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CHAPTER 5 

IMPLEMENTATION AND RESULT 

 

5.1. Implementation 

The research is implemented by using the following code: 

1 data=pd.read_csv("./dataset_SKRIPSI/DATASET_SKRIPSI_TRANSPOSED2.csv", 

delimiter=';') 

2 data["Tahun"] = pd.to_datetime(data["Tahun"]) 

The first line of the code are basic commands to read a csv file containing the original 

dataset of medical workforce number. This csv file is already preprocessed using Microsoft 

Excel. The second line converts “Tahun” column to datetime format in order to make it 

compatible with SDV library. 

3 n=split*len(data) 

4 df_1 = data.iloc[:int(n),:] 

5 df_2 = data.iloc[int(n):,:] 

6 column_names = data.columns.values.tolist() 

 Line 3 declares split number based on percentage value inputted to the code in the split 

variable. The original data is then split according to the split value. Detail 1 being active means 

the code uses only the original data to train and test the algorithms. Detail 2 being active means 

the code test/evaluate the algorithms using the original data only. Column names variable is 

used to display or point currently experimented column.  

7 model = PAR(sequence_index="Tahun") 

8 model.fit(df_1) 

Line 7 assigns synthetic data model with “Tahun” as the sequence or time series index. 

The data is then fitted to the said model. 

9 ins=[5, 10, 15, 20, 25] 

10 time_data=[] 

11 start_time = time.time() 

12 new_data = model.sample(num_sequences=ins[0])  

13 time_data.append(time.time() - start_time) 

14 print("running time = ", (time.time() - start_time), " seconds") 
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Line 9 declares the number of sequences you desire. Sequence affects the total number 

of generated data. Line 10 declares time data variable used to count how much seconds passed 

during the data generations. Line 12 generates the new dataset based on the original dataset 

and number of previously declared sequence. Line 13 calculates time difference between the 

starting time declaration that is Line 14 and the present.  

15 stat1 = data.describe() 

16 stat2 = new_data.describe() 

17 plt.figure(figsize=(14,10)) 

18 x_desc = ["original data", "5 seq"] 

19 y_desc=[stat1.Anestesi[0],stat2.Anestesi[0]] 

20 plt.subplot(2,2,1) 

21 plt.plot(x_desc,y_desc,"-b",marker = '|',label='number of data') 

22 plt.legend(loc="upper left") 

23 x_desc = ["original data", "5 seq"] 

24 y_desc = [stat1.Anestesi[1],stat2.Anestesi[1]] 

25 plt.subplot(2,2,2) 

26 plt.plot(x_desc,y_desc,"-r",marker = '|',label='mean') 

27 plt.legend(loc="upper left") 

This part of the code visualizes some notable stats the generated datasets possess. Stat 

1 variable visualizes the original data, and Stat 2 visualizes the generated data. Describe 

function gives deviation standard, mean, max, min, and data amount possessed by each column 

in the dataset. Line 17 to 27 visualizes the stats using matplot library. 

28 test_value=[[0]*200 for i in range(21)] 

29 i=0 

30 if detail[1]==0: new_data=df_1 

31 for _ in range(20): 

32  if detail[2]==0: test_value[i]=df_2[column_names[i+1]].values 

33  elif detail[2]==1: test_value[i]=data[column_names[i+1]].values 

34  i=i+1 

Line 28 declares test data to be used as evaluator. Test data is chosen between two 

datasets, the first one being the byproduct of data split if the technique is used, the second one 

being the original dataset. Line 31 to 34 injects data from appropriate column from the original 

data to the test value variable. 
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35 x=[] 

36 year_init=2015-len(new_data) 

37 year=year_init 

38 for _ in range(int(len(new_data)): 

39  year=year+1 

40  x.append(year) 

41 if detail[2]==0: 

42  if detail[1]==1: 

43   x=[] 

44   x=new_data['Tahun'].values 

45 x = np.array(x) 

46 x = x.reshape(-1, 1) 

47 y = new_data.iloc[:,(col+1):(col+2)].values.astype(int) 

48 regressor = SVR() 

49 regressor.fit(x,y.ravel()) 

50 regressor2 = RandomForestRegressor() 

51 regressor2.fit(x, y.ravel()) 

Line 36 declares initial year variable containing year until 2015. The purpose is to fill 

out the time data, as SDV does not generate year. Training data is fitted into regressor models 

for the SVR and RF prediction to work. Both algorithms are implemented using sklearn library. 

