode['thal'] = df_mode['thal'].fillna(df_mode['thal'].mode()[0])

Code line 1-3 will replace the “?” data value with the NaN value and put it into the

df_mode variable. In line 5 and 6 will replace the NaN value with the mode of each column “ca”

and “thal” value using the fillna function. Making the boxplot can be seen in the code below.

28

1. def make_boxplot(data, text):
2. plt.boxplot(data,

3. vert=True,

4. labels=[text])

5.

6. plt.title(text)

7. plt.ylabel("Value")

8. plt.grid(axis = 'y')

9. plt.show()

Line 1 of the code defined make_boxplot function with data and text as parameter above.

Line 2-4 make boxplot visualisation using the data as parameter, vertical position for the boxplot,

and labels using text value. Line 6 set the title of the boxplot. Line 7 set the y axis label of the

boxplot with “Value”. Line 8 set y axis grid of the boxplot and line 9 show the boxplot. The

function of removing outliers can be seen in code below.

1. def remove_outliers(feature):

2. Q1 = np.percentile(X_outliers[feature], 25,

3. interpolation = 'midpoint')

4.

5. Q3 = np.percentile(X_outliers[feature], 75,

6. interpolation = 'midpoint')

7. IQR = Q3 - Q1

8.

9. upper_value = (Q3+1.5*IQR)

10. lower_value = (Q1-1.5*IQR)
11. upper = np.where(X_outliers[feature] >= upper_value)
12. lower = np.where(X_outliers[feature] <= lower_value)
13.
14. X_outliers.drop(upper[0], inplace=True)
15. X_outliers.drop(lower[0], inplace=True)
16. X_outliers.reset_index(drop=True, inplace=True)
17.
18. Y_outliers.drop(upper[0], inplace=True)
19. Y_outliers.drop(lower[0], inplace=True)
20. Y_outliers.reset_index(drop=True, inplace=True)
21.
22. print("Upper : ", upper_value)
23. print("Lower : ", lower_value)

Line 1 of the code above defined remove_outliers function with feature as parameter.

Line 2-3 declare Q1 variable using np.percentile function with data as parameter, 25 as the

percentile value, and midpoint interpolation to handle if there is 2 same value at the 25

percentile value. Line 5-6 is same as line 2-3 but only it declaring Q3 using 75 as the percentile

Line 9-10 declare boundaries value of the data (upper and lower) using the percentile from Q1

and Q3 variable. Line 11-12 get the index of data where the value has less than lower value or

has more than upper value. Line 14-20 drop the outliers data and reset the data index with drop

29

true which means deleting the current index and replace it with numeric index. Feature selection

using chi square can be seen in code below.

1. selection = SelectKBest(score_func=chi2, k=i)

Line 1 code above declared selection variable and assign SelectKBest() function to get

the best feature using chi2 as the score_func and i indicate how many selected features (1-13).

Feature selection using mutual information can be seen in code below.

1. selection = SelectKBest(score_func=mutual_info_classif, k=i)

Line 1 code above declared selection variable and assign SelectKBest() function to get

the best feature using mutual_info_classif as the score_func and i indicate how many selected

features (1-13). Feature selection using anova can be seen in code below.

1. selection = SelectKBest(score_func=f_classif, k=i)

Line 1 code above declared selection variable and assign SelectKBest() function to get

the best feature using f_classif as the score_func and i indicate how many selected features (1-

13). Feature selection using forward feature selection using code below.

1. cv = KFold(n_splits=10, shuffle=True, random_state=seed)
2. selection = SequentialFeatureSelector(model, n_features_to_select=i,

cv=cv)

Line 1 calls the 10-fold cross validation function and put it into the cv variable. Line 2

code above declared selection variable and assign SequentialFeatureSelection() function to get

the best feature using XGBoost model as parameter, n_features_to_select indicate how many

selected features (1-12), and 10-fold cross validation. Feature selection using backward feature

selection using code below.

1. cv = KFold(n_splits=10, shuffle=True, random_state=seed)
2. selection = SequentialFeatureSelector(model, n_features_to_select=i,

direction="backward", cv=cv)

Line 1 calls the 10-fold cross validation function and put it into the cv variable. Line 2

code above declared selection variable and assign SequentialFeatureSelection() function to get

the best feature using XGBoost model as parameter, n_features_to_select indicate how many

selected features (1-12), direction backward, and 10-fold cross validation . Feature selection

using recursive feature elimination using code below.

