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ANALYSIS AND DESIGN 

4.1. Analysis 

This chapter provides a detailed explanation and discusses one by one about the methods 

of solving problems that have been mentioned in several points in chapter 1. The main purpose of 

creating this project is how to predict potato and tomato diseases according to the dataset used so 

that the predictions are correct and produce a fairly high level of accuracy. 

From the formulation of the problem that has been outlined, the first is how to predict disease 

in plants according to the dataset used. This case explains what stages are taken to build a system 

in order to predict correctly. As explained below: 

1. The first input dataset obtained through kaggle.com is the PlantVillage dataset which 

contains images of potato and tomato leaves that have been divided into 3 different 

classes. 

2. Pre-processing of the collected dataset. 

3. Splits the data into training and testing sets using train_test_split. 

4. Data augmentation on the training data using ImageDataGenerator API by Keras. 

5. Uses K-Fold Cross Validation to further divide the training data into k subsets. 

6. Builds CNN (Convolutional Neural Network) Model (MobileNet) to predict plant 

diseases. 

7. Developed model will be deployed on Jupyter Notebook. 

 

In the next problem formulation mentions about the prediction results. Plant disease 

detection can be performed using different classifiers and a multitude of techniques have been used 

in the past for this purpose. In this thesis, the classifiers that were used for performing the detection 

was the Convolution Neural Network (CNN). The dataset chosen for this paper contains 6,652 

images of tomato and potato leaves with 3 different classes. Each classes contains the different 

number of images. The images of plant diseases are of the size 224x224 and the dataset does not 

contain any missing images. The dataset is commonly referred to as the PlantVillage Dataset.  
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Last problem formulation mentions about the resulting accuracy can be maximized. To 

improve accuracy, MobileNet is modelled after the classic VGG architecture. This involves 

building a network by stacking convolution layers. However, if there are too many convolution 

layers in a stack, gradient vanishing becomes an issue. ResNet's residual block facilitates interlayer 

communication by, among other things, allowing for feature reuse during forward propagation and 

reducing gradient vanishing during back propagation. 

Mobile Net makes use of an inverted residual and a linear bottleneck within a depth separable 

convolution block. The depthwise convolutional layer's downsampling parameter is tweaked, and 

a 1x1 convolution layer is stacked on top of the depthwise convolutional layer. As an alternative 

to a nonlinear activation function, a linear activation is employed. The network consists of 19 

layers, the middle of which is responsible for feature extraction and the lowest for classification. 

MobileNetV1's primary structure, depthwise separable convolution, has the effects of decreasing 

the network parameters and increasing the network speed. Although depthwise separable 

convolution produces the same output dimension as regular convolution, it splits regular 

convolution into a 3 x 3 depthwise convolution and an 1 x 1 pointwise convolution. 

By combining the information from several channels into a single one, depth-wise 

convolution can drastically cut down on computation time and the number of parameters needed 

to describe an image. However, the final output data will not be related to any of the input channels 

because of the convolutional method's poor channel-to-channel information transmission. By 

applying a pointwise convolution, a special type of 1 x 1 convolution, to the result of a depthwise 

convolution, a linear combination can be generated. It is typical practise to use pointwise 

convolution to adjust the feature dimension of the output channel, as demonstrated in Figure 3, 

which can be viewed here. When compared to depthwise and group convolution, pointwise 

convolution is analogous to mixing information between channels. This can efficiently handle the 

issue of poor flow of information between channels, which is caused by convolution methods such 

as depthwise and group convolution. 
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Table 4.1. Parameters used in the CNN model 

 

Parameter Setting Description 

Epochs 25 Defines the number of 

iterations that the whole 

training dataset goes through 

the network 

Batch Size 32 Refers to the number of 

training data that is used 

during each epoch before 

weights in the network are 

updated 

Learning Rate 0.001 This parameter determines 

how much the weights have 

to change based on the error 

observed 

 

The architecture and the parameters of the CNN discussed above that produced the best 

results were chosen at last. The reason the learning rate was set to 0.001 is that for complex 

problems such as image classification smaller learning rates are often good at producing higher 

generalization accuracies even though they produce larger training times it is worth the wait as 

they are known to improve the overall accuracy of the model. The batch size was set to 32 and 

model produced a test accuracy of 93.93%. The study found that increasing the batch size provided 

great robustness to the noise in the dataset. 

4.2. Design 

The use of flowchart aims to know the processes or procedures of a program that makes it 

easier to understand the program to be built. Flowchart system can be described as next: 
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Figure 4.1 : Flowchart Design of the Program 

Flowchart 4.1 is used as an overview or flow of the system itself. Starting from collecting 

dataset, then import keras libraries and packages as needed, then the dataset that has been prepared 

will go into the pre-processing stage where the dataset will be split into train and test data, next 

step is data augmentation which is technique for increasing the number of images in a database. 

By augmenting the dataset and adding distortion to the images,  overfitting  can  be reduced during  

the  training period.  The  Keras  ImageDataGenerator  class  implements inplace  data 

augmentation or on-the-fly data augmentation. Then, the next process is define KFold to improving 

model prediction. Last step is build the model and then compile the program until show the predict 

result. According to the description below: 

1. Input : collecting dataset from PlantVillage Dataset. 

2. Import keras libraries and packages :  setting up libraries and packages as needed in 

a program built using keras. 

3. Dataset pre-processing : The pre-processing step for any machine learning model is of 

great importance and ideally shapes the performance and results of the models chosen. 

4. Split train and test data : the plant village dataset is split into two different sets, namely, 

train and test set with a 80:20 ratio respectively. 

5. Data augmentation : This parameter holds the image that you want to return 

explanations for. The name of the setting depends on the directory in which the image is 

present in. 

6. K-Fold Cross Validation : The data sample is split into ‘k’ number of smaller samples 

that means the sample data is being split into five and ten smaller sample respectively. 
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7. Build CNN model : Build CNN model and save the model for predict the image for 

plant disease detection. 

8. Output : The resulting output is in the form of accuracy levels, accuracy graphs and loss 

functions, as well as prediction results from datasets that have been imported. 

 

 


