
31 

 

 

IMPLEMENTATION AND RESULTS 

5.1. Implementation 

 

Chapter 5 explains the implementation and testing of projects development about Potato 

and Tomato Diseases Detection Using Convolutional Neural Network Algorithm. Below is the 

code of the Convolutional Neural Network algorithms used to obtain results from the project 

developed. 

 

 
 

Figure 5.1 : Import libraries and packages 

1. NumPy : a library for the Python programming language, adding support for large, multi-

dimensional arrays and matrices, along with a large collection of high-level mathematical 

functions to operate on these arrays. 

2. Sklearn: a free software machine learning library for the Python programming language. It 

features various classification, regression and clustering algorithms including support 

vector machines, random forests, gradient boosting, k-means and DBSCAN, and is 

designed to interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. 

3. Keras : Keras is an open source neural network library written in Python. It is capable of 

running on top of TensorFlow, Microsoft Cognitive Toolkit, or Theano. Designed to enable 

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy


32 

 

fast experimentation with deep neural networks, it focuses on being user-friendly, modular, 

and extensible. 

4. Matplotlib : a plotting library for the Python programming language and its numerical 

mathematics extension. 

 

Figure 5.2 : Convert image to array 

Converted each image to an array using the function above. After converting each image to 

an array using this same function, the author did something similar to what the author has in the 

image. 

 



33 

 

 

Figure 5.3 : Load the dataset 

Next thing was to load the dataset , from the image above the author picked just 200 images 

from each folder.  

 

 

Figure 5.4 : Convert the image labels to binary 

Using Scikit-learn’s Label Binarizer , the author converted each image label to binary 

levels. Then the author saved the label binarizer instance using pickle after which the author 

printed the classes from the label binarizer. 

 
 

Figure 5.5 : Pre-process input data 

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
https://docs.python.org/3/library/pickle.html


34 

 

In the image above, the author further pre-process the input data by scaling the data points 

from [0, 255] (the minimum and maximum RGB values of the image) to the range [0, 1]. 

 
 

Figure 5.6 : Split data to train, test 

In the image above, the author performed a training/testing split on the data using 80% of 

the images for training and 20% for testing.  

 
 

Figure 5.7 : Create image generator 

In the image above, the author created an image generator object which performs random 

rotations, shifts, flips, crops, and sheers on our image dataset. This allows us to use a bigger dataset 

and still achieve high results. 



35 

 

 
 

Figure 5.8 : Create the MobileNet Model 

First, KFold divides the dataset into k folds. If shuffle is set to true, then the splitting will 

be random. With cross validation, dataset is divided into n splits. N-1 split is used for training and 

the remaining split is used for testing. The model runs through the entire dataset n times and at each 

time, a different split is used for testing. Thus, it use all of data points for both training and testing. 

Next step is create a MobileNet model where the classification layers will depend on the 

very last layer before the flatten operation. Then, freeze the convolutional layers to use the base 

model as a feature extractor. To convert the feature vectors into actual predictions, the author apply 

a Global Average Pooling 2D layer to convert the feature vector into a 1280 element vector. Then 

the author push this through a Dense layer to obtain the final prediction. The author used Keras 

Adam Optimizer for the model to compile.  

 



36 

 

 

Figure 5.9 : Training the model 

Training the model is initiated in Figure 5.9 where  call model.fit , supplying our data 

augmentation object, training/testing data, and the number of epochs we wish to train for. The 

author used an epochs value of 25 for this project. 

 
 

Figure 5.10 : Plotted a graph  

Using matplotlib, the author plotted a graph for Training and Validation accuracy and 

Training and Validation loss in Figure 5.10 

https://matplotlib.org/


37 

 

 
 

Figure 5.11 : Calculated the accuracy 

Next in Figure 5.11 the author calculated the accuracy of the model using the test data 

(X_test and Y_test) created earlier. The author got an accuracy score of 91.34 %. 

 
 

Figure 5.12 : Predict the results 

Next in the Figure 5.12, the author gets results and score related to predictions that match 

the dataset that has been inputted according to the class that has been divided. 

 

 

Figure 5.13 : Confusion Matrix 

Confusion matrix can be created by predictions made from a logistic regression. Once 

metrics is imported the author use the confusion matrix function on his actual and predicted values. 