1. selection = RFE(model, n_features_to_select=i)

30

Line 1 code above declared selection variable and assign RFE() function to get the best

feature using XGBoost model as parameter, n_features_to_select indicate how many selected

features (1-13). The code to get the feature importance can be seen in code below.

1. thresholds = np.sort(model.feature_importances_)

Line 1 code above declared thresholds variable and assign the feature importance from

the trained model and will be sorted lowest to highest. The thresholds variable will be used for

the feature selection in the code below.

1. for thresh in thresholds:
2. selection = SelectFromModel(model, threshold=thresh, prefit=True)
3. feature_idx = selection.get_support()
4. select_X = selection.transform(X.values)

In line 1 code above call the for looping function and declare thresh variable as the

looping of each thresholds variable. Line 2 declared the selection variable and assign the

SelectFromModel function to select the selected feature based on the thresh variable. Line 3 code

above get the selected feature name. Line 4 transforms the X variable into only feature selected

data.After preprocessing the data, the XGBoost will be tuned using the code below.

1. def xgbc(learning_rate, n_estimators, max_depth, min_child_weight,

gamma, subsample, colsample_bytree):

2.
3. model = XGBClassifier(
4. learning_rate = learning_rate,
5. n_estimators = int(n_estimators),
6. max_depth = int(max_depth),
7. min_child_weight = min_child_weight,
8. gamma = gamma,
9. subsample = subsample,
10. colsample_bytree = colsample_bytree,
11. seed = seed,
12.)
13.
14. cv = KFold(n_splits=10, shuffle=True, random_state=seed)
15. accuracy = cross_val_score(model, X, Y, scoring='accuracy', cv=cv)
16.
17. return np.mean(accuracy)

Line 1 of the code defined xgbc function with several parameters as shown in the code

above. Line 3-12 calls the XGBClassifier function with parameters that takes input from the

xgbc parameter and put it into the model variable. Line 14 calls the 10-fold cross validation

function and put it into the cv variable. In line 15 will calculate the accuracy of the model with

10-fold cross validation as the data portioning. Line 17 will return the mean of the accuracy

31

variable as we are using 10-fold which means there will be 10 accuracy from 10 data portioning.

The hyperparameter tuning using Bayesian Optimization will be done in the code below.

1. hyperparameter = {
2. 'learning_rate': (0.1, 1), # default 0.1
3. 'n_estimators' : (100, 250), # default 100
4. 'max_depth': (1, 15), # default 3
5. 'min_child_weight' : (0, 1), # default 1
6. 'gamma' : (0, 1), # default 0
7. 'subsample' : (0.4, 1), # default 1
8. 'colsample_bytree' : (0.4, 1), # default 1
9. }
10.

11. xgbcBO = BayesianOptimization(

12. f = xgbc,

13. pbounds = hyperparameter,

14. random_state = seed

15.)

16.

17. xgbcBO.maximize()

Line 1-9 code above declared hyperparameter variable and assign several parameters that

will be tuned with the search space. Line 11-15 declares the xgbcBO variable and calls the

BayesianOptimization function with the xgbc function that was explained before into the

parameter with the hyperparameter variable as the parameter boundaries. Line 17 will run the

xgbcBO to tune the hyperparameter.

5.2. Results

The result of this research will be shown in this sub-chapter. The result of handling

missing values analysis can be seen in Table 5.1 below.

Table 5.1. Handling Missing Values Evaluation

Handling Missing

Values

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Dropping missing value 83.36 76.32 78.82 89.37 81.55

Replacing with median 80.89 76.38 78.40 88.14 80.51

Replacing with mode 80.89 76.38 78.40 88.14 80.51

The result of dropping missing value gained 83.36% on precision, 76.32% on recall,

78.82% on recall, 89.37% on roc area, and 81.55% on accuracy. While replacing with median

and replacing with mode gained the same 80.89% on precision, 76.38% on recall, 78.40% on f1-

32

score, 88.14% on roc area, and 80.51% on accuracy. This happens because the median and the

mode of the “ca” and “thal” columns have the same value as shown in Error! Reference source

not found. below.

Table 5.2. Median and Mode of “ca” and “thal”

Data Column
Math

Median Mode

ca 0 0

thal 3 3

Seeing the result from Table 5.1, dropping missing value have better overall performance

than replacing with median and replacing with mode. Replacing with median and replacing with

mode have lower precision which indicates that the model has a larger false positive value than

the dropping missing value. But, replacing with median and replacing with mode has a slightly

lower false negative value that makes it has better recall result. Dropping missing value have a

better F1-score than both replacing with median and replacing with mode since the precision has

higher results than the other two. Dropping missing value also has better roc area and accuracy

that indicates this handling missing value is better than replacing with median and replacing with

mode. So, the dropping missing value will be used in the preprocessing in training the model.

