CHAPTER 5
IMPLEMENTATION AND RESULTS

5.1. Implementation

Here we will import the numpy and pandas libraries using the following
command, lines 1 and 2 are used to import libraries used in the classification process,

NumPy to transform arrays, and pandas to handle data structures.

1. import numpy as np

2. import pandas as pd
Then the we will read the dataset file in the form of .csv, here using the Pandas
function, namely read_csv which can be seen in the third line and the 4th line is used to display
data.

3. df = pd.read csv('train.csv')
4. df

The 5th row is used to find out the data structure of the dataset used, such as the data
type, the number of columns that are not empty, the total number of rows, the number of
columns, and so on.

5. df.info()

In line 6, this section is used to drop the unnecessary column like LOAN_ID.
LOAN_ID dropped because it is not related to the classification process. And the 7th row is
used to display the data. Axis is set as 1 to indicate that the data to be dropped is in the form of
columns and inplace parameter is set as true so that the drop process is carried out on the
original data.

6. df.drop('Loan ID', axis=1, inplace=True)
7. df
In line 8 it is used to view statistics from data in the form of numeric data in the dataset,

and in line 9 to view statistics from data in the form of objects in the dataset.
8. df.describe ()

9. df.describe (include=['0"'])

The 10th row contains "value_counts()" which functions to see the value in the Gender
column, and in rows 13 to 16 there is a "loc™" which is used to retrieve data according to the
desired conditions and "shape[0]" to get the number of rows, like the number of Gender
columns that are "Male” and Loan_Status is “Y”, the number of Gender columns that are

“Male” and Loan_Status “N”, the number of Gender columns that are “Female” and

31

Loan_Status “Y”, the number of Gender columns that are “Female” and Loan_Status “N". We

will do this counting function for every variable to see their effect on loan yield.

10.

11.

12.

13.

14.

15.

print (df['Gender'] .value_counts())

print('\n'")

print('Male and Loan Status accepted:', df.loc[(df['Gender'] ==
'Male') & (df['Loan_Status'] == 'Y')].shape[0])

print('Male and Loan Status not accepted:', df.loc[(df['Gender']
== 'Male') & (df['Loan_Status'] == 'N')].shape[0])

print ('Female and Loan Status accepted:', df.loc[(df['Gender'] ==
'Female') & (df['Loan Status'] == 'Y')].shape[0])

print('Female and Loan Status not accepted:', df.loc|[(df['Gender']
== 'Female') & (df['Loan_ Status'] == 'N')].shape[0])

Here the function is to take null data using "isna" and add it up with "sum". To deal

with data that contains null rows where this data is categorical it will fill in null data with the

mode of the column, and where the data is numerical will fill in null data with the mean value

of a column.
l16. df.isna () .sum()
17. df['Gender'].fillna(df['Gender'] .mode() [0], inplace=True)
18. df['Married'].fillna(df['Married'].mode()[0], inplace=True)
19. df['Dependents'].fillna(df['Dependents'].mode () [0], inplace=True)
20. df['Loan Amount Term'].fillna(df['Loan Amount Term'].mode () [0],

21.

22.

23.

inplace=True)

df['Credit History'].fillna(df['Credit History'] .mode() [0],
inplace=True)

df['Self Employed'].fillna(df['Self Employed'] .mode() [0],
inplace=True)

df['LoanAmount'] .fillna (df['LoanAmount'] .mean (), inplace=True)
Here we will encode the Loan_Status, dependents, education, property area columns

with the replace function and the dictionary.

24.
25.
26.
27.
28.
29.
30.
31.

32.
33.

dic = {"N": 0, "Y": 1}

df = df.replace({"Loan_Status": dic})

dic = {"O": O, "1": 1, "2": 2, "3+": 3}

df = df.replace({"Dependents": dic})

dic = {"Not Graduate": 0, "Graduate": 1}

df = df.replace({"Education": dic})

dic = {"Rural": 0, "Semiurban": 1, "Urban": 2}

df = df.replace({"Property Area": dic})

Here we will looking the feature that influence loan status result.
corr mat = df.corr()

corr mat['Loan_ Status'] = abs(corr mat['Loan Status'])

32

34.

35.

sorted corr mat = corr _mat.sort values(by=['Loan Status'], ascen

ding=False)

sorted corr mat['Loan_Status']

Here we will use one hot label process on categorical columns that are not ordinal,

with the get_dummies function. One hot label is the process of changing a column into several

columns according to the value of that column.

36.
37.
38.

catg = ["Gender", "Married", "Self Employed"]

df = pd.get dummies(df, columns=catg)

df['Loan_Status'].value_counts()

After that we will separate the data for training and testing with a total of 70% for

training and 30% for testing where the testing data will be divided by 3 to see the result

consistency. And separate data for training and testing with a total of 60% for training and 40%

for testing where the testing data will be divided by 3 to see the result consistency, after that

data will be shuffled so that the data we use is not sequential.

