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IMPLEMENTATION AND RESULTS 

5.1. Implementation 

This project using python language and on google colab platform. For the dataset, is needed 

to normalize it first in order to make sure the data is ready to be proceeds. First, import the data 

and change the data from “.csv” file into a table called dataframe. Once turned into a dataframe, 

normalize the dataframe by fill the missing value by using mean value of the dataframe, change 

any string datatype into integer number so it can be processed, and renaming the column of 

dataframe. 

1. import pandas as pd 
2. import numpy as np 
3. import io 
4.  
5. from google.colab import files  
6. uploaded = files.upload() 
7.  
8. shop_df = pd.read_csv(io.BytesIO(uploaded['ecommerce_data.csv'])) 
9. shop_df.head() 
10.  
11. shop_df.shape 
12.  
13. shop_df.info() 

In line 1 until 13, import the required library then upload the data file which will then be 

used as a dataframe for processing on the goggle colab platform. After that, check all the attributes 

in the data and all info related to data types, number of rows and columns. 

 

14. print(shop_df['Month'].value_counts(), "\n") 
15. print(shop_df['VisitorType'].value_counts()) 
16.  
17. ubah1 = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4, 'May':5, 'Jun':6, 'Jul':7, 

'Aug':8, 'Sep':9, 'Oct':10, 'Nov':11, 'Des':12} 

18. shop_df['Month'] = shop_df['Month'].map(ubah1).fillna(0).astype(int) 
19.  
20. ubah2 = {'Returning_Visitor':0, 'New_Visitor':1, 'Other':2} 
21. shop_df['VisitorType'] = 

shop_df['VisitorType'].map(ubah2).fillna(0).astype(int) 

After check all datatypes, there are 4 column identified as string and boolean values, so is 

needed to change the datatypes into interger value so it can be processed.  In line 14 until 21, check 
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the contents of the "Month" and "VisitorType" data. Then the variable input will be changed 

according to the contents of each data and converted into an integer data type 

 

22. from sklearn.preprocessing import LabelEncoder 
23. le = LabelEncoder() 
24.  
25. # labeling revenue 
26. shop_df['Revenue'] = le.fit_transform(shop_df['Revenue']) 
27. shop_df['Revenue'].value_counts() 
28.  
29. # labeling weekend 
30. shop_df['Weekend'] = le.fit_transform(shop_df['Weekend']) 
31. shop_df['Weekend'].value_counts() 

In line 22 until 31, also change the boolean data type contained in the data, namely the 

"Revenue" and "Weekend" columns. Then the data type is changed to numbers 1 and 0, which 

means True = 1 and False = 0. 

 

32. shop_df.info() 
33.  
34. shop_df.head() 

Line 32 until 34 only to re-check the data type as a whole whether everything has been 

correctly changed to numeric or not so that it can be processed. 

 

35. X = shop_df.iloc[:,:-1] 
36. X.head() 
37.  
38. y = shop_df["Revenue"] 
39. y.head() 

Line 35 until 39, the data is separated into two parts, X and y. X is the data that becomes 

the parameter for y which will be the prediction target. 

 

40. # cek 
41. print("X : ", X.shape) 
42. print("y : ", y.shape) 

Line 40 until 42 to check whether the data has been divided correctly according to the 

columns and rows that will be processed later. 

 

43. from sklearn.preprocessing import StandardScaler 
44. scaler = StandardScaler() 
45. X_scaled = scaler.fit_transform(X) 
46.  
47. from sklearn.decomposition import PCA 
48. pca = PCA(n_components=2) 
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49. X_pca = pca.fit_transform(X_scaled) 

Line 43 until 49, only for linear kernels the data is scaled and dimensions are reduced first 

so that the linear kernel can work. This is done because the value of feature X is very large, so the 

linear kernel must be adjusted first. 

