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IMPLEMENTATION AND RESULTS 

5.1. Implementation 

This experiment was conducted at Google Colab with a time frame of September 19, 2022-

October 28, 2022. Before preprocessing the Gaussian Mixture Model, the library needs to be 

prepared by importing it. 

1. import numpy as np 
2. import pandas as pd 
3. from sklearn.mixture import GaussianMixture 
4. from sklearn.metrics import classification_report 
5. from sklearn.naive_bayes import GaussianNB 
6.  
7. random = 777 
8. np.random.seed(random) 
9.  
10. np.set_printoptions(suppress=True) 

 

Lines 1-5 import the library used by the author, numpy as numerical computing, and pandas 

as csv data processing to numerical and vice versa. Lines 7-10 initiate random values in order to 

get the same results every time you run the program. Line 10 is used to create a fixed numeric 

value because if it is in exponential form (for example 1e+03) it is considered a string/object so it 

cannot run properly. 

11. loc = "/content/GroundTruthLabelFull.csv" 
12. ref = "/content/ReferencesFull.csv" 
13.  
14. # Import CSV to Numpy 
15. data_raw = pd.read_csv(loc).to_numpy() 
16.  
17. from sklearn.model_selection import KFold 
18.  
19. kf = KFold(n_splits=6, random_state=random, shuffle=True) 
20.  
21. train = [] 
22. test = [] 
23. for train_index, test_index in kf.split(data_raw): 
24.     train.append(train_index) 
25.     test.append(test_index) 

Lines 11-15, the dataset in csv format is loaded into the program via pandas and converted 

to numpy for processing. Next, lines 17-25 are the process of separating into 6 parts for the cross-

validator. 
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26. data_ref = pd.read_csv(ref).to_numpy() 
27. means, Feature = np.hsplit(data_ref, 2) 

Lines 26-27 load the reference and separate the absorption band with its polymer as shown 

in Figure 4.2. The separation is done because the means will be used in the Gaussian Mixture 

Model as the initial and feature as the list of polymers to look for. 

28. def processing(p_data): 
29.     # Bag of Probabilities / X 
30.     bop = [] 
31.  
32.     # Bag of Target 
33.     bot = [] 
34.  
35.     # Identification 
36.     bodata = bagOfData(p_data) 
37.     for dt in bodata: 
38.         temp = np.zeros(len(bof)) 
39.         for x in dt[1:]: 
40.             pred = gm.predict([[x]])[0] 
41.             ind = bof.index(Feature[pred]) 
42.             prob = gm.predict_proba([[x]])[0][pred] 
43.             if temp[ind] is 0: 
44.                 temp[ind] = prob 
45.             else: 
46.                 if temp[ind] < prob: 
47.                     temp[ind] = prob 
48.          
49.         # probability one hot vector of feature, number label 
50.         bot.append(dt[0]) 
51.         bop.append(temp) 
52.      
53.     return bop, bot, bodata 

Lines 28-53 are the function to process the data into a Gaussian Mixture Model that 

produces a bag of data that is the same size as the existing feature. Lines 40-42 are the process to 

convert absorption bands into polymers with probability values. Lines 43-47 look for the highest 

value of a polymer probability, as explained in 4.3.2. Lines 50-53 enter the variable as a separator 

for each data and return it.  

54. def microplasticsProba(p_bop): 
55.     result = [] 
56.     for i in range(len(p_bop)): 
57.         temp = [] 
58.         pred = clf.predict_proba(p_bop[i].reshape(1, -1)) 
59.         max_value = np.amax(pred) 
60.         max_index = np.argmax(pred) 
61.         temp.append(pred[0]) 
62.         temp.append(convertClassIdx(max_index)) 
63.         result.append(temp) 
64.  
65.     return result 
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Lines 54-65 is a function to convert the polymer opportunity group into microplastics 

classification with probability. Line 58 is the classification process using Gaussian Naïve Bayes. 