39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

60.

61.
62.

df_yes_trainl = df yes.loc[df yes.index[range (0, 253)]]

df_yes testl =
df yes testl 1
df yes testl 2
df yes testl 3

df no_trainl =

df _yes.loc[df yes.index[range (253, 422)]]
= df yes.loc[df_ yes.index[range (253, 309)]]
= df yes.loc[df yes.index[range (309, 365)]]

df yes.loc[df yes.index[range (365, 422)]]
df no.loc[df no.index[range (0, 115)]]

df no_testl = df no.loc[df no.index[range (115, 192)]]

df no_testl 1 = df no.loc[df no.index[range (115, 141)]]
df no_testl 2 = df no.loc[df no.index[range (141, 167)]]
df no_testl 3 = df no.loc[df no.index[range (167, 192)]]

df yes train2 =
df yes test2 =
df yes test2 1
df yes test2 2
df yes test2 3

df no_train2 =

df yes.loc[df yes.index[range (0, 295)]]

df yes.loc[df yes.index[range (295, 422)]]
= df_yes.loc[df yes.index[range (295, 337)]]
= df_yes.loc[df yes.index[range (337, 379)]]
= df_yes.loc[df yes.index[range (379, 422)]]
df no.loc[df no.index[range (0, 134)]]

df no_test2 = df no.loc[df no.index[range (134, 192)]]

df no_test2 1 =
df no_test2 2 =
df no_test2 3 =
df trainl

df train2

df no.loc[df no.index[range (134, 153)]]
df no.loc[df no.index[range (153, 172)]]
df no.loc[df no.index[range (172, 192)]]
= pd.concat([df_yes trainl, df no_trainl],

ignore_index=True)

= pd.concat ([df_yes_train2, df no_train2],

ignore_index=True)

df testl = pd.concat([df_yes testl, df no_testl], ignore_index=True)
df testl l=pd.concat([df_yes testl 1,df no testl 1],

ignore_index=True)

33

63.

64.

65.
66.

67.

68.

69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.

df_testl 2=pd.concat([df_yes_ testl_2,df no_testl_ 2],
ignore_index=True)

df testl_3=pd.concat([df_yes_ testl_3,df no_testl_ 3],
ignore_index=True)

df test2 = pd.concat([df_yes test2, df no_test2], ignore_index=True)

df test2 l1=pd.concat([df_yes test2 1,df no test2 1],
ignore_index=True)

df test2 2=pd.concat([df_yes test2 2,df no test2 2],
ignore_index=True)

df test2 3=pd.concat([df_yes test2 3,df no test2 3],
ignore_index=True)

df trainl = df trainl.sample(frac=1l) .reset index(drop=True)

df train2 = df_train2.sample(frac=1l) .reset_index (drop=True)

df testl = df testl.sample(frac=1l) .reset index(drop=True)

df testl 1 = df_ testl_1l.sample(frac=1l).reset_ index(drop=True)

df testl 2

df testl 3

df test2 = df test2.sample(frac=1) .reset_ index(drop=True)

df test2 1

df testl 2.sample(frac=l) .reset_index(drop=True)

df testl 3.sample(frac=1l).reset_ index(drop=True)

df test2 1.sample(frac=1l) .reset_ index(drop=True)

df test2 2 = df test2 2.sample(frac=1l) .reset_index(drop=True)
df test2 3 = df test2_ 3.sample(frac=1l) .reset_index(drop=True)
var_input=['Dependents', 'Education’',

'CoapplicantIncome’', 'LoanAmount’',
'Loan_Amount_Term', 'Credit History', 'Property Area', 'Gender Female',
'Gender Male', 'Married No', 'Married Yes',6 'Self Employed No',6 'Self Emp
loyed Yes']

X trainl = df trainl[var_ input]

df trainl['Loan_Status']

y_trainl

X train2 df train2[var_input]
y_train2 = df train2['Loan_Status']

X testl = df testl[var_ input]

y_testl = df_testl['Loan_ Status']

X testl 1 = df_testl 1l[var_ input]
y_testl 1 = df testl 1['Loan_Status']
X testl 2 = df_testl_2[var_input]
y_testl 2 = df testl_2['Loan_Status']
X testl 3 = df_testl 3[var_input]
y_testl 3 = df testl 3['Loan_Status']
X test2 = df test2[var_input]

y_test2 = df test2['Loan_Status']

X test2 1 = df_test2 l[var_input]
y_test2 1 = df_test2 1['Loan_Status']
X test2 2 = df_test2 2[var_input]
y_test2 2 = df test2 2['Loan_Status']

