
15

CHAPTER 5

IMPLEMENTATION AND RESULT

5.1. Implementation

The research is implemented by using the following code:

1 data=pd.read_csv("./dataset_SKRIPSI/DATASET_SKRIPSI_TRANSPOSED2.csv",

delimiter=';')

2 data["Tahun"] = pd.to_datetime(data["Tahun"])

The first line of the code are basic commands to read a csv file containing the original

dataset of medical workforce number. This csv file is already preprocessed using Microsoft

Excel. The second line converts “Tahun” column to datetime format in order to make it

compatible with SDV library.

3 n=split*len(data)

4 df_1 = data.iloc[:int(n),:]

5 df_2 = data.iloc[int(n):,:]

6 column_names = data.columns.values.tolist()

 Line 3 declares split number based on percentage value inputted to the code in the split

variable. The original data is then split according to the split value. Detail 1 being active means

the code uses only the original data to train and test the algorithms. Detail 2 being active means

the code test/evaluate the algorithms using the original data only. Column names variable is

used to display or point currently experimented column.

7 model = PAR(sequence_index="Tahun")

8 model.fit(df_1)

Line 7 assigns synthetic data model with “Tahun” as the sequence or time series index.

The data is then fitted to the said model.

9 ins=[5, 10, 15, 20, 25]

10 time_data=[]

11 start_time = time.time()

12 new_data = model.sample(num_sequences=ins[0])

13 time_data.append(time.time() - start_time)

14 print("running time = ", (time.time() - start_time), " seconds")

16

Line 9 declares the number of sequences you desire. Sequence affects the total number

of generated data. Line 10 declares time data variable used to count how much seconds passed

during the data generations. Line 12 generates the new dataset based on the original dataset

and number of previously declared sequence. Line 13 calculates time difference between the

starting time declaration that is Line 14 and the present.

15 stat1 = data.describe()

16 stat2 = new_data.describe()

17 plt.figure(figsize=(14,10))

18 x_desc = ["original data", "5 seq"]

19 y_desc=[stat1.Anestesi[0],stat2.Anestesi[0]]

20 plt.subplot(2,2,1)

21 plt.plot(x_desc,y_desc,"-b",marker = '|',label='number of data')

22 plt.legend(loc="upper left")

23 x_desc = ["original data", "5 seq"]

24 y_desc = [stat1.Anestesi[1],stat2.Anestesi[1]]

25 plt.subplot(2,2,2)

26 plt.plot(x_desc,y_desc,"-r",marker = '|',label='mean')

27 plt.legend(loc="upper left")

This part of the code visualizes some notable stats the generated datasets possess. Stat

1 variable visualizes the original data, and Stat 2 visualizes the generated data. Describe

function gives deviation standard, mean, max, min, and data amount possessed by each column

in the dataset. Line 17 to 27 visualizes the stats using matplot library.

28 test_value=[[0]*200 for i in range(21)]

29 i=0

30 if detail[1]==0: new_data=df_1

31 for _ in range(20):

32 if detail[2]==0: test_value[i]=df_2[column_names[i+1]].values

33 elif detail[2]==1: test_value[i]=data[column_names[i+1]].values

34 i=i+1

Line 28 declares test data to be used as evaluator. Test data is chosen between two

datasets, the first one being the byproduct of data split if the technique is used, the second one

being the original dataset. Line 31 to 34 injects data from appropriate column from the original

data to the test value variable.

17

35 x=[]

36 year_init=2015-len(new_data)

37 year=year_init

38 for _ in range(int(len(new_data)):

39 year=year+1

40 x.append(year)

41 if detail[2]==0:

42 if detail[1]==1:

43 x=[]

44 x=new_data['Tahun'].values

45 x = np.array(x)

46 x = x.reshape(-1, 1)

47 y = new_data.iloc[:,(col+1):(col+2)].values.astype(int)

48 regressor = SVR()

49 regressor.fit(x,y.ravel())

50 regressor2 = RandomForestRegressor()

51 regressor2.fit(x, y.ravel())

Line 36 declares initial year variable containing year until 2015. The purpose is to fill

out the time data, as SDV does not generate year. Training data is fitted into regressor models

for the SVR and RF prediction to work. Both algorithms are implemented using sklearn library.