To create a more interpretable visual display the author convert the table into a confusion matrix 



38 

 

display. Then, vizualizing the display requires that we import pyplot from matplotlib. Finally to 

display the plot use the functions plot() and show() from pyplot. 

 

 
 

Figure 5.14 : Performance Metrics 

The matrix provides us with many useful metrics that help us to evaluate out classification 

model. The different measures include: Accuracy, Precision, Recall, and the F-score, explained 

below. 

1. Accuracy : accuracy measures how often the model is correct. 

2. Precision : the amount of information that is conveyed by a value. 

3. Recall : measures how good the model is at predicting positives. 

4. F-Score : the “harmonic mean” of precision and recall. It considers both false positive 

and false negative cases and is good for imbalanced datasets. 

 

5.2. Results 

5.2.1. Training and Testing With Diverse Split Data Experiment  

In this sub-chapter, we discuss the experiment regarding the parameter trial with 

predetermined split data. The experiment was carried out 5 times by looking for the best values 

from the parameters and split data described in the table below. 

 

 



39 

 

Table 5.1. First Experiments 

 

Data Split Batch Size Learning Rate Validation Acc Test Acc 

50% data 

training 50% 

data testing 

64 0.1 80.70% 77.60% 

0.01 96.49% 92.36% 

0.001 98.24% 92.36% 

32 0.1 84.21% 80.55% 

0.01 92.98% 90.10% 

0.001 92.98% 88.88% 

16 0.1 80.70% 79.51% 

0.01 89.47% 87.84% 

0.001 96.49% 90.79% 

 

Table 5.2. Second Experiments 

 

Data Split Batch Size Learning Rate Validation Acc Test Acc 

60% data 

training 40% 

data testing 

64 0.1 76.81% 85.46% 

0.01 94.20% 92.62% 

0.001 92.75% 92.84% 

32 0.1 39.13% 30.58% 

0.01 92.75% 91.32% 

0.001 94.20% 92.84% 

16 0.1 56.52% 58.78% 

0.01 86.95% 90.88% 

0.001 92.75% 91.75% 

 

Table 5.3. Third Experiments 

 

Data Split Batch Size Learning Rate Validation Acc Test Acc 

64 0.1 83.74% 81.50% 



40 

 

70% data 

training 30% 

data testing 

0.01 93.42% 93.35% 

0.001 92.80% 92.77% 

32 0.1 63.61% 21.96% 

0.01 93.18% 93.64% 

0.001 91.81% 94.79% 

16 0.1 60.41% 72.54% 

0.01 93.75% 92.77% 

0.001 93.75% 92.48% 

 

Table 5.4. Fourth Experiments 

 

Data Split Batch Size Learning Rate Validation Acc Test Acc 

80% data 

training 20% 

data testing 

64 0.1 41.30% 42.85% 

0.01 90.21% 95.67% 

0.001 91.30% 95.23% 

32 0.1 18.47% 19.91% 

0.01 90.21% 93.07% 

0.001 93.47% 93.93% 

16 0.1 71.73% 77.48% 

0.01 89.13% 93.50% 

0.001 91.30% 94.37% 

 

Table 5.5. Fifth Experiments 

 

Data Split Batch Size Learning Rate Validation Acc Test Acc 

90% data 

training 10% 

data testing 

64 0.1 30.09% 34.48% 

0.01 90.29% 95.68% 

0.001 93.20% 94.82% 

32 0.1 77.66% 79.31% 

0.01 85.43% 90.51% 



41 

 

0.001 93.20% 95.68% 

16 0.1 86.40% 86.20% 

0.01 84.46% 93.10% 

0.001 92.23% 93.10% 

 

In the trial test table, it can be seen that from the five experiments the best results from the 

parameters used were in batch size 32, learning rate 0.001, with training data of 90% and testing 

data of 10%. It can be seen from the table above that validation accuracy reaches 93.20% and test 

accuracy reaches 95.68% which is the highest accuracy compared to other parameters. After this 

first trial stage and producing the best value, the best results will be used as parameters to conduct 

other trials so that maximum results are obtained and in accordance with predictions. 