33

Figure 5.3 (a) “trestbps” outliers, (b) “chol” outliers, (c) “thalach” outliers, and (d) “oldpeak”

outliers

The outliers of data “trestbps”, “chol”, “thalach”, and “oldpeak” can be seen in Figure 5.3

above. The “trestbps” have upper bounds at 170 and lower bounds at 90. “chol” have upper

bounds at 376 and lower bounds at 112. “thalach” have upper bounds at 216.25 and lower

bounds at 82.25. And “oldpeak” have upper bounds at 4. Data range inside the upper and lower

bounds of this numerical feature of the heart disease dataset are considered not outliers.

Table 5.3. Outliers Evaluation

XGBoost Model

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

With outliers 83.36 76.32 78.82 89.37 81.55

Without outliers 79.47 73.55 75.16 87.05 79.94

(

a)

(b) (a)

(c) (d)

34

Using the dropping missing value on the preprocessing, the outliers evaluation can be

seen in Table 5.3 above. The result shows that removing outliers has lower perfomance than data

with outliers. But, with the outliers has been removed, the data distribution for “trestbps”, “chol”,

“thalach”, and “oldpeak” is normal and better for the model.

Table 5.4. Feature Selection Rankings with XGBoost

Rank

Feature Selection Techniques

Chi

Square

Mutual

Information
ANOVA

Forward

Feature

Selection

Backward

Feature

Selection

Recursive

Feature

Elimination

Feature

Importance

1 thalach thal thal thal ca thal thal

2 ca cp ca ca oldpeak ca ca

3 thal ca oldpeak cp cp cp exang

4 oldpeak slope thalach sex fbs oldpeak cp

5 exang oldpeak cp slope exang exang sex

6 chol exang exang fbs age sex oldpeak

7 age thalach sex exang chol age thalach

8 cp sex slope age trestbps thalach age

9 sex chol age chol restecg chol chol

10 restecg restecg restecg fbs sex fbs restecg

11 slope fbs trestbps thalach thal trestbps fbs

12 trestbps trestbps chol oldpeak slope restecg trestbps

13 fbs age fbs trestbps thalach slope slope

Each feature rankings from each feature selection can be seen in Table 5.4 above. “thal”,

“ca”, and “cp” has the most appreance on top 3 rankings from feature selection that are used in

this research. While the “slope”, “fbs”, and “treshbps” has the most appreance on bottom 3

rankings from feature selection that are used in this research. This shows that “thal”, “ca”, and

“cp” is most significant feature for XGBoost to predict target feature. While the “slope”, “fbs”,

and “treshbps” is less significant feature for XGBoost to predict target feature.

35

Table 5.5. Chi Square Feature Selection with XGBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Chi Square

13 82.86 78.65 79.1 90.25 83.32

12 81.10 78.51 78.70 89.53 82.58

11 85.65 80.22 81.94 90.52 85.63

10 82.41 78.13 78.90 90.01 82.96

9 80.57 76.13 76.93 91.07 81.48

8 78.75 75.49 75.99 89.28 80.70

7 80.78 74.08 75.58 88.27 80.33

6 75.36 72.93 73.12 85.05 77.69

5 75.21 72.45 71.70 85.43 76.48

4 73.13 72.22 70.99 86.15 75.73

3 75.16 75.74 74.22 84.93 78.42

2 64.34 62.46 61.95 76.25 68.60

1 60.71 51.91 54.61 64.56 64

The Chi Square feature selection result can be seen in Table 5.5 above. Top 11 feature

selected from Chi Square feature selection has the best accuracy result. The top 11 “thalach”,

“ca”, “thal”, “oldpeak”, “exang”, “chol”, “age”, “cp”, “sex”, “restecg”, and “slope” that are

selected from Chi Square feature selection gained 83.65% on precision, 76.32% on recall,

78.82% on f1-score, 89.37% on roc area, and 81.55% on accuracy.