Line 61-63 is a process to make it easier for readers to see the classification results.  

Next for the main process, 

66. for j in range(len(train)): 
67.     data_train = [data_raw[z] for z in train[j]] 
68.     data_test = [data_raw[z] for z in test[j]] 
69.      
70.     data_train = np.array(data_train) 
71.     data_test = np.array(data_test) 
72.      
73.     data = preprocessingTrain(data_train) 

Line 66  is the function for the cross-validator loop. Lines 67-68 are used to retrieve the 

data that has been separated from the k-fold index result. Lines 70-71 convert the data into ndarray 

type, so that the preprocessing function can process the train data and test data.  

74. bof = [] 
75.     for fea in Feature: 
76.         if fea[0] not in bof: 
77.             bof.append(fea[0]) 
78.  
79. x = data_x(data) 

Lines 74-79 are used to unify polymers of various absorption bands.   

80.     # Spherical = covariances between its own 
81.     gm = GaussianMixture(n_components=means.shape[0], random_state=ran

dom, means_init=means,covariance_type="spherical") 
82.     gm.fit(data) 

Lines 80-82 is the initiation of the Gaussian Mixture Model, which uses the size of the 

dataset means and covariance_type spherical. Spherical is used in order to produce a variance value 

in the covariance. 

83.     bop, bot, bod = processing(data) 
84.  
85.     X = bop 
86.     Y = bot 
87.  
88.     clf = GaussianNB() 
89.     clf.fit(X, Y) 

Line 83 is used to obtain the probability gaussian mixture, the target of the dataset, and the 

whole data. Lines 85-86 separate X and Y and are processed using Gaussian Naïve Bayes on lines 

88-89. 
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90. def testing(p_bop, p_bot): 
91.     result = [] 
92.     for i in range(len(p_bop)): 
93.         temp = [] 
94.         pred = clf.predict(p_bop[i].reshape(1, -1)) 
95.         target = p_bot[i] 
96.         temp.append(pred[0]) 
97.         temp.append(target) 
98.         result.append(temp) 
99.  
100.     return result 

Lines 90-100 is a function to perform classification and enter it into an array containing 

targets and predictions. This prediction uses Gaussian Naïve Bayes that has been set on line 88. 

101. data = preprocessingTrain(data_test) 
102. bop, bot, bod = processing(data) 
103. result = np.array(testing(bop, bot)) 
104. print("K-Fold = ", j, "\n", classification_report(result[:,1], 

result[:,0])) 

Lines 101-104 perform the same preprocessing, identification, and classification processes 

as the train data against the test data. We print the results using the help of sklearn 

classification_report by entering the target and also the prediction of the result variable on line 104 

to produce the classification report. 

5.2. Results 

From this research, several results were obtained. First, that the center value of a polymer 

from the Gaussian Mixture Model does not differ much from the existing reference. The range of 

absorption band values can also be obtained. The results of this range can be used as supporting 

data for manual matching which can be seen in Table 5.1. The polymer column is the name of the 

polymer in a microplastics. The reference column is a reference value from previous research, 

namely Jung et al. [6]. Calculated Means column is the center value of absorption band of a 

polymer from Gaussian Mixture Model. Calculated Variance column is the variance of the value 

of the polymer.   

Table 5.1. Result of Gaussian Mixture Model 

No Polymer Reference Calculated 
Means Difference Calculated 

Variance 
0 C-Cl stretching 700 707.7361 7.7361 18.11433 

1 Polar ester groups and benzene ring 
interaction 712 711.73 0.27 1E-06 

2 CH2 rocking 720 721.1141 1.1141 2.381933 
3 CH2 rocking 730 729.7961 0.2039 0.864328 
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4 Aromatic C-H stretching 757 759.6795 2.6795 12.19483 
5 Ethyl branching 775 773.7793 1.2207 6.10176 

