
35

IMPLEMENTATION AND RESULTS

5.1. Implementation

This project using python language and on google colab platform. For the dataset, is needed

to normalize it first in order to make sure the data is ready to be proceeds. First, import the data

and change the data from “.csv” file into a table called dataframe. Once turned into a dataframe,

normalize the dataframe by fill the missing value by using mean value of the dataframe, change

any string datatype into integer number so it can be processed, and renaming the column of

dataframe.

1. import pandas as pd
2. import numpy as np
3. import io
4.
5. from google.colab import files
6. uploaded = files.upload()
7.
8. shop_df = pd.read_csv(io.BytesIO(uploaded['ecommerce_data.csv']))
9. shop_df.head()
10.
11. shop_df.shape
12.
13. shop_df.info()

In line 1 until 13, import the required library then upload the data file which will then be

used as a dataframe for processing on the goggle colab platform. After that, check all the attributes

in the data and all info related to data types, number of rows and columns.

14. print(shop_df['Month'].value_counts(), "\n")
15. print(shop_df['VisitorType'].value_counts())
16.
17. ubah1 = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4, 'May':5, 'Jun':6, 'Jul':7,

'Aug':8, 'Sep':9, 'Oct':10, 'Nov':11, 'Des':12}

18. shop_df['Month'] = shop_df['Month'].map(ubah1).fillna(0).astype(int)
19.
20. ubah2 = {'Returning_Visitor':0, 'New_Visitor':1, 'Other':2}
21. shop_df['VisitorType'] =

shop_df['VisitorType'].map(ubah2).fillna(0).astype(int)

After check all datatypes, there are 4 column identified as string and boolean values, so is

needed to change the datatypes into interger value so it can be processed. In line 14 until 21, check

36

the contents of the "Month" and "VisitorType" data. Then the variable input will be changed

according to the contents of each data and converted into an integer data type

22. from sklearn.preprocessing import LabelEncoder
23. le = LabelEncoder()
24.
25. # labeling revenue
26. shop_df['Revenue'] = le.fit_transform(shop_df['Revenue'])
27. shop_df['Revenue'].value_counts()
28.
29. # labeling weekend
30. shop_df['Weekend'] = le.fit_transform(shop_df['Weekend'])
31. shop_df['Weekend'].value_counts()

In line 22 until 31, also change the boolean data type contained in the data, namely the

"Revenue" and "Weekend" columns. Then the data type is changed to numbers 1 and 0, which

means True = 1 and False = 0.

32. shop_df.info()
33.
34. shop_df.head()

Line 32 until 34 only to re-check the data type as a whole whether everything has been

correctly changed to numeric or not so that it can be processed.

35. X = shop_df.iloc[:,:-1]
36. X.head()
37.
38. y = shop_df["Revenue"]
39. y.head()

Line 35 until 39, the data is separated into two parts, X and y. X is the data that becomes

the parameter for y which will be the prediction target.

40. # cek
41. print("X : ", X.shape)
42. print("y : ", y.shape)

Line 40 until 42 to check whether the data has been divided correctly according to the

columns and rows that will be processed later.

43. from sklearn.preprocessing import StandardScaler
44. scaler = StandardScaler()
45. X_scaled = scaler.fit_transform(X)
46.
47. from sklearn.decomposition import PCA
48. pca = PCA(n_components=2)

37

49. X_pca = pca.fit_transform(X_scaled)

Line 43 until 49, only for linear kernels the data is scaled and dimensions are reduced first

so that the linear kernel can work. This is done because the value of feature X is very large, so the

linear kernel must be adjusted first.

50. import matplotlib.pyplot as plt
51. plt.scatter(X_pca[y==0, 0], X_pca[y==0, 1], c='r', label='class 0')
52. plt.scatter(X_pca[y==1, 0], X_pca[y==1, 1], c='b', label='class 1')
53. plt.xlabel('First Principal Component')
54. plt.ylabel('Second Principal Component')
55. plt.legend()
56. plt.show()

Line 50 until 56, the results of the PCA are then visualized to find out the value of X after

processing.

57. from sklearn.model_selection import train_test_split
58. X_train, X_test, y_train, y_test = train_test_split(X_pca, y,

test_size=0.2)

59.
60. from sklearn.svm import SVC
61. svm = SVC(kernel='linear')
62. svm.fit(X_train, y_train)
63.
64. from sklearn.metrics import classification_report
65. y_pred = svm.predict(X_test)
66. print(classification_report(y_test, y_pred))

Line 57 until 66, only for linear kernel data is divided into training data and testing data

according to the PCA process that has been carried out. Then the results are evaluated to find out

how accurate the process is.