X and Y are used to define the time and value axis for the prediction respectively.

52 year=2015

53 for j in test_value[col]:

54 year=year+1

55 test_year.append(year)

56 if detail[1]==1:

57 test_year=df_2['Tahun'].values

58 if detail[2]==1:

59 test_year=data['Tahun'].values

60 y_pred = []

18

61 for j in test_year:

62 y_pred.append(int(regressor.predict([[j]])))

63 Y_pred = []

64 for j in test_year:

65 Y_pred.append(int(regressor2.predict(np.array(j).reshape(1, 1))))

This part predicts the future medical workforce and appends the predicted value inside

variables for testing. In this case, the variables are y_pred and Y_pred, containing SVR and RF

predictions respectively.

66 def MAPE(test_data, predicted_data):

67 result = np.empty(test_data.shape)

68 for j in range(test_data.shape[0]):

69 result[j] = (test_data[j] - predicted_data[j]) / test_data[j]

70 result = np.mean(np.abs(result)) * 100

71 return result

72 mse_svr = np.mean(((test_value[col] - np.array(y_pred)) ** 2))

73 mse_rf = np.mean(((test_value[col] - np.array(Y_pred)) ** 2))

74 mape_svr = MAPE(np.asarray(test_value[col]),np.asarray(y_pred))

75 mape_rf = MAPE(np.asarray(test_value[col]),np.asarray(Y_pred))

 The prediction results are tested with the rest of split data, or using the original dataset.

MAPE and MSE are calculated by utilizing numpy library to achieve the formula. The accuracy

test results are stored in variables for analysis.

19

5.2. Result

 5.2.1. Comparison between Original Data and SDV Generated Data

Table 3: SDV Running Time

N of Sequence N of Data

Generated

Running Time

(s)

1 160 0.198

5 800 0.758

10 1600 1.499

15 2400 2.271

20 3200 3.037

25 4000 3.761

During the experiments, SDV requires significant amount of time to finish. For 25

sequence which generates 4000 data, processing time reached above 3 seconds during the data

generation phase. Processing time increases consistently throughout each addition of sequence,

around 0.7 seconds for every 5 additional sequences which in this context 800 data. The

following plot is the stats of generated data.

Processing time might differ between system, and could be dependent to individual

processor and RAM. This time data is tested using Intel i7 10870H processor with 8 gigabytes

of RAM. During the experiment, RAM load saw about 20% increase, while CPU saw only

10% increase. This means there is no bottleneck happening within the author’s system.

20

Figure 1: Stats of SDV Generated Data using Forensic Index

Figure 1 shows statistical description of the original and generated data. Sequences in

this context closely tied to the number of generated data as mentioned in previous sections. As

visualized by the Figure 1, data generated from this method has much lower deviation standard

than the original data. Lower deviation means the generated datasets are not as chaotic as the

original data, as their value are closer to the mean. Mean values of the generated datasets

fluctuate a lot, but the value wise, they are close to the original data. The generated dataset

values are also notably higher than the original mean value.

21

Figure 2: Stats of SDV Generated Data using Bedah Index

Judged from Figure 2, the deviation standard decrease seems consistent throughout

different data stats. The Figure 2 uses Bedah column index which has different data scale than

Figure 1. Running time did not change much between different data scales. Mean stat tendency,

however, seems to vary greatly between different indexes. Mean values of generated data in

Figure 1 seems fluctuates more than in Figure 2, in which the values are more stable. There is

no apparent correlation between the changes in mean value, and the usage of SDV as far as the

author can tell.

22

5.2.2. Comparison of Accuracy between SDV data and Original

Accuracy tests are visualized in the following spreadsheet format. Average score is

calculated using mean of MSE and MAPE from all columns.