6 Adjacent two aromatic H vibration 
and aromatic bands 795 794.0669 0.9331 2.662722 

7 C-CH3 stretching 840 840.96 0.96 1E-06 

8 Aromatic rings 1,2,4,5; Tetra 
replaced 848 848.8536 0.8536 11.82362 

9 Aromatic rings 1,2,4,5; Tetra 
replaced 872 0 872 0.000001 

10 Vinylidene group 890 880.1908 9.8092 59.83227 
11 Terminal vinyl group 910 910.0427 0.0427 6.614106 
12 CH2 rocking 966 964.41 1.59 1E-06 
13 C=C 967 967.3387 0.3387 2.046454 
14 C-CH3 rocking 972 974.1955 2.1955 1.673468 
15 C-CH3 rocking 997 998.7791 1.7791 0.554114 
16 Aromatic C-H bending 1027 1031.516 4.5155 54.2538 

17 Methylene group and ester C-O 
bond vibrations 1050 0 1050 0.000001 

18 Methylene group and ester C-O 
bond vibrations 1096 1099.213 3.2133 3.116134 

19 C-C stretching 1099 3.236379 1095.764 3.220798 

20 Terephthalate Group (OOCC6H4-
COO) 1124 5 1119 1E-06 

21 C-CH3 rocking 1165 1169.299 4.2986 0.654167 
22 CH2 bending 1199 1194.009 4.9911 0.660411 
23 C-O-C 1220 1223.146 3.1457 0.456111 

24 Terephthalate Group (OOCC6H4-
COO) 1240 1238.3 1.7 1E-06 

25 C-H bending 1255 1254.534 0.4658 4.009442 
26 C-N stretching 1274 1271.504 2.4964 1.425345 
27 C-H bending 1331 1329.915 1.0846 1.788595 

28 

C-O group stretching of the O-H 
group deformation and ethylene 

glycol bending and wagging 
vibration 

1342 1345.948 3.9481 0.567466 

29 CH2 bending 1372 1369.003 2.9973 3.395884 
30 C-CH3 symmetric 1375 1386.82 11.82 1E-06 
31 CH3 groups 1377 1377.723 0.7227 0.909211 

32 

C-O group stretching of the O-H 
group deformation and ethylene 

glycol bending and wagging 
vibration 

1410 1414.34 4.3396 1.30592 

33 CH2 scissors 1427 1427.321 0.3211 0.823466 
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34 CH2 scissors 1435 1434.536 0.4636 1.041862 
35 CH2 bending 1451 1452.4 1.4 1E-06 

36 

C-O group stretching of the O-H 
group deformation and ethylene 

glycol bending and wagging 
vibration 

1453 1459.371 6.3710 33.15763 

37 CH2 symmetric 1455 1454.33 0.67 0.000001 
38 CH2 scissors vibration 1463 1463.97 0.97 9.98E-07 
39 CH2 bending 1464 1466.752 2.7518 0.91891 
40 CH2 scissors vibration 1475 1475.54 0.54 1.01E-06 
41 C=C aromatic stretch 1504 1500.182 3.8180 38.95998 
42 N-H bending 1530 1533.916 3.9159 36.45554 
43 Aromatic C-H stretching 1547 1540.728 6.2716 2.351811 
44 C=C aromatic stretch 1577 1586.251 9.2509 121.0465 
45 C=O stretching 1634 1632.578 1.4222 1.849629 
46 C=O stretching 1650 1648.816 1.1837 21.4591 
47 C=O stretch 1730 1731.115 1.115 8.381026 