X test2 3 = df_test2 3[var_input]

34

99. y test2 3 = df_test2 3['Loan_Status']
Here we will calculate the accuracy, precision, recall, and f1-score. To calculate the

precision. For the first time true positive and false positive is set to 0, when the original label
and prediction are the same where the original label is 1, then the true positive variable is added
1 and if the original label and prediction are not the same where the original label is 0, then the
false positive variable is added by 1. Then the precision is calculated with the true positive
formula divided by the sum of the true positives and false positives. To calculate recall. For the
first time true positive and false negative are set to 0, then if the original label and prediction
are the same where the original label is 1, then the true positive variable is added 1 and if the
original label and prediction are not the same where the original label is 1, then the false-
negative variable is added by 1. Then the recall is calculated using the true positive formula
divided by the sum of the true positives and false negatives. To calculate recall. For the first
time true positive, false positive, and false negative is first set to 0, if true positive is 1 then the
true positive variable is added 1, if the false positive is 1 then the false positive variable is
added 1, and if the false negative is 1 then the variable false-negative plus 1. Then the recall is
calculated using the formula 2 multiplied by the product of recall and precision which is then

divided by the sum of recall and precision.
100.def accuracy (true, pred):
101. accuracy = np.sum(true == pred) / len(true)
102. return accuracy
Lines 144 to 146 serve to calculate accuracy.
103.def precision(true, pred):
104. tp =0
105. fp =0

106. for i in range(len(true)):

107. if (true[i] == pred[i] and true[i] == 1):
108. tp = tp + 1
109. if (true[i] !'= pred[i] and true[i] == 0):
110. fp=~fp +1

111. precision = tp / (tp + f£p)
112. return precision

113.def recall(true, pred):

114. tp =0

115. fn =0

116. for i in range(len(true)):

117. if (true[i] == pred[i] and true[i] == 1):
118. tp=tp +1
119. if (true[i] !'= pred[i] and true[i] == 1):

35

120. fn = fn + 1

121. recall = tp / (tp + £n)
122. return recall

123.def f1l(true, pred):

124. tp =0

125. fp =0

126. fn =0

127. for i in range(len(true)):

128. if (true[i] == pred[i] and true[i] == 1):
129. tp=tp +1
130. if (true[i] !'= pred[i] and true[i] == 0):
131. fp=~fp +1
132. if (true[i] != pred[i] and truel[i] == 1):
133. fn = fn + 1

134. precision = tp / (tp + £p)

135. recall = tp / (tp + £n)

136. f1 = 2 * (recall * precision) / (recall + precision)
137. return f1l

And here we will create a class for logistic regression model to initiate a logistic
regression model. There is a learning rate, namely the training parameter to calculate the weight
correction value during the training process, the greater the learning rate value, the faster the
training process will run. Then there is num iteration, which is the parameter for the number of
iterations, the fit intercept which functions to divide the data, and verbose to debug by looking
at the number of losses. And intercept the value which if the fit intercept is false, then the line
will be forced to pass (0,0) and if true then the line will be fit to that data. initialized to the
value 1, and concatenates the array to the final X value in 1 separate column. Then use the
sigmoid functions to perform sigmoid calculations, if the value for the calculation is greater
than 0.5 it will be 1 and if it is smaller it will be 0. "Z" is the result of the calculation of the
linear regression formula, and "exp™ is exponential. For performing loss calculations, to check
and minimize errors from the model we will use the loss function in the model. "yp" is the label

of the prediction result, and "y" is the label on the original data.

138.class LogisticRegression:

139. def init_ (self, learning rate=0.01, num iterations=50000,
fit _intercept=True, verbose=False):

140. self.learning rate = learning rate

141. self.num iterations = num iterations

142. self.fit intercept = fit intercept

143. self.verbose = verbose

144. def b_intercept(self, X):

36

145. intercept = np.ones((X.shape[0], 1))

146. return np.concatenate((intercept, X), axis=1l)

147. def sigmoid function(self, z):

148. return 1 / (1 + np.exp(-z))

149. def loss(self, yp, y):

150. return (-y * np.log(yp) - (1 - y) * np.log(1l - yp)) .mean()

After that we will use the fit function for training the logistic regression model. if the
fit intercept parameter is true and the self fit intercept is obtained from the current model
initialization, then the b intercept function will be called. and initialize weight and bias to 0
which will be updated in each iteration. The training processes with the number of iterations
that are given in the parameters will be done, where the calculations will be carried out to find
linear regression and calculations will be carried out to find sigmoid. Then the calculations are
carried out to find the gradient of the error created by the model. Then there is the process of
changing the weight value which will be used in the next iteration. Then that calculations will
be carried out to find the new linear regression value which is used to find the new sigmoid
value. After that loss functions will be done to calculate loss, and then we will print the loss

value if the verbose is true or 1 and each 10,000 iterations.

