
23 

 

 

ANALYSIS AND DESIGN 

4.1. Analysis 

The dataset used in this study was taken from the UCI Machine Learning Repository 

website. This dataset consists of 12330 rows and 18 columns with attribute details can be seen in 

the following table. Attributes such as “Administrative”, “Administrative Duration”, 

“Informational”, “Informational Duration”, “Product Related” and “Product Related Duration” are 

about visitors opening multiple pages on an online store and how long it took them to open each 

one. . These values are derived from the URL information of the pages visited by the users and are 

updated in real time when the user performs an action, such as moving from one page to another. 

Then the attributes "Bounce Rate", "Exit Rate" and "Page Value" are the metric values measured 

by "Google Analytics" for each page in the online store. The value of "Bounce Rate" is the 

percentage of visitors who enter the site from that page and immediately leave ("bounce") without 

taking any action. The "Exit Rate" value is the percentage of visitors leaving the site after visiting 

several pages in their entirety. Then "Page Value" is the average value of visitors visiting a specific 

page before making a transaction. The attribute "Special Day" is a value that indicates the closeness 

of time to certain special days such as Hari Raya, Valentine's Day, Independence Day, etc. where 

visitors are more likely to make transactions. Then other attributes like "Operating Systems", 

"Browser", "Region", "Traffic Type", "Visitor Type" are values that represent supporting 

descriptions for visitor data. "Weekend" and "Month" are adverbs of the time when a visitor visits 

the online store site. And the last is the "Revenue" attribute, which indicates a boolean value 

whether the visitor makes a transaction or not on the online store site. 

Table 4.1. Dataset Columns Details 

No Attribute Description 

1 Administrative 
The number of pages of this type (administrative) that the 

user visited 

2 Administrative_Duration The amount of time spent in this category of pages 
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3 Informational 
This is the number of pages of this type (informational) that 

the user visited 

4 Informational_Duration The amount of time spent in this category of pages 

5 ProductRelated 
The number of pages of this type (product related) that the 

user visited 

6 ProductRelated_Duration The amount of time spent in this category of pages 

7 BounceRates 
The percentage of visitors who enter the website through that 

page and exit without triggering any additional tasks 

8 ExitRates 
The percentage of pageviews on the website that end at that 

specific page 

9 PageValues 

The average value of the page averaged over the value of the 

target page and/or the completion of an eCommerce 

transaction 

10 SpecialDay 

Represents the closeness of the browsing date to special days 

or holidays (eg Mother's Day or Valentine's day) in which the 

transaction is more likely to be finalized 

11 Month Contains the month the pageview occurred, in string form 

12 OperatingSystems 
Representing the operating system that the user was on when 

viewing the page 

13 Browser 
Representing the browser that the user was using to view the 

page 

14 Region Representing which region the user is located in 

15 TrafficType Representing what type of traffic the user is categorized into 

16 VisitorType 
Representing whether a visitor is New Visitor, Returning 

Visitor, or Other 

17 Weekend Representing whether the session is on a weekend 

18 Revenue Representing whether or not the user completed the purchase 

In the data, in the "Month" and "VisitorType" columns there are data types as strings that 

will not be processed, as well as “Weekend” and “Revenue” boolean data types. So the conversion 

will be done first to change the data type to int. The conversion process is carried out by changing 

the name of the month to a number according to the sequence, for example January becomes 
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number 1, February becomes number 2, and so on. For the boolean data type use the LabelEncoder 

process from sklearn to convert the data into int. 

 

4.2. Algorithm 

There are two algorithms used to process the data, namely Stochastic Gradient Descent 

(SGD) and Support Vector Machine (SVM). SGD and SVM have been successfully applied to 

large-scale and sparse machine learning problems often encountered in text classification and 

natural language processing. Given that the data is sparse, the classifiers in this module easily scale 

to problems with more than 10^5 training examples and more than 10^5 features. The advantages 

of Stochastic Gradient Descent are efficiency and ease of implementation (lots of opportunities for 

code tuning), but it has disadvantages that requires a number of hyperparameters such as the 

regularization parameter and the number of iterations, and also SGD is sensitive to feature scaling. 

On the other side, SVM has advantages such as Effective in high dimensional spaces. Still effective 

in cases where number of dimensions is greater than the number of samples. Uses a subset of 

training points in the decision function (called support vectors), so it is also memory efficient. Both 

algorithms are then re-tuned their hyperparameters using RandomizedSearchCV. 