Table 5.6. Mutual Information Feature Selection with XGBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Mutual Information

13 82.86 78.65 79.10 90.25 83.32

12 79.96 79.18 78.45 87.74 82.22

11 78.43 78.42 77.18 86.81 81.08

10 80.70 76.37 77.34 88.98 81.44

9 82.30 78.17 79.28 87.98 83.36

8 78.30 77.42 77.06 88.36 81.11

7 80.12 75.36 76.39 87.06 80.71

6 78.76 76.55 76.58 86.44 80.68

5 82.80 80.51 80.67 88.73 84.50

36

4 81.96 76.78 78.46 87.96 82.99

3 83.08 80.40 81.36 88.10 84.86

2 74.51 65.59 67.81 82.43 74.19

1 74.69 73.37 72.20 76.33 77.18

The Mutual Information feature selection result can be seen in Table 5.6 above. Top 3

feature selected from Mutual Information feature selection has the best accuracy result. The top 3

“thal”, “cp”, and “ca” that are selected from Mutual Information feature selection gained 83.08%

on precision, 80.40% on recall, 81.36% on f1-score, 88.10% on roc area, and 84.86% on

accuracy.

Table 5.7. ANOVA Feature Selection with XGBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

ANOVA

13 82.86 78.65 79.10 90.25 83.32

12 81.10 78.51 78.70 89.53 82.58

11 81.93 76.31 77.60 90.49 81.21

10 80.09 75.15 76.14 90.66 80.67

9 81.48 75.69 76.82 89.81 81.84

8 79.82 75.75 76.70 88.28 81.07

7 80.34 75.51 76.54 88.07 81.47

6 78.76 76.55 76.58 86.44 80.68

5 78.16 76.80 76.59 86.30 80.31

4 73.13 72.22 70.99 86.15 75.73

3 75.57 74.41 73.11 87.14 77.64

2 75.04 81.52 76.60 86.54 79.91

1 74.69 73.37 72.20 76.33 77.18

The ANOVA feature selection result can be seen in Table 5.7 above. Top 13 feature

selected from ANOVA feature selection has the best accuracy result. This means that using all of

the feature is still better than using the selected feature that are gained from ANOVA feature

selection with 82.86% on precision, 78.65% on recall, 79.10% on f1-score, 90.25% on roc area,

and 83.32% on accuracy.

37

Table 5.8. Forward Feature Selection with XGBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Forward

13 82.86 78.65 79.10 90.25 83.32

12 82.53 77.80 78.92 90.58 82.95

11 83.27 78.84 79.87 90.74 83.73

10 81.24 81.84 80.40 91.75 84.09

9 81.90 80.69 80.35 91.93 84.49

8 81.34 82.45 80.69 92.39 84.47

7 82.71 81.80 80.99 89.80 84.49

6 81.22 81.11 80.48 89.58 84.13

5 80.79 82.07 80.54 90.13 84.13

4 82.23 80.11 80.81 89.35 84.49

3 83.08 80.40 81.36 88.10 84.86

2 75.04 81.52 76.60 86.54 79.91

1 74.69 73.37 72.20 76.33 77.18

The Forward feature selection result can be seen in Table 5.8 above. Top 3 feature

selected from Forward feature selection has the best overall perfomance result. The top 3 “thal”,

“ca”, and “cp” that are selected from Forward feature selection gained 83.08% on precision,

80.40% on recall, 81.36% on f1-score, 88.10% on roc area, and 84.86% on accuracy.

Table 5.9. Backward Feature Selection with XGBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Backward

13 82.86 78.65 79.10 90.25 83.32

12 81.38 81.65 80.34 91.32 84.09

11 83.66 78.65 80.24 90.82 84.12

10 82.45 78.42 79.48 87.99 83.36

9 80.27 73.91 76.24 87.81 80.75

8 77.87 74.40 75.80 86.67 80.78

7 79.01 70.11 73.54 86.78 80.36

6 75.73 74.20 74.40 86.11 79.59

5 75.05 72.40 73.26 84.32 78.46

4 77.95 73.20 75.06 84.41 80

38

3 77.05 72.44 74.09 84.86 79.26

2 70.42 68.39 68.77 79.35 74.77

1 71.46 67.82 68.61 74.99 74.30

The Backward feature selection result can be seen in Table 5.9 above. Top 11 feature

selected from Backward feature selection has the best accuracy result. The top 11 “ca”,

“oldpeak”, “cp”, “fbs”, “exang”, “age”, “chol”, “trestbps”, “restecg”, “sex”, and “thal” that are

selected from Backward feature selection gained 83.66% on precision, 78.65% on recall, 80.24%

on f1-score, 90.82% on roc area, and 84.12% on accuracy.