67. from sklearn.model_selection import train_test_split
68. from imblearn.over_sampling import ADASYN
69.
70. adasyn = ADASYN()
71. X_adasyn, y_adasyn = adasyn.fit_resample(X, y)
72.
73. X_train, X_test, y_train, y_test = train_test_split(X_adasyn, y_adasyn,

test_size = 0.2)

74.
75. print("X_train :", X_train.shape)
76. print("y_train :", y_train.shape)
77. print("X_test :", X_test.shape)
78. print("y_test :", y_test.shape)

In contrast to the previous linear kernel, the process now applies to all subsequent

calculations. Line 67 until 78, divide training data and data for the test into 80% training and 20%

38

test. This is also done for 60%, 40%, 20% training data and also for test data. Balancing data by

oversampling is processed using ADASYN.

79. from sklearn import svm, metrics
80. from sklearn.svm import SVC
81. from sklearn.metrics import classification_report
82.
83. model = svm.SVC()
84. model.fit(X_train, y_train)
85.
86. y_pred = model.predict(X_test)
87. print(classification_report(y_test, y_pred))
88.
89. print("Akurasi Training: ", model.score(X_train, y_train))
90. print("Akurasi Testing: ", model.score(X_test, y_test))

Line 79 until 90, load the SVM algorithm to perform the prediction calculation process. It

then prints out the values that show how accurately this algorithm works.

91. from sklearn.model_selection import RandomizedSearchCV
92.
93. parametersRS1 = {'kernel': ['linear', 'rbf', 'sigmoid'],
94. 'C': [0.5, 1, 10, 100],
95. 'gamma': [1, 0.1, 0.01, 0.001]
96. }
97.
98. random_searchSVM1 = RandomizedSearchCV(estimator=SVC(),
99. param_distributions=parametersRS1,
100. n_jobs=6,
101. verbose=1,
102. scoring='accuracy'
103.)
104.
105. random_searchSVM1.fit(X_train, y_train)

Line 91 until 105, perform hyperparameter tuning using RandomizedSearchCV. The

parameters used are in accordance with the SVM algorithm provided. This tuning process is carried

out randomly by trying all the parameters of the algorithm to find which parameter is the best for

the calculation process.

106. print(f'Best Score: {random_search.best_score_}')
107.
108. best_params = random_search.best_estimator_.get_params()
109. print(f'Best Parameters:')
110. for param in parameters:
111. print(f'\t{param}: {best_params[param]}')

Line 106 until 111, to check the results of RandomizedSearchCV which parameters are

found best for this algorithm.

39

112. # evaluasi
113. y_pred = random_search.predict(X_test)
114. print(classification_report(y_test, y_pred))

Line 112 until 114, re-evaluate the score results after tuning using RandomizedSearchCV

115. from sklearn.linear_model import SGDClassifier
116. from sklearn.preprocessing import StandardScaler
117.
118. scaler = StandardScaler() # Stochastic Gradient Descent sangat sensitif

terhadap feature scaling, maka data harus diskalakan dahulu

119. scaler.fit(X_train)
120. X_train = scaler.transform(X_train)
121. X_test = scaler.transform(X_test)
122.
123. model2 = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200)
124. model2.fit(X_train, y_train)
125.
126. y_pred = model2.predict(X_test)
127. print(classification_report(y_test, y_pred))
128.
129. print("Akurasi Training: ", model2.score(X_train, y_train))
130. print("Akurasi Testing: ", model2.score(X_test, y_test))

Line 115 until 130, load the SGD algorithm to perform the prediction calculation process.

Also uses the StandardScaler because this algorithm is very sensitive to feature scaling, so the data

must be scaled first to avoid miscalculations. It then prints out the values that show how accurately

this algorithm works.

131. parameters2 = { 'penalty' : ['l1'],
132. 'alpha' : [1e-4, 1e-3, 1e-2, 1e-1, 1e0],
133. 'max_iter' : [int(x) for x in np.linspace(1000, 10000,

num = 19)],

134. 'loss': ['hinge', 'log', 'modified_huber',

'squared_hinge', 'perceptron'],

135. 'learning_rate' : ['constant', 'optimal', 'invscaling',
'adaptive'],

136. 'class_weight' : [{1:0.5, 0:0.5}, {1:0.4, 0:0.6}, {1:0.6,
0:0.4}, {1:0.7, 0:0.3}],

137. 'eta0' : [1, 10, 100]
138. }
139.
140. random_search2 = RandomizedSearchCV(estimator = SGDClassifier(),
141. param_distributions = parameters2,
142. n_jobs = 6,
143. verbose = 1,
144. scoring = 'accuracy'
145.)
146.
147. random_search2.fit(X_train, y_train)

40

Line 131 until 147, perform hyperparameter tuning using RandomizedSearchCV. The

parameters used are in accordance with the SGD algorithm provided. This tuning process is carried

out randomly by trying all the parameters of the algorithm to find which parameter is the best for

the calculation process.

148. print(f'Best Score: {random_search2.best_score_}')
149.
150. best_params2 = random_search2.best_estimator_.get_params()
151. print(f'Best Parameters:')
152. for param in parameters2:
153. print(f'\t{param}: {best_params2[param]}')

Line 148 until 153, to check the results of RandomizedSearchCV which parameters are

found best for this algorithm.