Table 4: SDV Generated Data Error Value 6 data

Table 5: Original Data Error Value

Table 4 contains error values of prediction algorithms fitted with SDV generated data,

and evaluated with the original dataset. In Table 5, the original dataset is split to provide both

training and testing data. Table 4 uses 1 sequence or 6 data generated by SDV. In this

comparison both SDV generated data and original data are equal in data amount. Both error

value data are taken from the average of three experiments, to ensure their consistency.

The result is mildly satisfying in SDV’s favor. The average SDV MSE and MAPE score

for both SVR and RF are lower than using just the original dataset, albeit just a little bit. SVR

in particular saw a significant decrease in MAPE value, which is almost half of the original

data. SVR MSE value also saw a considerable decrease from 161 to 151.

MSE MAPE MSE MAPE

151 11.15 155.62 11.51

Avg

SVR RF

MSE MAPE MSE MAPE

161.5 21.55 158.5 15.1925

Avg

SVR RF

23

Table 6: SDV Generated Data Error Value 30 data

On 30 data as shown in Table 6, the error value of both SVR and RF rose slightly. The

error values did not exceed the original data, but are very close. Only SVR MAPE value

managed to stay far below the original. RF MSE error value in this experiment is equal to the

original dataset. SDV generated dataset is still better than the original data in this experiment

overall.

Table 7: SDV Generated Data Error Value 60 data

Table 8: SDV Generated Data Error Value 90 data

On 60 data as shown in Table 7, the error value of RF rose slightly. SVR error value is

completely unchanged from the previous experiment. RF MAPE score rose slightly, but the

change is very small. On 90 data shown in Table 8, both algorithm error value fell significantly,

surpassing the accuracy of using 6 SDV data. In this experiment, MAPE error value is at its

lowest achieved by RF.

MSE MAPE MSE MAPE

161.37 11.24 158.5 11.45

Avg

SVR RF

MSE MAPE MSE MAPE

161.37 11.24 160.75 12.48

Avg

SVR RF

MSE MAPE MSE MAPE

149.12 11.41 147 11.05

Avg

SVR RF

24

Table 9: SDV Generated Data Error Value 120 data

On 120 data, the error value fell significantly for RF, while SVR remained unchanged.

This marked the lowest MSE error value achieved in this experiment achieved by RF.

Table 10: SDV Generated Data Error Value 150 data

On 150 data, Random Forest Algorithm saw an increase in both MSE and MAPE score

compared to 90 data. RF on the other hand, saw very little decrease to its error values from

both MSE and MAPE. SDV generated dataset, once again, performed better than the original.

90 to 120 data seem to be the most optimal number of data to train RF algorithm in the context

of this research. SVR also achieved its lowest MSE error value at 90 to 120 data, while its

MAPE error value is the lowest on 6 data.

From these five data, SDV generated dataset performs better than the original dataset.

The error value differences between the original data and SDV generated data are not massive,

but prediction with synthetic data almost consistently more accurate than using the original

dataset.

MSE MAPE MSE MAPE

149.12 11.96 139 11.41

Avg

SVR RF

MSE MAPE MSE MAPE

161.37 11.24 146.5 11.13

Avg

SVR RF

25

5.2.3. Comparison of Accuracy SVR and RF Algorithm for SDV

Figure 3: SVR and RF using SDV

Error value shown by Figure 3 shown that both algorithms scored very similar. Overall,

there is no decisive answer as to which algorithm is better. According to MSE score, RF

produced less error. According to MAPE score, however, SVR produced less error. It is worth

noting that Random Forest performed better for the original dataset according to Table 5.

Random Forest seems to predict better at higher data availability as shown in Figure 3.

SVR only managed to maintain better performance over Random Forest at lower and mid data

availability, which are around 1 sequence to 15 sequences. SVR is also the most positively

affected algorithm, as the algorithm saw significant increase of accuracy by using SDV dataset

at lower sequence number based on Table 4.