X and Y are used to define the time and value axis for the prediction respectively.  

52 year=2015 

53 for j in test_value[col]: 

54  year=year+1 

55  test_year.append(year) 

56 if detail[1]==1: 

57  test_year=df_2['Tahun'].values 

58 if detail[2]==1: 

59  test_year=data['Tahun'].values 

60 y_pred = [] 
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61 for j in test_year: 

62  y_pred.append(int(regressor.predict([[j]]))) 

63 Y_pred = [] 

64 for j in test_year: 

65  Y_pred.append(int(regressor2.predict(np.array(j).reshape(1, 1)))) 

This part predicts the future medical workforce and appends the predicted value inside 

variables for testing. In this case, the variables are y_pred and Y_pred, containing SVR and RF 

predictions respectively. 

66 def MAPE(test_data, predicted_data): 

67  result = np.empty(test_data.shape) 

68  for j in range(test_data.shape[0]): 

69   result[j] = (test_data[j] - predicted_data[j]) / test_data[j] 

70   result = np.mean(np.abs(result)) * 100 

71  return result 

72 mse_svr = np.mean(((test_value[col] - np.array(y_pred)) ** 2)) 

73 mse_rf = np.mean(((test_value[col] - np.array(Y_pred)) ** 2)) 

74 mape_svr = MAPE(np.asarray(test_value[col]),np.asarray(y_pred)) 

75 mape_rf = MAPE(np.asarray(test_value[col]),np.asarray(Y_pred)) 

 The prediction results are tested with the rest of split data, or using the original dataset. 

MAPE and MSE are calculated by utilizing numpy library to achieve the formula. The accuracy 

test results are stored in variables for analysis. 
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5.2. Result 

 5.2.1. Comparison between Original Data and SDV Generated Data 

Table 3: SDV Running Time 

N of Sequence N of Data 

Generated 

Running Time 

(s) 

1 160 0.198 

5 800 0.758 

10 1600 1.499 

15 2400 2.271 

20 3200 3.037 

25 4000 3.761 

 

During the experiments, SDV requires significant amount of time to finish. For 25 

sequence which generates 4000 data, processing time reached above 3 seconds during the data 

generation phase. Processing time increases consistently throughout each addition of sequence, 

around 0.7 seconds for every 5 additional sequences which in this context 800 data. The 

following plot is the stats of generated data. 

Processing time might differ between system, and could be dependent to individual 

processor and RAM. This time data is tested using Intel i7 10870H processor with 8 gigabytes 

of RAM. During the experiment, RAM load saw about 20% increase, while CPU saw only 

10% increase. This means there is no bottleneck happening within the author’s system.  
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Figure 1: Stats of SDV Generated Data using Forensic Index 

 

Figure 1 shows statistical description of the original and generated data. Sequences in 

this context closely tied to the number of generated data as mentioned in previous sections. As 

visualized by the Figure 1, data generated from this method has much lower deviation standard 

than the original data. Lower deviation means the generated datasets are not as chaotic as the 

original data, as their value are closer to the mean. Mean values of the generated datasets 

fluctuate a lot, but the value wise, they are close to the original data. The generated dataset 

values are also notably higher than the original mean value. 
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Figure 2: Stats of SDV Generated Data using Bedah Index 

 

Judged from Figure 2, the deviation standard decrease seems consistent throughout 

different data stats. The Figure 2 uses Bedah column index which has different data scale than 

Figure 1. Running time did not change much between different data scales. Mean stat tendency, 

however, seems to vary greatly between different indexes. Mean values of generated data in 

Figure 1 seems fluctuates more than in Figure 2, in which the values are more stable. There is 

no apparent correlation between the changes in mean value, and the usage of SDV as far as the 

author can tell. 

 

 

 



22 

 

5.2.2. Comparison of Accuracy between SDV data and Original 

 

Accuracy tests are visualized in the following spreadsheet format. Average score is 

calculated using mean of MSE and MAPE from all columns. 