RandomizedSearchCV implements a “fit” and a “score” method. It also implements 

“score_samples”, “predict”, “predict_proba”, “decision_function”, “transform” and 

“inverse_transform” if they are implemented in the estimator used. The parameters of the estimator 

used to apply these methods are optimized by cross-validated search over parameter settings. In 

contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of 

parameter settings is sampled from the specified distributions. The number of parameter settings 

that are tried is given by n_iter. If all parameters are presented as a list, sampling without 

replacement is performed. If at least one parameter is given as a distribution, sampling with 

replacement is used. It is highly recommended to use continuous distributions for continuous 

parameters. 
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4.2.1. Stochastic Gradient Descent (SGD) 

This algorithm in plain terms means slope or slant of a surface. So gradient descent literally 

means descending a slope to reach the lowest point on that surface. For classification it implements 

a plain stochastic gradient descent learning routine which supports different loss functions and 

penalties for classification. The decision boundary of a SGD trained with the hinge loss, equivalent 

to a linear SVM. As other classifiers, SGD has to be fitted with two arrays: an array X of shape 

(n_samples, n_features) holding the training samples, and an array y of shape (n_samples,) holding 

the target values (class labels) for the training samples.  

The parameters used in this algorithm are more, namely there is penalty, alpha, max_iter, 

loss, learning_rate, class_weight, eta0. The penalty (aka regularization term) to be used. Defaults 

to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might bring 

sparsity to the model (feature selection) not achievable with ‘l2’. The alpha is constant that 

multiplies the regularization term. The higher the value, the stronger the regularization. Also used 

to compute the learning rate when set to learning_rate is set to ‘optimal’. The max_iter is the 

maximum number of passes over the training data (aka epochs). The loss function describes how 

well the model will perform given the current set of parameters (weights and biases), and gradient 

descent is used to find the best set of parameters. ‘hinge’ gives a linear SVM. ‘log_loss’ gives 

logistic regression, a probabilistic classifier. ‘modified_huber’ is another smooth loss that brings 

tolerance to outliers as well as probability estimates. ‘squared_hinge’ is like hinge but is 

quadratically penalized. ‘perceptron’ is the linear loss used by the perceptron algorithm. The eta0 

is the initial learning rate for the ‘constant’, ‘invscaling’ or ‘adaptive’ schedules. The default value 

is 0.0 as eta0 is not used by the default schedule ‘optimal’. ‘constant’: eta = eta0. ‘optimal’: eta = 

1.0 / (alpha * (t + t0)) where t0 is chosen by a heuristic proposed by Leon Bottou. ‘invscaling’: eta 

= eta0 / pow(t, power_t). ‘adaptive’: eta = eta0, as long as the training keeps decreasing. The 

class_weight can indeed help increasing the ROC AUC or f1-score of a classification model trained 

on imbalanced data. 

Stochastic Gradient Descent is an optimization method for unconstrained optimization 

problems. In contrast to (batch) gradient descent, SGD approximates the true gradient 

of 𝑬(𝒘,𝒃) by considering a single training example at a time. The class SGDClassifier 
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implements a first-order SGD learning routine. The algorithm iterates over the training examples 

and for each example updates the model parameters according to the update rule given by 

𝒘 ← 𝒘− 𝜼 [𝜶
𝝏𝑹(𝒘)

𝝏𝒘
+
𝝏𝑳(𝒘𝑻𝒙𝒊 + 𝒃, 𝒚𝒊)

𝝏𝒘
] 

Figure 4.1 SGD Classifier 

where 𝜼 is the learning rate which controls the step-size in the parameter space. The 

intercept 𝒃 is updated similarly but without regularization. The learning rate 𝜼 can be either 

constant or gradually decaying. For classification, the default learning rate schedule 

(learning_rate='optimal') is given by 

𝜼(𝒕) =
𝟏

𝜶(𝒕𝟎 + 𝒕)
 

Figure 4.2 Learning Rate for Classification 

where 𝒕 is the time step (there are a total of n_samples * n_iter time steps), 𝒕𝟎 is 

determined based on a heuristic proposed by Léon Bottou such that the expected initial updates 

are comparable with the expected size of the weights (this assuming that the norm of the training 

samples is approx. 1).  