Table 5.10. Recursive Feature Elimination with XGBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Recursive Feature

Elimination

13 82.86 78.65 79.10 90.25 83.32

12 81.28 78.13 78.38 89.08 82.19

11 79.97 74.55 75.79 88.88 80.73

10 80.55 78.55 78.09 91.07 82.21

9 80.57 76.13 76.93 91.07 81.48

8 78.36 74.58 74.84 89.12 79.93

7 80.69 73.96 75.54 81.24 81.08

6 79.78 75.11 76.61 89.12 81.50

5 79.06 75.06 76.18 88.23 81.11

4 81.96 76.78 78.46 87.96 82.99

3 83.08 80.40 81.36 88.10 84.86

2 75.04 81.52 76.60 86.54 79.91

1 74.69 73.37 72.20 76.33 77.18

The Recursive Feature Elimination result can be seen in Table 5.10 above. Top 3 feature

selected from Recursive Feature Elimination has the best accuracy result. The top 3 “thal”, “ca”,

and “cp” that are selected from Recursive Feature Elimination gained 83.08% on precision,

80.40% on recall, 81.36% on f1-score, 88.10% on roc area, and 84.86% on accuracy.

39

Table 5.11. Feature Importance Feature Selection with XGBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Feature Importance

13 82.86 78.65 79.10 90.25 83.32

12 81.28 78.13 78.38 89.08 82.19

11 82 77.84 78.71 89.65 82.98

10 82.41 78.13 89.90 90.01 82.96

9 80.57 76.13 76.93 91.07 81.48

8 78.36 74.58 74.84 89.12 79.93

7 80.34 75.51 76.54 88.07 81.47

6 79.78 75.11 76.61 89.12 81.50

5 81.11 79.45 79.66 89.64 83.70

4 81.86 81.51 81.02 88.77 84.47

3 78.03 72.36 74.22 88.23 79.54

2 75.04 81.52 76.60 86.54 79.91

1 74.69 73.37 72.20 76.33 77.18

The Feature Importance feature selection result can be seen in Table 5.11 above. Top 4

feature selected from Feature Importance feature selection has the best accuracy result. The top 4

“thal”, “ca”, “exang”, and “cp” that are selected from Feature Importance feature selection

gained 81.86% on precision, 81.51% on recall, 81.02% on f1-score, 88.77% on roc area, and

84.47% on accuracy.

40

Table 5.12. Feature Selection Evaluation Comparison with XGBoost

Feature Selection
Best Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Chi Square 11 85.65 80.22 81.94 90.52 85.63

Mutual Information 3 83.08 80.40 81.36 88.10 84.86

ANOVA 13 82.86 78.65 79.10 90.25 83.32

Forward Feature

Selection
3 83.08 80.40 81.36 88.10 84.86

Backward Feature

Selection
11 83.66 78.65 80.24 90.82 84.12

Recursive Feature

Elimination
3 83.08 80.40 81.36 88.10 84.86

Feature Importance 4 81.86 81.51 81.02 88.77 84.47

The comparison of each feature selection can be seen in Table 5.12 above. Chi Square

Feature Selection with 11 selected feature achieve the highest accuracy among the other feature

selection. With “thalach”, “ca”, “thal”, “oldpeak”, “exang”, “chol”, “age”, “cp”, “sex”, “restecg”,

and “slope” feature, the XGBoost model with Chi Square feature selection able to achieve

85.65% on precision, 80.22% on recall, 81.94% on f1-score, 90.52% on roc area, and 85.63% on

accuracy.

Table 5.13. Feature Selection XGBoost Comparison

XGBoost Model

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

With feature selection 85.65 80.22 81.94 90.52 85.63

Without feature selection 82.86 78.65 79.10 90.25 83.32

The Chi Square Feature Selection is used in this comparison as it is the best result than

the other feature selection. XGBoost Algorithm with and without feature selection using

dropping missing value technique performance can be seen in Table 5.13 above. The XGBoost

with chi square feature selection gained 85.65% on precision, 80.22% on recall, 81.94% on f1-

score, 90.52% on roc area, and 85.63% on accuracy. While the XGBoost without feature

selection gained 82.86% on precision, 78.65% on recall, 79.10% on f1-score, 90.25% on roc

41

area, and 83.32% on accuracy. The result shows that XGBoost with feature selection has better

performance than XGBoost without feature selection.

