
1

INTRODUCTION

1.1. Background

In this rapidly growing world of information technology, the need to provide services to

clients continues to increase, resulting in an application get too big in terms of a high number of

lines of codes or a high number of people that use the application and a high number of people

involved in the development of the application. Some programming languages that are widely used

for the development of server side applications such as Python, C/C++ and Java are designed to

be a single executable code that is called monolith. A monolith is a software application whose

modules cannot be executed independently[4]. The monolith architecture has some drawbacks

when it becomes a bigger application, when an application with many features gathered in 1 service

it will be more difficult to maintain and the development speed will slow down. This is because

the lines of code start to depend on each other, whereas changes and enhancements get more

difficult. To solve these kinds of problems, an ideal architecture is needed. Johanes Thones states

that microservices are: “a small application that can be deployed independently, scaled

independently, and tested independently and that has a single responsibility”[11]. The definition

that Johannes Thones stated addresses some characteristics of a microservices, such as

microservice should be self-sufficient, flexible and fault tolerant. It also emphasizes that the

machine should have a single responsibility.

The backend of the application that I create during the internship, uses a monolith

architecture where all of the features are in 1 service, and on top of that the application will be

used by many users and the application will be developed and updated with more features. As for

today, the application is relatively small and does not have any major issue, but in the future the

application will become big and it will create several problems, such as how fast the application

will respond when there are a lot of users that use the application and in the development process

where there is a feature that needs maintenance. The microservice architecture is designed to solve

this kind of problems, the services that got separated will not depend on each other, so that when

there is a lot of users accessing a specific service, the other service will not be disturbed, and in

the development side the microservice architecture can be more resilient, in terms of when a

2

service goes down, the entire application does not stop functioning as it does besides the service

that goes down.

The results of this project rely upon how big or small the microservice architecture will

affect the backend performance than the monolith architecture. The benchmark of this project will

rely upon how monolith architecture performs on the backend of the application. Both of the

applications will undergo several load tests and will be compared.

1.2. Problem Formulation

This project focused on how to implement microservice architecture to a backend of the

application and to see how it performs, is it better than monolith architecture that is already

implemented or not. Specifically, it aims to answer the following questions:

1. How does microservice architecture average response time when there are a lot of

users accessing the application compared to monolithic architecture?

2. Can the microservice architecture have a lower average response time than

monolith architecture?

3. Does the amount of data affect both architecture performance?

1.3. Scope

The main limitation of this project is revolving on how the application performs after the

microservice architecture has been implemented. The scopes described as follows :

1. The implementation and the development of the microservice architecture will only

focus on the backend of the application.

2. The database of the application will use MySQL.

3. The main point of the comparison will focus on average response time.

4. The programming language that the application use is Go.

1.4. Objective

The purpose of this project is to seek for an alternative architecture to List Features

Application backend, that previously used the monolith architecture, by using microservice

architecture and to find out whether the microservice architecture can reduce the average response

3

time when there are a lot of users accessing the application compared to monolithic architecture

and to describe the simplification process of the microservice architecture for handle the

application even though there is a maintenance on a service.