50. import matplotlib.pyplot as plt 
51. plt.scatter(X_pca[y==0, 0], X_pca[y==0, 1], c='r', label='class 0') 
52. plt.scatter(X_pca[y==1, 0], X_pca[y==1, 1], c='b', label='class 1') 
53. plt.xlabel('First Principal Component') 
54. plt.ylabel('Second Principal Component') 
55. plt.legend() 
56. plt.show() 

Line 50 until 56, the results of the PCA are then visualized to find out the value of X after 

processing. 

57. from sklearn.model_selection import train_test_split 
58. X_train, X_test, y_train, y_test = train_test_split(X_pca, y, 

test_size=0.2) 

59.  
60. from sklearn.svm import SVC 
61. svm = SVC(kernel='linear') 
62. svm.fit(X_train, y_train) 
63.  
64. from sklearn.metrics import classification_report 
65. y_pred = svm.predict(X_test) 
66. print(classification_report(y_test, y_pred)) 

Line 57 until 66, only for linear kernel data is divided into training data and testing data 

according to the PCA process that has been carried out. Then the results are evaluated to find out 

how accurate the process is. 

67. from sklearn.model_selection import train_test_split 
68. from imblearn.over_sampling import ADASYN 
69.  
70. adasyn = ADASYN() 
71. X_adasyn, y_adasyn = adasyn.fit_resample(X, y) 
72.  
73. X_train, X_test, y_train, y_test = train_test_split(X_adasyn, y_adasyn, 

test_size =  0.2) 

74.  
75. print("X_train :", X_train.shape) 
76. print("y_train :", y_train.shape) 
77. print("X_test  :", X_test.shape) 
78. print("y_test  :", y_test.shape) 

In contrast to the previous linear kernel, the process now applies to all subsequent 

calculations. Line 67 until 78, divide training data and data for the test into 80% training and 20% 
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test. This is also done for 60%, 40%, 20% training data and also for test data. Balancing data by 

oversampling is processed using ADASYN. 

79. from sklearn import svm, metrics 
80. from sklearn.svm import SVC 
81. from sklearn.metrics import classification_report 
82.  
83. model = svm.SVC() 
84. model.fit(X_train, y_train) 
85.  
86. y_pred = model.predict(X_test) 
87. print(classification_report(y_test, y_pred)) 
88.  
89. print("Akurasi Training: ", model.score(X_train, y_train)) 
90. print("Akurasi Testing: ", model.score(X_test, y_test)) 

Line 79 until 90, load the SVM algorithm to perform the prediction calculation process. It 

then prints out the values that show how accurately this algorithm works. 

91. from sklearn.model_selection import RandomizedSearchCV 
92.  
93. parametersRS1 = {'kernel': ['linear', 'rbf', 'sigmoid'], 
94.               'C': [0.5, 1, 10, 100], 
95.               'gamma': [1, 0.1, 0.01, 0.001] 
96.               } 
97.  
98. random_searchSVM1 = RandomizedSearchCV(estimator=SVC(), 
99.                                    param_distributions=parametersRS1, 
100.                                    n_jobs=6, 
101.                                    verbose=1, 
102.                                    scoring='accuracy' 
103.                                    ) 
104.  
105. random_searchSVM1.fit(X_train, y_train) 

Line 91 until 105, perform hyperparameter tuning using RandomizedSearchCV. The 

parameters used are in accordance with the SVM algorithm provided. This tuning process is carried 

out randomly by trying all the parameters of the algorithm to find which parameter is the best for 

the calculation process. 

106. print(f'Best Score: {random_search.best_score_}') 
107.  
108. best_params = random_search.best_estimator_.get_params() 
109. print(f'Best Parameters:') 
110. for param in parameters: 
111.     print(f'\t{param}: {best_params[param]}') 

Line 106 until 111, to check the results of RandomizedSearchCV which parameters are 

found best for this algorithm. 
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112. # evaluasi 
113. y_pred = random_search.predict(X_test) 
114. print(classification_report(y_test, y_pred)) 

Line 112 until 114, re-evaluate the score results after tuning using RandomizedSearchCV 

 