Table 5.14. Feature Selection Rankings with AdaBoost

Rank

Feature Selection Techniques

Chi

Square

Mutual

Information
ANOVA

Forward

Feature

Selection

Backward

Feature

Selection

Recursive

Feature

Elimination

1 thalach thal thal thal ca thalach

2 ca cp ca ca slope age

3 thal ca oldpeak cp cp oldpeak

4 oldpeak oldpeak thalach slope sex chol

5 exang exang cp sex chol trestbps

6 chol thalach exang exang thalach cp

7 age slope sex restecg chol sex

8 cp sex slope fbs oldpeak ca

9 sex chol age trestbps age thal

10 restecg restecg restecg oldpeak restecg fbs

11 slope age trestbps age exang slope

12 trestbps fbs chol chol fbs restecg

13 fbs trestbps fbs thalach thal exang

Table 5.15. Feature Importance Rankings with AdaBoost

Rank Feature Importance

1 age

2 thalach

3 chol

4 trestbps, oldpeak

5 ca

6 Sex, cp, fbs

7 Restecg, slope, thal

8 exang

42

Figure 5.4 AdaBoost Feature Importance

Each feature rankings from each feature selection can be seen in Table 5.14 above.

“thal”, “ca”, “cp”, and “thalach” has the most appreance on top 3 rankings from feature selection

that are used in this research. While the “slope”, “fbs”, and “treshbps” has the most appreance on

bottom 3 rankings from feature selection that are used in this research. This shows that “thal”,

“ca”, “cp”, and “thalach” is most significant feature for AdaBoost to predict target feature.

While the “slope”, “fbs”, and “treshbps” is less significant feature for AdaBoost to predict target

feature. The feature importance for AdaBoost that can be seen in Table 5.15 above, have several

feature that have the same importance. As shown in Figure 5.4 above, “thal”, “slope”, and

“restecg” have the same importance, “fbs”, “cp”, and “sex” have the same importance, “oldpeak”

and “trestbps” have the same importance.

Table 5.16. Chi Square Feature Selection with AdaBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Chi Square

13 77.74 76.22 76.22 86.58 79.59

12 75.93 74.94 74.25 82.80 78.48

11 75.05 74.22 73.39 83.64 78.02

10 76.31 73.60 73.54 83.74 78.39

9 74.45 71.26 71.69 84.41 78.06

8 75.64 74.13 73.88 80.79 78.80

F
ea

tu
re

Importance

43

7 71.34 71.84 70.03 79.96 74.60

6 75.05 76.28 74.88 80.71 78.75

5 71.72 77.89 73.39 83.61 76.87

4 71.59 77.27 73.04 84.29 76.48

3 71.76 76.75 72.80 82.66 76.48

2 64.02 64.70 62.47 77.25 68.16

1 66.49 56.76 60.47 67.07 70.07

The Chi Square feature selection result can be seen in Table 5.16 above. Top 13 feature

selected from Chi Square feature selection has the best accuracy result. This means that using all

of the feature is still better than using the selected feature that are gained from Chi Square feature

selection with 77.74% on precision, 76.22% on recall, 76.22% on f1-score, 86.58% on roc area,

and 79.59% on accuracy.

Table 5.17. Mutual Information Feature Selection with AdaBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Mutual Information

13 77.74 76.22 76.22 86.58 79.59

12 76.61 77.32 76.23 85.07 79.22

11 75.05 74.22 73.39 83.64 78.02

10 74.82 78.32 76.07 85.41 79.22

9 76.32 74.84 74.91 83.04 79.19

8 78.12 76.89 76.50 86.46 79.94

7 76.73 77.55 76.09 85.32 79.56

6 79.22 77.07 77.43 86.42 81.50

5 76.89 78.75 76.72 84.32 80.28

4 75.66 75.13 74.50 82.90 78.42

3 80.20 81.02 80.08 87.23 83.73

2 74.95 67.41 69.05 82.92 75.31

1 74.69 73.37 72.20 76.33 77.18

The Mutual Information feature selection result can be seen in Table 5.17 above. Top 3

feature selected from Mutual Information feature selection has the best accuracy result. The top 3

“thal”, “cp”, and “ca” that are selected from Mutual Information feature selection gained 80.20%

44

on precision, 81.02% on recall, 80.08% on f1-score, 87.23% on roc area, and 83.73% on

accuracy.

