
 

CHAPTER 4  

ANALYSIS AND DESIGN 

4.1. Analysis 

This chapter describes how the algorithms work, and how the program is implemented. 

The earlier iteration of the program only uses three features which are the gums (gusi), teeth (gigi), 

and lips (bibir). The data was only gathered from web searches and medical websites. This early 

iteration creates a lot of ambiguity as there are similar symptoms that occur for multiple illnesses 

and because the illnesses’ symptoms only came from limited sources, not a lot of unique symptoms 

were noted. In the iteration that follows, features were added and more sources are also added, 

those sources coming from new trusted websites and also health journals. The new features are 

gums (gusi), teeth (gigi), lips (bibir), throat (tenggorokan), and area of mouth (area mulut). This 

makes the data more diverse and the algorithms have more data on which to base their predictions. 

With six distinct parts of the mouth with each having unique symptoms, the way the 

prediction is done is by inputting six values that correspond to each symptom on each part of the 

mouth as seen in Figure 4.1. 

 

 Example of symptoms choice 

To make the prediction process more streamlined, all of the algorithms that are used use the same 

method of input which is taking six inputs, each input for each part of the mouth, with the 

differences only being in the input’s processing as each algorithm may require a particular type 

input such as array, or has to be reshaped first in order for the prediction to work.  



 

4.2. Design 

 The program will begin by asking several questions and listing several symptoms as the 

symptoms that will be inputted into the program, so the program itself is very straightforward as 

seen in Figure 4.1. 

 

 User input for the program 



 

As there are three different algorithms used to perform prediction, this subchapter will 

explain the algorithms deeper and how they work. Starting with the main algorithm XGBoost 

and then its comparative algorithms, random forest, and TensorFlow’s MLP. XGBoost being 

picked for the main program, and not for the comparative, is because XGBoost is the middle 

point between random forest and TensorFlow in a sense that XGBoost is bagging as an algorithm 

that learns from residuals of each iteration as seen in Figure 4.2 which constitute XGBoost as a 

machine learning algorithm, different from the random forest in that random forest uses 

ensemble learning (majority system) to get its result. To compare XGBoost with another 

machine learning algorithm, TensorFlow’s multilayer perceptrons (MLP) is used. 

 

 Flowchart of XGBoost 

The comparison is done to see whether the result in XGBoost will be more similar to its 

predecessor random forest or whether the machine learning’s counterpart TensorFlow will get a 

more similar result.  

XGBoost derives from the random forest algorithm, which in itself derives from the 

decision tree. A decision tree is a flowchart-like tree structure, where each internal node denotes a 

test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal 

node) holds a class label. An example of a decision tree can be seen in Figure 4.3.  



 

 

 An example of a decision tree for classification 

A tree can be “learned” by splitting the source set into subsets based on an attribute value test. This 

process is repeated on each derived subset in a recursive manner called recursive partitioning. The 

recursion is completed when the subset at a node all has the same value of the target variable, or 

when splitting no longer adds value to the predictions[18]. The difference between XGBoost and 

the random forest is also reflected in how each tree is valued, and how the trees' order affects the 

algorithms' outcome. TensorFlow’s multilayer perceptron is also used, MLP can be seen in Figure 

4.4. 

 

https://www.zotero.org/google-docs/?1PhPqL


 

 

 Multilayer perceptrons with one output layer 

The MLP that is used for this program consists of three layers, two ReLu layers, and the output 

layer is softmax to show the probability for each prediction as it is multi-class, not binary. 

4.3.  Function 

Starting from XGBoost. The only difference between XGBoost’s classification and 

regression is the loss function. An example of XGboost’s classification can be seen in Figure 4.1. 