115. from sklearn.linear_model import SGDClassifier 
116. from sklearn.preprocessing import StandardScaler 
117.  
118. scaler = StandardScaler() # Stochastic Gradient Descent sangat sensitif 

terhadap feature scaling, maka data harus diskalakan dahulu 

119. scaler.fit(X_train) 
120. X_train = scaler.transform(X_train) 
121. X_test = scaler.transform(X_test) 
122.  
123. model2 = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200) 
124. model2.fit(X_train, y_train) 
125.  
126. y_pred = model2.predict(X_test) 
127. print(classification_report(y_test, y_pred)) 
128.  
129. print("Akurasi Training: ", model2.score(X_train, y_train)) 
130. print("Akurasi Testing: ", model2.score(X_test, y_test)) 

Line 115 until 130, load the SGD algorithm to perform the prediction calculation process. 

Also uses the StandardScaler because this algorithm is very sensitive to feature scaling, so the data 

must be scaled first to avoid miscalculations. It then prints out the values that show how accurately 

this algorithm works. 

 

131. parameters2 = { 'penalty' : ['l1'],  
132.                'alpha' : [1e-4, 1e-3, 1e-2, 1e-1, 1e0],  
133.                'max_iter' : [int(x) for x in np.linspace(1000, 10000, 

num = 19)],  

134.                'loss': ['hinge', 'log', 'modified_huber', 

'squared_hinge',  'perceptron'],  

135.                'learning_rate' : ['constant', 'optimal', 'invscaling', 
'adaptive'],  

136.                'class_weight' : [{1:0.5, 0:0.5}, {1:0.4, 0:0.6}, {1:0.6, 
0:0.4}, {1:0.7, 0:0.3}],  

137.                'eta0' : [1, 10, 100] 
138.                } 
139.  
140. random_search2 = RandomizedSearchCV(estimator = SGDClassifier(),  
141.                                     param_distributions = parameters2,  
142.                                     n_jobs = 6,  
143.                                     verbose = 1,  
144.                                     scoring = 'accuracy' 
145.                                     ) 
146.  
147. random_search2.fit(X_train, y_train) 
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Line 131 until 147, perform hyperparameter tuning using RandomizedSearchCV. The 

parameters used are in accordance with the SGD algorithm provided. This tuning process is carried 

out randomly by trying all the parameters of the algorithm to find which parameter is the best for 

the calculation process. 

 

148. print(f'Best Score: {random_search2.best_score_}') 
149.  
150. best_params2 = random_search2.best_estimator_.get_params() 
151. print(f'Best Parameters:') 
152. for param in parameters2: 
153.     print(f'\t{param}: {best_params2[param]}') 

Line 148 until 153, to check the results of RandomizedSearchCV which parameters are 

found best for this algorithm. 

 

154. # evaluasi 
155. y_pred = random_search2.predict(X_test) 
156. print(classification_report(y_test, y_pred)) 

Line 154 until 156, re-evaluate the score results after tuning using RandomizedSearchCV 

5.2. Results 

The Experiment for the optimal result is using 40% of training data and 60% test data. For 

SVM the best parameter used in hyperparameter tuning using RandomizedSearchCV are : 

 Kernel : RBF 

 C  : 10 

 Gamma : Scale 

For SGD the best parameter used in hyperparameter tuning using RandomizedSearchCV 

are : 

 Penalty: l1 

 Alpha: 0.001 

 Max_iter: 7000 

 Loss: hinge 

 Learning_rate: invscaling 

 Class_weight: {1: 0.4, 0: 0.6} 

 Eta0: 100 
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Below are detailed result for each training and test data calculated 

Figure 5.1 SVM Result 

This is the result of SVM algorithm on predicting online shoper intentions with 

hyperparameter tuning using RandomizedSearchCV. The data split into 80%, 60%, 40%, 20% on 

each training set dan testing set. Precision is the percentage of positive predictions that were correct 

relative to the total positive predictions. Recall is the percentage of positive predictions that were 

correct relative to the total actual positives. F1-Score is the weighted harmonic mean of precision 

and recall. The closer to 1, the better the model. Accuracy is the total score of the whole prediction 

process calculated from three value above. 