Table 5.18. ANOVA Feature Selection with AdaBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

ANOVA

13 77.74 76.22 76.22 86.58 79.59

12 75.93 74.94 74.25 82.80 78.48

11 76.81 75.17 75.14 85.24 78.82

10 74.44 75.98 73.89 84.63 77.66

9 74.19 72.84 72.13 84.53 76.94

8 78.12 76.89 76.50 86.46 79.94

7 76.66 75.17 75.12 86.24 78.82

6 74.22 76.60 74.45 84.75 78.45

5 74.28 76.60 74.59 75.15 78.45

4 71.59 77.27 73.04 84.29 76.48

3 74.14 75.17 73.31 84.07 77.24

2 71.85 80.09 74.38 85.29 77.61

1 74.69 73.37 72.20 76.33 77.18

The ANOVA feature selection result can be seen in Table 5.18 above. Top 8 feature

selected from ANOVA feature selection has the best accuracy result. The top 8 “thal”, “ca”,

“oldpeak”, “thalach”, “cp”, “exang”, “sex”, and “slope” that are selected from ANOVA feature

selection gained 78.12% on precision, 76.89% on recall, 76.50% on f1-score, 86.46% on roc

area, and 79.94% on accuracy.

Table 5.19. Forward Feature Selection with AdaBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Forward

13 77.74 76.22 76.22 86.58 79.59

12 80.29 74.26 76.22 85.88 80.73

11 80.65 77.17 77.73 84.62 81.07

10 77.85 81.36 78.88 85.76 81.88

9 81.13 81.71 80.76 87.15 82.64

45

8 79.61 82.42 80.24 89.23 83.35

7 82.66 82.42 81.77 89.93 84.87

6 80.25 83.61 81.23 89.58 84.53

5 79.88 83.49 81.01 89.18 84.13

4 80.84 82.78 81.22 88.76 84.49

3 80.20 81.02 80.08 87.23 83.73

2 71.85 80.09 74.38 85.29 77.61

1 74.69 73.37 72.20 76.33 77.18

The Forward feature selection result can be seen in Table 5.19 above. Top 7 feature

selected from Forward feature selection has the best overall perfomance result. The top 7 “thal”,

“ca”, “cp”, “slope”, “sex”, “exang”, and “restecg” that are selected from Forward feature

selection gained 82.66% on precision, 82.42% on recall, 81.77% on f1-score, 89.93% on roc

area, and 84.87% on accuracy.

Table 5.20. Backward Feature Selection with AdaBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Backward

13 77.74 76.22 76.22 86.58 79.59

12 77.43 75.78 76.30 85.39 81.14

11 77.50 75.82 76.32 84.33 81.11

10 75.82 76.30 75.67 83.28 80.38

9 75.30 74.20 74.31 84.34 79.67

8 75.22 75.53 74.81 83.23 78.87

7 75.30 78.02 75.96 84.05 79.22

6 78.91 73.65 74.97 82.71 78.85

5 79.67 71.87 74.46 84.03 78.87

4 86.14 73.92 79.07 87.38 82.25

3 78.37 79.93 78.54 84.86 80.71

2 79.68 57.87 66.63 79.34 75.83

1 71.46 67.82 68.61 74.99 74.30

The Backward feature selection result can be seen in Table 5.20 above. Top 4 feature

selected from Backward feature selection has the best accuracy result. The top 4 “ca”, “slope”,

46

“cp”, and “sex” that are selected from Backward feature selection gained 86.14% on precision,

73.92% on recall, 79.07% on f1-score, 87.38% on roc area, and 82.25% on accuracy.

Table 5.21. Recursive Feature Elimination with AdaBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Recursive Feature

Elimination

13 77.74 76.22 76.22 86.58 79.59

12 78.80 77.49 77.58 86.02 80.71

11 76.04 71.98 73.11 82.65 78.09

10 79.37 71.20 74.40 83.22 79.57

9 75.83 72.51 73.24 80.37 77.69

8 71.49 70.44 70.41 82.74 76.98

7 71.79 73.70 71.82 81.87 76.60

6 61.50 61.50 60.69 73.26 67.45

5 61.43 55.24 57.04 67.40 66.25

4 63.80 58.04 58.98 70.22 67.42

3 62.22 54.20 56.36 73.38 65.56

2 61.03 56.61 57.38 70.36 64.80

1 66.49 56.76 60.47 67.07 70.07

The Recursive Feature Elimination result can be seen in Table 5.21 above. Top 12 feature

selected from Recursive Feature Elimination has the best accuracy result. The top 12 “thalach”,

“age”, “oldpeak”, “chol”, “trestbps”, “cp”, “sex”, “ca”, “thal”, “fbs”, “slope”, and “restecg” that

are selected from Recursive Feature Elimination gained 78.80% on precision, 77.49% on recall,

77.58% on f1-score, 86.02% on roc area, and 80.71% on accuracy.