Figure 4.3 SGD Example 
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4.2.2. Support Vector Machine (SVM) 

A support vector machine constructs a hyperplane or set of hyperplanes in a high or infinite 

dimensional space, which can be used for classification, regression or other tasks. Intuitively, a 

good separation is achieved by the hyper-plane that has the largest distance to the nearest training 

data points of any class (so-called functional margin), since in general the larger the margin the 

lower the generalization error of the classifier. The figure below shows the decision function for a 

linearly separable problem, with three samples on the margin boundaries, called “support vectors”. 

 

Figure 4.1 SVM Example 

In this Support Vector Machine, there are two kernels that will be used and tuned again to 

find which one is more optimal, namely the RBF and Sigmoid kernels. RBF or Radial Basis 

Function kernel works by mapping the data into a high-dimensional space by finding the dot 

products and squares of all the features in the dataset and then performing the classification. 
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Figure 4.2 RBF Kernel 

Next is Sigmoid, The Sigmoid kernel is widely applied in neural networks for classification 

processes. The SVM classification with the sigmoid kernel has a complex structure and it is 

difficult for humans to interpret and understand how the sigmoid kernel makes classification 

decisions. Interest in these kernels stems from their success in classifying with the neural netwotk 

and logistic regression, specific properties, linearity and cumulative distribution. The sigmoid 

kernel is generally problematic or invalid because it is difficult to have positive parameters. The 

sigmoid function is now not widely used in research because it has a major drawback, namely that 

the output value range of the sigmoid function is not centered on zero. This causes the 

backpropagation process to occur which is not ideal, so that the weight of the ANN is not evenly 

distributed between positive and negative values and tends to approach the extreme values 0 and 

1. 
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Parameter Cost or commonly referred to as C is a parameter that works as an SVM 

optimization to avoid misclassification in each sample in the training dataset. When the value of 

C is too large, the algorithm tries to reduce misclassifications or misclassifications as much as 

possible. This will cause the loss of generalization properties of the classifier (algorithm). Simply 

put, if C is too large, it will cause the decision boundary to be very small. When the value of C is 

too small, misclassification of data points will occur due to a wider decision boundary. Wider 

decision boundaries generalize well to training and test data but may classify some records 

incorrectly. Conclusion: the higher the value of C, the smaller the possibility of errors in 

determining the solution. Conversely, the lower the value of C, the higher the proportion of errors 

that occur in determining the solution. 

Figure 4.3 C Value 

The Gamma parameter determines how far the influence of one sample training dataset is. 

A low value means "far", and a high value means "close". When the gamma value is high, the 

exact breakdown of the decision boundary will depend only on the points very close to it. When 

the Gamma value is low it indicates that even distant points are considered when we want to decide 

where the decision boundary should be. In conclusion, when taking a high Gamma value, it means 

that the points around the line will be considered in the calculations. Meanwhile, when the Gamma 

value is low, points that are far from the dividing line are considered in the calculation. Therefore 

it is necessary to find the optimum value of C and Gamma value. 
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Figure 4.4 Gamma Value 

In general, when the problem isn’t linearly separable, the support vectors are the 

samples within the margin boundaries. The two-dimensional linearly separable data can be 

separated by a line. The function of the line is 𝑦 = 𝑎𝑥 + 𝑏. We rename x with x1 and y with x2 and 

we get: 

𝒂𝒙𝟏 − 𝒙𝟐 + 𝒃 = 𝟎 

Figure 4.5 SVM Hyperplane I 

If we define 𝒙 =  (𝒙𝟏, 𝒙𝟐) and 𝒘 =  (𝒂,−𝟏), we get: 

𝒘 ⋅ 𝒙 + 𝒃 = 𝟎 

Figure 4.6 SVM Hyperplane II 

This equation is derived from two-dimensional vectors. But in fact, it also works for any 

number of dimensions. This is the equation of the hyperplane. Once we have the hyperplane, we 

can then use the hyperplane to make predictions. We define the hypothesis function h as: 

𝒉(𝒙𝒊) = {
+1𝒊𝒇 𝒘 ⋅ 𝒙 + 𝒃 ≥ 0
−1𝒊𝒇 𝒘 ⋅ 𝒙 + 𝒃 < 0

 