The loss function for XGBoost’s classification is as follows 

 

 XGBoost classification example 

𝐿(𝑦𝑖 , 𝑝𝑖) = [𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) +  𝑦𝑖(1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)] (1) 



 

(𝛴𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)2

[𝑃𝑖×(1−𝑃𝑖)]+𝜆
   (2) 

(𝛴𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)

[𝑃𝑖×(1−𝑃𝑖)]+𝜆
   (3) 
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Function (1) is the loss function of XGBoost classification 𝐿(𝑦𝑖 , 𝑝𝑖) in its entirety is the 

negative log-likelihood for the classification. The function (2) and (3) are functions for XGBoost 

classification for similarity score and output value respectively. Similarity score,  (𝛴𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)2 

is the summation of residuals squared, and (𝑃𝑖) is the previous probability, and lastly 𝜆 is the 

regularization parameter. For output value, the summation of residuals is not squared. Function (4) 

is the function to build the first tree, with an explanation similar to the previous function, 𝐿(𝑦𝑖, 𝑝𝑖) 

is the loss function, 𝜆 is the regularization parameter, and 𝑂𝑣𝑎𝑙𝑢𝑒 is the output value. 

 For random forest some breakdowns for the algorithm in mathematical function will also 

be explained, an example of how random forest classification works can be seen in Figure 4.2. 

 

 Random forest classification example 

1 − ∑𝑛
𝑖=1 (𝑃𝑖 )2  (5) 

𝐸(𝑆) = −𝑝(+)𝑙𝑜𝑔𝑝(+) − 𝑝(−)𝑙𝑜𝑔𝑝(−) (6) 



 

𝑓𝑖𝑖 =
𝛴𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 𝑛𝑖𝑗

𝛴𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠𝑛𝑖𝑘
 (7) 

Starting from function (5), Gini index which is used to count the impurity of the splitting nodes as 

seen in Figure 4.3, the root node in the right has one decision that is not purely divided to yes or 

no but contains both, the function will then calculate how much the impurity of each node. Then 

in function (6) is entropy which is related to Gini impurity as this function is used to count the 

entropy, which is used to measure the impurity of the split, where 𝑝(+) is the probability of a 

positive class and 𝑝(−) is the probability of a negative class. . And the last function for random 

forest is function (7) which is the function for feature importance, 𝑓𝑖𝑖 is the importance of node i, 

while 𝑛𝑖𝑗 is the importance of node j, Figure 4.4 is to see how it works. 

 

 Random forest classification example 



 

  

 How function (7) looks like 

For the last algorithm, we will take a look at multilayer perceptrons (MLP). To clearly see 

how MLP works, we need to see a single linear threshold unit (LTU) with its mathematical 

function shown in Figure 4.5. While an example of MLP has been shown before, a more detailed 

picture will be used to give an explanation of certain parts of the MLP in figure 4.6 and figure 4.7. 

A Perceptron is a simple artificial neural network (ANN) based on a single layer of LTUs, where 

each LTU is connected to all inputs of vector x as well as a bias vector b a. 

 

 Example of LTU 



 

 

 Weight, input, and bias for each node 

 

 A more detailed example of multilayer perceptrons 

𝑧 = 𝑤𝑇. 𝑥 = ∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖    (8) 



 

𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)    (9) 

ℎ1 = 𝑠𝑡𝑒𝑝(𝑧1) = 𝑠𝑡𝑒𝑝(𝑊1. 𝑥 + 𝑏1)  (10) 

𝑦 = 𝑠𝑡𝑒𝑝(𝑧2) = 𝑠𝑡𝑒𝑝(𝑊2. ℎ1 + 𝑏2)  (11) 

We will start with the simpler function of LTU, then to MLP. Function (8) is the weighted 

sum (𝑧) of LTU in which 𝑤 is weight, hence 𝑤𝑇is the transpose of the weight and 𝑥 is the input. 

Function (9) is the activation function of LTU in the hidden layer, which uses ReLU (Rectifying 

Linear Unit) (𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)) in which the minimum value that is accepted is 0, and if the 

number is less than 0 it will be converted to 0. Function (10) is the first hidden layer (ℎ1), 𝑊 (as 

seen in Figure 4.8) is a matrix of shape (u, n), where u = number of LTUs and n = number of input 

values. The input vector 𝒙 is of shape (n, 1), the bias vector 𝑏 is of shape (u, 1) and the output 

vector 𝑦 is of shape (u, 1). By that, the Perceptron can be used for multi-class classification. 

Function (11) is the output layer. 

 

 Matrix of weight