Table 5.22. Feature Importance Feature Selection with AdaBoost

Feature Selection
Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Feature Importance

13 77.74 76.22 76.22 86.58 79.59

12 78.80 77.49 77.58 86.02 80.71

9 72.97 69.11 70.62 82.23 77.36

6 72.13 67.53 68.56 76.27 74.70

5 61.43 55.24 57.04 67.40 66.25

47

3 62.76 55.06 56.63 67.61 64.76

2 61.03 56.61 57.38 70.36 64.81

1 52.65 50.72 49.18 59.23 56.05

The Feature Importance feature selection result can be seen in Table 5.22 above. There

are only 1, 2, 3, 5, 6, 9, 12, and 13 feature selected done in feature importance as there are

several same importance in the feature shown in Figure 5.4 above. Top 12 feature selected from

Feature Importance feature selection has the best accuracy result. The top 12 “age”, “thalach”,

“chol”, “trestbps”, “oldpeak”, “ca”, “sex”, “cp”, “fbs”, “restecg”, and “slope” that are selected

from Feature Importance feature selection gained 78.80% on precision, 77.49% on recall,

77.58% on f1-score, 86.02% on roc area, and 80.71% on accuracy.

Table 5.23. Feature Selection Evaluation Comparison with AdaBoost

Feature Selection
Best Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

Chi Square 13 77.74 76.22 76.22 86.58 79.59

Mutual Information 3 80.20 81.02 80.08 87.23 83.73

ANOVA 8 78.12 76.89 76.50 86.46 79.94

Forward Feature

Selection
7 82.66 82.42 81.77 89.93 84.87

Backward Feature

Selection
4 86.14 73.92 79.07 87.38 82.25

Recursive Feature

Elimination
13 77.74 76.22 76.22 86.58 79.59

Feature Importance 12 78.80 77.49 77.58 86.02 80.71

The comparison of each feature selection can be seen in Table 5.23 above. Forward

Feature Selection with 7 selected feature achieve the highest accuracy among the other feature

selection. With 7 “thal”, “ca”, “cp”, “slope”, “sex”, “exang”, and “restecg” feature, the AdaBoost

model with Forward feature selection able to achieve 82.66% on precision, 82.42% on recall,

81.77% on f1-score, 89.93% on roc area, and 84.87% on accuracy.

48

Table 5.24. Model with Feature Selection Comparison

Model
Best Feature

Selected

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

XGBoost with Chi

Square feature

selection

11 85.65 80.22 81.94 90.52 85.63

AdaBoost with

Forward Feature

Selection

7 82.66 82.42 81.77 89.93 84.87

The comparison of XGBoost and AdaBoost using the best feature selection for each

model can be seen in Table 5.24 above. The result shows that XGBoost with Chi Square feature

selection have better perfomance than AdaBoost with Forward Feature Selection. XGBoost with

Chi Square Feature Selection with 11 selected feature (“thalach”, “ca”, “thal”, “oldpeak”,

“exang”, “chol”, “age”, “cp”, “sex”, “restecg”, and “slope”) gained 85.65% on precision, 80.22%

on recall, 81.94% on f1-score, 90.52% on roc area, and 85.63% on accuracy. While AdaBoost

with Forward Feature Selection with 7 selected feature (“thal”, “ca”, “cp”, “slope”, “sex”,

“exang”, and “restecg”) gained 82.66% on precision, 82.42% on recall, 81.77% on f1-score,

89.93% on roc area, and 84.87% on accuracy.

Table 5.25. Model without Feature Selection Comparison

Model

Evaluation

Precision Recall F1-score
ROC

Area
Accuracy

XGBoost without feature selection 82.86 78.65 79.10 90.25 83.32

AdaBoost without feature selection 77.74 76.22 76.22 86.58 79.59

The comparison XGBoost without feature selection and AdaBoost without feature

selection is shown in Table 5.25 above. The result shows that XGBoost without feature selection

has better performance than AdaBoost without feature selection. XGBoost gained 82.86% on

precision, 78.65% on recall, 79.10% on f1-score, 90.25% on roc area, and 83.32% accuracy.

AdaBoost gained 77.74% on precision, 76.22% on recall, 76.22% on f1-score, 86.58% on roc

area, and 79.59% on accuracy.