154. # evaluasi
155. y_pred = random_search2.predict(X_test)
156. print(classification_report(y_test, y_pred))

Line 154 until 156, re-evaluate the score results after tuning using RandomizedSearchCV

5.2. Results

The Experiment for the optimal result is using 40% of training data and 60% test data. For

SVM the best parameter used in hyperparameter tuning using RandomizedSearchCV are :

 Kernel : RBF

 C : 10

 Gamma : Scale

For SGD the best parameter used in hyperparameter tuning using RandomizedSearchCV

are :

 Penalty: l1

 Alpha: 0.001

 Max_iter: 7000

 Loss: hinge

 Learning_rate: invscaling

 Class_weight: {1: 0.4, 0: 0.6}

 Eta0: 100

41

Below are detailed result for each training and test data calculated

Figure 5.1 SVM Result

This is the result of SVM algorithm on predicting online shoper intentions with

hyperparameter tuning using RandomizedSearchCV. The data split into 80%, 60%, 40%, 20% on

each training set dan testing set. Precision is the percentage of positive predictions that were correct

relative to the total positive predictions. Recall is the percentage of positive predictions that were

correct relative to the total actual positives. F1-Score is the weighted harmonic mean of precision

and recall. The closer to 1, the better the model. Accuracy is the total score of the whole prediction

process calculated from three value above.

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.83 1.00 0.91 2052 0.87 0.95 0.91 2052

1 0.88 0.02 0.03 414 0.53 0.28 0.37 414

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.84 1.00 0.92 4151 0.84 1.00 0.91 4151

1 0.92 0.02 0.03 781 0.60 0.01 0.02 781

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.85 1.00 0.92 6248 0.89 0.98 0.93 6248

1 0.90 0.01 0.02 1150 0.75 0.37 0.49 1150

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.85 1.00 0.92 8349 0.85 1.00 0.92 8349

1 0.50 0.00 0.00 1515 0.87 0.04 0.07 1515

Accuracy = 0.85 Accuracy = 0.85

Accuracy = 0.85 Accuracy = 0.88

Test Size = 80% || Training Size = 20%

Accuracy = 0.84 Accuracy = 0.84

Test Size = 60% || Training Size = 40%

Test Size = 40% || Training Size = 60%

SCORING (without RandomizedSearchCV) SCORING (with RandomizedSearchCV)

Test Size = 20% || Training Size = 80%

Accuracy = 0.83 Accuracy = 0.84

Support Vector Machine (SVM)

42

Figure 5.2 SGD Result

This is the result of SGD algorithm on predicting online shoper intentions with

hyperparameter tuning using RandomizedSearchCV. The data split into 80%, 60%, 40%, 20% on

each training set dan testing set. Precision is the percentage of positive predictions that were correct

relative to the total positive predictions. Recall is the percentage of positive predictions that were

correct relative to the total actual positives. F1-Score is the weighted harmonic mean of precision

and recall. The closer to 1, the better the model. Accuracy is the total score of the whole prediction

process calculated from three value above.

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.89 0.97 0.93 2052 0.88 0.98 0.93 2052

1 0.75 0.39 0.51 414 0.76 0.33 0.46 414

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.89 0.98 0.93 4151 0.91 0.97 0.94 4151

1 0.78 0.34 0.47 781 0.72 0.47 0.57 781

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.90 0.98 0.93 6248 0.92 0.95 0.94 6248

1 0.75 0.39 0.51 1150 0.69 0.55 0.61 1150

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.90 0.98 0.94 8349 0.92 0.96 0.94 8349

1 0.77 0.37 0.50 1515 0.70 0.53 0.60 1515

Accuracy = 0.89 Accuracy = 0.89

Accuracy = 0.88 Accuracy = 0.89

Test Size = 80% || Training Size = 20%

Accuracy = 0.88 Accuracy = 0.89

Test Size = 60% || Training Size = 40%

SCORING (without RandomizedSearchCV) SCORING (with RandomizedSearchCV)

Test Size = 20% || Training Size = 80%

Accuracy = 0.88 Accuracy = 0.87

Test Size = 40% || Training Size = 60%

Stochastic Gradient Descent (SGD)

43

Figure 5.3 Best Parameter Comparison Between SVM and SGD (Label = 0)

This is the best comparison result for "label = 0" of the two algorithms that have been tuned

using RandomizedSearchCV.

Figure 5.4 Best Parameter Comparison Between SVM and SGD (Label = 1)

This is the best comparison result for "label = 1" of the two algorithms that have been tuned

using RandomizedSearchCV.

44

Figure 5.5 Accuracy Comparison Between SVM and SGD

This is the accuracy result for of the two algorithms that have been tuned using

RandomizedSearchCV.

Figure 5.6 RandomizedSearchCV Comparison on SVM

This is the result of a comparison of tuning of SVM using RandomizedSearchCV, taken

from the best results for each parameter.

45

Figure 5.7 RandomizedSearchCV Comparison on SGD

This is the result of a comparison of tuning SGD using RandomizedSearchCV, taken from

the best results for each parameter.