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.83 1.00 0.91 2052 0.87 0.95 0.91 2052

1 0.88 0.02 0.03 414 0.53 0.28 0.37 414

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.84 1.00 0.92 4151 0.84 1.00 0.91 4151

1 0.92 0.02 0.03 781 0.60 0.01 0.02 781

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.85 1.00 0.92 6248 0.89 0.98 0.93 6248

1 0.90 0.01 0.02 1150 0.75 0.37 0.49 1150

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.85 1.00 0.92 8349 0.85 1.00 0.92 8349

1 0.50 0.00 0.00 1515 0.87 0.04 0.07 1515

Accuracy = 0.85 Accuracy = 0.85

Accuracy = 0.85 Accuracy = 0.88

Test Size = 80%  || Training Size = 20%

Accuracy = 0.84 Accuracy = 0.84

Test Size = 60%  || Training Size = 40%

Test Size = 40%  || Training Size = 60%

SCORING (without RandomizedSearchCV) SCORING (with RandomizedSearchCV)

Test Size = 20%  || Training Size = 80%

Accuracy = 0.83      Accuracy = 0.84

Support Vector Machine (SVM)
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Figure 5.2 SGD Result 

This is the result of SGD algorithm on predicting online shoper intentions with 

hyperparameter tuning using RandomizedSearchCV. The data split into 80%, 60%, 40%, 20% on 

each training set dan testing set. Precision is the percentage of positive predictions that were correct 

relative to the total positive predictions. Recall is the percentage of positive predictions that were 

correct relative to the total actual positives. F1-Score is the weighted harmonic mean of precision 

and recall. The closer to 1, the better the model. Accuracy is the total score of the whole prediction 

process calculated from three value above. 

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.89 0.97 0.93 2052 0.88 0.98 0.93 2052

1 0.75 0.39 0.51 414 0.76 0.33 0.46 414

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.89 0.98 0.93 4151 0.91 0.97 0.94 4151

1 0.78 0.34 0.47 781 0.72 0.47 0.57 781

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.90 0.98 0.93 6248 0.92 0.95 0.94 6248

1 0.75 0.39 0.51 1150 0.69 0.55 0.61 1150

Label Precision Recall F1-Score Support Precision Recall F1-Score Support

0 0.90 0.98 0.94 8349 0.92 0.96 0.94 8349

1 0.77 0.37 0.50 1515 0.70 0.53 0.60 1515

Accuracy = 0.89 Accuracy = 0.89

Accuracy = 0.88 Accuracy = 0.89

Test Size = 80%  || Training Size = 20%

Accuracy = 0.88 Accuracy = 0.89

Test Size = 60%  || Training Size = 40%

SCORING (without RandomizedSearchCV) SCORING (with RandomizedSearchCV)

Test Size = 20%  || Training Size = 80%

Accuracy = 0.88 Accuracy = 0.87

Test Size = 40%  || Training Size = 60%

Stochastic Gradient Descent (SGD)
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Figure 5.3 Best Parameter Comparison Between SVM and SGD (Label = 0) 

This is the best comparison result for "label = 0" of the two algorithms that have been tuned 

using RandomizedSearchCV. 

 

 

 

Figure 5.4 Best Parameter Comparison Between SVM and SGD (Label = 1) 

This is the best comparison result for "label = 1" of the two algorithms that have been tuned 

using RandomizedSearchCV. 
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Figure 5.5 Accuracy Comparison Between SVM and SGD 

This is the accuracy result for of the two algorithms that have been tuned using 

RandomizedSearchCV. 

Figure 5.6 RandomizedSearchCV Comparison on SVM 

This is the result of a comparison of tuning of SVM using RandomizedSearchCV, taken 

from the best results for each parameter. 
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Figure 5.7 RandomizedSearchCV Comparison on SGD 

This is the result of a comparison of tuning SGD using RandomizedSearchCV, taken from 

the best results for each parameter.