 

Table 4: SDV Generated Data Error Value 6 data 

 

 

Table 5: Original Data Error Value 

 

   

Table 4 contains error values of prediction algorithms fitted with SDV generated data, 

and evaluated with the original dataset. In Table 5, the original dataset is split to provide both 

training and testing data. Table 4 uses 1 sequence or 6 data generated by SDV. In this 

comparison both SDV generated data and original data are equal in data amount. Both error 

value data are taken from the average of three experiments, to ensure their consistency.  

The result is mildly satisfying in SDV’s favor. The average SDV MSE and MAPE score 

for both SVR and RF are lower than using just the original dataset, albeit just a little bit. SVR 

in particular saw a significant decrease in MAPE value, which is almost half of the original 

data. SVR MSE value also saw a considerable decrease from 161 to 151. 

 

 

MSE MAPE MSE MAPE

151 11.15 155.62 11.51

Avg

SVR RF

MSE MAPE MSE MAPE

161.5 21.55 158.5 15.1925

Avg

SVR RF
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Table 6: SDV Generated Data Error Value 30 data 

  

 

On 30 data as shown in Table 6, the error value of both SVR and RF rose slightly. The 

error values did not exceed the original data, but are very close. Only SVR MAPE value 

managed to stay far below the original. RF MSE error value in this experiment is equal to the 

original dataset. SDV generated dataset is still better than the original data in this experiment 

overall. 

Table 7: SDV Generated Data Error Value 60 data 

 

 

Table 8: SDV Generated Data Error Value 90 data 

 

 

On 60 data as shown in Table 7, the error value of RF rose slightly. SVR error value is 

completely unchanged from the previous experiment. RF MAPE score rose slightly, but the 

change is very small. On 90 data shown in Table 8, both algorithm error value fell significantly, 

surpassing the accuracy of using 6 SDV data. In this experiment, MAPE error value is at its 

lowest achieved by RF. 

 

 

MSE MAPE MSE MAPE

161.37 11.24 158.5 11.45

Avg

SVR RF

MSE MAPE MSE MAPE

161.37 11.24 160.75 12.48

Avg

SVR RF

MSE MAPE MSE MAPE

149.12 11.41 147 11.05

Avg

SVR RF
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Table 9: SDV Generated Data Error Value 120 data 

 

 

On 120 data, the error value fell significantly for RF, while SVR remained unchanged. 

This marked the lowest MSE error value achieved in this experiment achieved by RF.  

 

Table 10: SDV Generated Data Error Value 150 data 

 

 

On 150 data, Random Forest Algorithm saw an increase in both MSE and MAPE score 

compared to 90 data. RF on the other hand, saw very little decrease to its error values from 

both MSE and MAPE. SDV generated dataset, once again, performed better than the original. 

90 to 120 data seem to be the most optimal number of data to train RF algorithm in the context 

of this research. SVR also achieved its lowest MSE error value at 90 to 120 data, while its 

MAPE error value is the lowest on 6 data. 

From these five data, SDV generated dataset performs better than the original dataset. 

The error value differences between the original data and SDV generated data are not massive, 

but prediction with synthetic data almost consistently more accurate than using the original 

dataset. 

 

  

MSE MAPE MSE MAPE

149.12 11.96 139 11.41

Avg

SVR RF

MSE MAPE MSE MAPE

161.37 11.24 146.5 11.13

Avg

SVR RF
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5.2.3. Comparison of Accuracy SVR and RF Algorithm for SDV 

 

 

Figure 3: SVR and RF using SDV 

 

Error value shown by Figure 3 shown that both algorithms scored very similar. Overall, 

there is no decisive answer as to which algorithm is better. According to MSE score, RF 

produced less error. According to MAPE score, however, SVR produced less error. It is worth 

noting that Random Forest performed better for the original dataset according to Table 5. 

Random Forest seems to predict better at higher data availability as shown in Figure 3. 

SVR only managed to maintain better performance over Random Forest at lower and mid data 

availability, which are around 1 sequence to 15 sequences. SVR is also the most positively 

affected algorithm, as the algorithm saw significant increase of accuracy by using SDV dataset 

at lower sequence number based on Table 4.  

 

 

 

  