5.2.2. K-Fold Cross Validation Experiment 

In this sub-chapter, the author cross-validation with numbers of folds, namely 5 and 10 

with datasets divided into 10% testing data and 90% training data. Here are the results of KFold 

Cross Validation with k=5 and k=10. 

 

 

(a)                 (b) 

 

Figure 5.1 : (a) Cross Validation with k=5 and (b) Cross Validation with k=10 

In the picture above, the author cross-validates with k = 5 and k = 10, from the results of 

the experiment above, with k = 5, it produced an average validation accuracy of 93.24% with a 



42 

 

deviation standard of 1.58%, while in k = 10 it produced an average validation accuracy of 93.52% 

with a deviation standard of 1.98% which means that the greater the deviation standard produced, 

the distribution of the middle value is also large, and vice versa. The purpose of the deviation 

standard is to see the distance between the average accuracy and the accuracy of each experiment 

(iteration). By using K-Fold cross validation also reduces overfitting where when the model 

overmatches the training data, and the loss continues to decrease while the validation loss does not 

change, or increases. 

5.2.3. Graph of Validation Accuracy and Validation Loss Results 

This sub-chapter displays a graph of validation accuracy and validation loss on split data 

with 90% training data and 10% testing data. 

 

  

(a)          (b) 

Figure 5.1 : (a) Graph of Validation Accuracy and (b) Graph of Validation Loss 

The pictures above show the graphic results of validation accuracy and validation loss with 

split data, namely 90% training data and 10% testing data. From the picture above, it can be said 

that the implemented model produces maximum results because the validation graph shows an 

increase while on the validation loss graph it decreases. Thus producing a model with good 

performance.  

5.2.4. Confusion Matrix and Performance Metrics 

Confusion Matrix is used to represent the predicted results with the actual conditions of the 

dataset has been trained using the Mobile Net architecture. 



43 

 

 

Figure 5.1 : Confusion Matrix Results 

From the picture above, it can be seen that on the True Label there is an index 0 to 6 which 

states that it is a class on the dataset. index 0 is potato early blight, index 1 is potato healthy, index 

2 is potato late blight, index 3 is tomato early blight, index 4 is tomato healthy, index 5 is tomato 

late blight. Based on the confusion matrix in the picture above, it can be said that in index 5, namely 

tomato late blight, it has the highest prediction of 28 samples, so the prediction results show the 

appropriate prediction. 

The matrix provides us with many useful metrics that help us to evaluate out classification 

model. The different measures include: Accuracy, Precision, Recall, and the F-score, explained 

below. 

1. Accuracy : Accuracy describes how accurately a model can correctly classify. Thus, 

accuracy is the ratio of correct predictions (positive and negative) to the overall data. In 

other words, accuracy is the degree of proximity of the predicted value to the actual 

(actual) value. The accuracy value can be obtained by the equation. 

 

Accuracy ≈
True Positive+True Negative

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (1) 

 



44 

 

2. Precision : Precision describes the degree of accuracy between the requested data and 

the predicted results provided by the model. Thus, precision is the ratio of positive true 

predictions compared to the overall positive predicted results. Of all the positive classes 

that have been predicted correctly, how much data is really positive. The precision value 

can be obtained by the equation. 

 

Precision ≈
True Positive

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (2) 

 

3. Recall : Recall describes the model's success in reinventing information. Thus, recall is 

the ratio of positive correct predictions compared to the overall positive true data. The 

recall value can be obtained by the equation. 

 

Recall ≈
True Positive

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       (3) 

 

4. F1-Score : this is the harmonic mean of precision and recall and gives a better measure 

of the incorrectly classified cases than the accuracy metric. 

 

F1 − Score ≈ (
𝑅𝑒𝑐𝑎𝑙𝑙−1+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1

2
)

−1

≈ 2 ∗
(Precision∗Recall)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
   (4)  

With the basis of the Confusion Matrix table, it can then be calculated the Accuracy, 

Precision, Recall, and F1-Score. The four metrics are very useful for measuring the performance 

of the classifier or algorithm used to make predictions. Here are the results of the four metrics. 

 
Figure 5.2 : Performance Metrics Results 