48 Adjacent two aromatic H vibration 
and aromatic bands 1960 1959.906 0.0935 4.324141 

49 CO2 axial symmetric deformation 2350 2350.907 0.9067 8.367101 
50 CH2 symmetric 2838 2840.099 2.0986 7.077286 
51 C-H stretching reflects 2850 2850.79 0.79 1.01E-06 
52 Symmetric CH2 stretch 2852 2853.42 1.4202 0.889716 
53 C-H stretching 2858 2856.546 1.4536 2.162724 
54 Symmetric C-H stretch 2908 2910.483 2.4829 1.664519 
55 CH2 asymmetric 2917 2922.911 5.9113 1.700227 
56 C-H stretching reflects 2923 2922.503 0.4969 2.11109 
57 Asymmetric CH2 stretch 2927 2926.01 0.99 1.01E-06 
58 C-H stretching 2932 2932.071 0.0712 8.37503 
59 CH3 symmetric 2952 2960.43 8.4302 67.7309 
60 Symmetric C-H stretch 2969 0 2969 0.000001 
61 Symmetric CH stretch 3054 3044.725 9.2747 1905.845 
62 Aromatic C-H stretching 3055 3057.607 2.6069 15.43262 
63 N-H stretching 3298 3297.725 0.275 9.51709 
64 OH group (hydroxyl) 3432 3431.623 0.3768 2.131814 

 

Table 5.1 shows that 59 out of 65 polymers, have a difference in value with the reference 

of less than 10 with an average of 2.50. Differences of more than 10 and less than 20 is only found 

in 1 data, namely for polymer C-CH3 symmetric (reference value 1375). In addition, there are 5 

polymer data that have a very far distance with the reference, namely, Aromatic rings 1,2,4,5; Tetra 
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replaced (872), Methylene group and ester C-O bond vibrations (1050), C-C stretching (1099), 

Terephthalate Group (OOCC6H4-COO) (1124), and Symmetric CH stretch (2969). Therefore, the 

Gaussian Mixture Model is not much different from the reference. 

Too large a deviation can be caused by the absence of data in the vicinity of the polymer 

from the experimental material. It can be seen from numbers 17 and 60 which have no absorption 

band value, as well as number 19 with a value of 3.236. In addition to the zero value, outliers can 

be a factor that makes the absorption band value deviate. Outlier data will make the average value 

of data in a polymer shift. 

Second, variance shows the distribution of data in the polymer. In simple terms, we know 

what range of absorption band values are included in a polymer. For example, Table 5.1 number 

5, the absorption band value for Ethyl branching is in the range of 771.3091 to 776.2495 with the 

highest probability at 773.7793. This shows agreement with the reference, which is 775. From this 

result, we can answer the ambiguity of which polymer to classify at manual matching. 

Third, the different data lengths in the dataset (e.g. Figure 5.1) can be equalized through 

the preprocessing applied. The different data lengths are unified into an array that has a probability 

value for all polymers as shown in Figure 5.2. The probability value points to the polymers in 

Table 5.1 which has been grouped by polymer name into Table 5.2. 

 
Figure 5.1 Example of different size data before preprocessing 
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Figure 5.2 Example of same size data after preprocessing 
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Table 5.2. Polymer Grouping 
No Polymer 
1 C-Cl stretching 
2 Polar ester groups and benzene ring interaction 
3 CH2 rocking 
4 Aromatic C-H stretching 
5 Ethyl branching 
6 Adjacent two aromatic H vibration and aromatic bands  
7 C-CH3 stretching 
8 Aromatic rings 1,2,4,5; Tetra replaced 
9 Vinylidene group 
10 Terminal vinyl group 
11 C=C 
12 C-CH3 rocking 
13 Aromatic C-H bending 
14 Methylene group and ester C-O bond vibrations 
15 C-C stretching 
16 Terephthalate Group (OOCC6H4-COO) 
17 CH2 bending 
18 C-O-C 
19 C-H bending 
20 C-N stretching 