Figure 4.7 SVM Classifier 

The point above or on the hyperplane will be classified as class +1, and the point below the 

hyperplane will be classified as class -1. The goal of the SVM learning algorithm is to find a 

hyperplane which could separate the data accurately. There might be many such hyperplanes and 

needed to find the best one, which is often referred as the optimal hyperplane. 
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4.2.3. Hyperparameter Tuning with RandomizedSearchCV 

The hyperparameters tuning in this project use RandomizedSearchCV. It has parameters 

for tuning the target parameters algorithm such as estimator, param_distributions, n_jobs, verbose, 

scoring. The estimator is an object of that type is instantiated for each grid point. This is assumed 

to implement the scikit-learn estimator interface. Either estimator needs to provide a score 

function, or scoring must be passed. The param_distributions is the dictionary with parameters 

names (str) as keys and distributions or lists of parameters to try. Distributions must provide 

a rvs method for sampling (such as those from scipy.stats.distributions). If a list is given, it is 

sampled uniformly. If a list of dicts is given, first a dict is sampled uniformly, and then a parameter 

is sampled using that dict as above. The verbose controls the verbosity: the higher, the more 

messages. >1 : the computation time for each fold and parameter candidate is displayed; >2 : the 

score is also displayed; >3 : the fold and candidate parameter indexes are also displayed together 

with the starting time of the computation. The scoring Strategy to evaluate the performance of the 

cross-validated model on the test set. If scoring represents a single score, one can use: a single 

string or a callable that returns a single value. If scoring represents multiple scores, one can use: a 

list or tuple of unique strings or a callable returning a dictionary where the keys are the metric 

names and the values are the metric scores or a dictionary with metric names as keys and callables 

a values. If None, the estimator’s score method is used. The parameter n_jobs refers to the number 

of these jobs that will be executed in parallel. With n_jobs=1, the jobs will be executed 

sequentially. With n_jobs=4, 4 jobs will be executed in parallel, potentially making better use of 

multiple cpu cores. 

 

4.2.4. Data Balancing with Adaptive Synthetic (ADASYN) 

Adaptive Synthetic Sampling is an oversampling technique used in imbalanced dataset to 

balance the class distribution by generating synthetic samples for the minority class. The main idea 

behind ADASYN is to increase the weight of the samples that are difficult to classify and decrease 

the weight of the samples that are easily classifiable. 

ADASYN works in following steps: 

1. Calculate the density of each sample in the minority class. 
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2. Assign a weight to each sample in the minority class based on its density. Higher density 

samples will have higher weight and lower density samples will have lower weight. 

3. Select k-nearest neighbors of each sample in the minority class. 

4. For each sample in the minority class, generate a synthetic sample by interpolating between 

the selected sample and one of its k-nearest neighbors. The interpolation weight is 

proportional to the density of the neighbors. 

5. Combine the original minority class samples and the synthetic samples to form the new 

balanced dataset. 

ADASYN aims to balance the class distribution by generating synthetic samples for the 

minority class that are similar to the real samples and close to the decision boundary between the 

classes. This way, it aims to improve the classification performance on imbalanced datasets. 

 

4.2.5. Dimensionality Reduction with Principal Component Analysis (PCA) 

Principal Component Analysis is a dimensionality reduction technique used in machine 

learning and other data analysis fields. It works by transforming the original data into a new 

coordinate system, where the first principal component has the highest variance, the second 

principal component has the second highest variance, and so on. The idea behind PCA is to 

preserve as much of the original data's information as possible in these new components, and to 

eliminate noise and redundant information in the process. PCA is performed by first computing 

the covariance matrix of the original data, and then calculating the eigenvectors and eigenvalues 

of the matrix. The eigenvectors corresponding to the largest eigenvalues are selected as the 

principal components, and the original data is transformed into the new coordinate system defined 

by these components. The transformed data is then projected onto a lower-dimensional subspace, 

which reduces the size of the data while preserving as much of its structure as possible. 

The implementation of PCA is often performed using linear algebra and matrix operations, 

and can be easily done using libraries such as scikit-learn in Python. The steps for implementing 

PCA in code are as follows: 

1. Import the PCA class from the scikit-learn library 
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2. Initialize the PCA class, specifying the number of components you want to keep (or the 

amount of explained variance you want to preserve) 

3. Fit the PCA model to the original data 

4. Transform the original data into the new PCA-defined coordinate system 

5. Optionally, inverse transform the transformed data back into the original coordinate 

system, if necessary. 