21 C-O group stretching of the O-H group deformation and 
ethylene glycol bending and wagging vibration 

22 C-CH3 symmetric 
23 CH3 groups 
24 CH2 scissors 
25 CH2 symmetric 
26 CH2 scissors vibration 
27 C=C aromatic stretch 
28 N-H bending 
29 C=O stretching 
30 C=O stretch 
31 CO2 axial symmetric deformation 
32 C-H stretching reflects 
33 Symmetric CH2 stretch 
34 C-H stretching 
35 Symmetric C-H stretch 
36 CH2 asymmetric 
37 Asymmetric CH2 stretch 
38 CH3 symmetric 
39 Symmetric CH stretch 
40 N-H stretching 
41 OH group (hydroxyl) 
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Finally, although the Gaussian Mixture Model has some polymers that are far from the 

reference, the performance of Gaussian Naïve Bayes obtained from Classification Report by 

Scikit-learn shows a value of 1.0 which indicates that this model can do its job very well. These 

results can be seen in 0. 

In Table 5.3, K-means is used to compare the performance of Gaussian Mixture because 

both can be used for identification. However, K-means is a hard clustering which means it has no 

probability. In addition, Decision Tree is one of the classification methods which in this case is 

also used as a comparator for Naïve Bayes. To simplify, there are also the graphic of the report on 

Figure 5.3 and Figure 5.4. 

Table 5.3. K-Fold Classification Report 
Parameter Gaussian Mixture 

+ Naïve Bayes 
Gaussian Mixture 
+ Decision Tree 

Kmeans + 
Naïve Bayes 

Kmeans + 
Decision Tree 

Accuracy 1 0.96572 1 0.97619 
Precision 1 0.9615 1 0.981996 

Recall 1 0.95858 1 0.966534 
F1-score 1 0.95806 1 0.976207 

Accuracy Sdtev 0 0.03724 0 0.011664 
 Precision Sdtev 0 0.047546 0 0.005977 

Recall Sdtev 0 0.047112 0 0.015035 
F1-score Sdtev 0 0.049158 0 0.014254 

 

 
Figure 5.3 Chart of Average Value K-fold report 
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Figure 5.4 Chart of Standart Deviation Value K-fold report 

From the comparison, it can be seen that the use of the Gaussian Mixture and K-Means is 

not much different. If we look at Figure 5.2, we can get the probability value of a polymer up to 

100%, while K-means forces the data into one polymer type. This will be a problem if the dataset 

used is not clean or has a lot of noise. Since the dataset in this case was done in a laboratory with 

low contamination, this problem does not arise. In the use of Gaussian Mixture, more information 

is obtained such as, polymer variance and chance value to support the manual matching process 

so that it is more accurate. 

On the other hand, the use of Naïve Bayes is better than Decision Tree because it manages 

to perform the classification process better even though the values are not much different.  

After generate 9 new data for each data for the data augmentation, the accuary of two model 

did not change differently and it can be seen on below, 0. For the full report of the model on 

number of augmentation 9 can be seen on Figure 5.5. 
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Table 5.4. Number of augmentation and the model accuracy 
Num of Augmentation GNB Accuracy DT Accuracy 

2 99 95 
3 99 97 
4 100 96 
5 99 98 
6 99 99 
7 98 98 
8 100 98 
9 99 98 
10 99 99 
11 99 99 
12 99 99 
13 100 99 
14 100 99 
15 99 99 
16 99 99 
18 99 99 
20 99 99 
23 99 99 
25 99 99 
30 99 99 
50 99 100 
100 99 100 
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Figure 5.5 Classification Report of Num 9 Augmentation 

5.3. Discussion 

From the data above, it produces good results because the mean value of the Gaussian 

Mixture Model is close to the reference [6] by 59 out of 65. In addition, the process of equalizing 

the component data size is achieved by changing the absorption band data to the highest probability 

of a polymer. This achievement also makes the performance of Naïve Bayes perfect with an 

accuracy value of 100% for 6 K-fold. 

However, this perfect result can be different if done in different places and times. Because 

the absorption band value can be significantly different from the existing reference depending on 

the climate and weather as well as the contamination contained in the sample according to Song et 

al. [9] in their research. 
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