151. def fit(self, X, y):

152. if self.fit intercept:

153. X = self.b intercept (X)

154. self .W = np.zeros (X.shape[l])

155. self.b = 0

156. print("----- Proses training ----- \n")

157. for i in range(self.num iterations):

158. z = np.dot(X, self.W) + self.b

159. yp = self.sigmoid function(z)

160. gradient w = np.dot(X.T, (yp - y)) / y.size
161. gradient b = np.sum((yp - y)) / y.size

162. self.W -= self.learning rate * gradient w
163. self.b -= self.learning rate * gradient b
le64. z = np.dot (X, self.W) + self.b

165. yp = self.sigmoid function(z)

166. loss = self.loss(yp, Yy)

167. if (self.verbose == True and i $ 10000 == 0):
168. print("--- loss: {:.6f} ---".format(loss))
169. def predict prob(self, X):

170. if self.fit intercept:

171. X = self.b_intercept (X)

172. return self.sigmoid function(np.dot(X, self.W) + self.b)

37

Here we will calculate the prediction probability based on the weight value obtained
from all iterations, by first checking whether the fit intercept that has been initialized is true or
not and if true then the b intercept function will be executed with the input value X, after that
the value X which has gone through the b intercept process will be entered into the sigmoid
formula to start the calculation. The prediction function is to predict the result between 0 or 1,
if it is less than 0.5 it will be 0 and if it is more than 0.5 it will be 1. Here we will set the

parameters for the model training, and the model will be tested on a predefined dataset.

173. def predict(self, X):
174. return self.predict_prob (X) .round ()
175.model = LogisticRegression(learning rate=0.0000001,

num_iterations=500000, verbose=True)
176 .model . fit (X train, y train)
177.pred = model.predict (X testl)
178.print('accuracy :', accuracy(y_testl, pred))
179.print('precision :', precision(y_testl, pred))

180.print('recall :', recall(y_ testl, pred))

181.print('fl-score :', fl(y_testl, pred))

182. pred = model.predict (X test2)

183. print('accuracy :', accuracy(y_test2, pred))
184. print('precision :', precision(y_test2, pred))
185. print('recall :', recall(y_test2, pred))

186. print('fl-score :', fl(y_test2, pred))

187. pred = model.predict (X test3)

188. print('accuracy :', accuracy(y_ test3, pred))
189. print ('precision :', precision(y_test3, pred))
190. print('recall :', recall(y_ test3, pred))

191. print('fl-score :', fl(y_ test3, pred))

Here we will start the extreme gradient boosting algorithm using the sigmoid function
where exp is used to calculate the exponent for each x value in the input array, gradient function
by entering the predicted sigmoid calculation into the preds variable, then the results are
reduced by labels (according to the formula), hessian function by entering the predictive
sigmoid calculation into the preds variable, then the result is multiplied by the result of 1 minus

the preds variable (according to the formula).
192.def sigmoid(x):

193. return 1 / (1 + np.exp(-x))
194.def grad(preds, labels):

195. preds = sigmoid (preds)

196. return (preds - labels)

197.def hess(preds, labels):

38

198. preds = sigmoid(preds)
199. return (preds * (1 - preds))
And we will do an initialization function which used to initialize a node, here it will

initialize several attributes, namely is_leaf which is used to check whether the node is a leaf or
not, leaf_score to store the score if the node is a leaf or not if true then it will not be split,
whether the node is a left child or right child, and places NA or missing value on the left or

right.
200.class TreeNode (object) :

201. def __init (self, is_leaf=False, leaf score=None,
split_feature=None, split_threshold=None, left child=None,
right child=None, NA direction='left'):

202. self.is leaf = is_leaf

203. self.leaf score = leaf score

204. self.split feature = split_ feature

205. self.split_ threshold = split_ threshold

206. self.left child = left child

207. self.right child = right child

208. self.NA direction = NA direction

After that we will create tree classes to initiate a tree where the root denotes a node
that is the main branch, here we define the minimum sample required for split, subsampling

column fraction, lambda, gamma, and minimum weight for split.
209.class Tree (object) :
210. def __init_(self, root=None, min sample split=None,
col sub frac=None, lamda=None, gamma=None, num_thread=None,

min child weight=None) :

211. self.root = root

212. self.min sample split = min sample split
213. self.col sub frac = col_sub_ frac

214. self.lamda = lamda

215. self.gamma = gamma

216. self.min child weight = min child weight

And we will calculate the predicted score for each leaf node that is formed using leaf

score formula.

217. def cal leaf score(self, Y):
218. return - (Y['grad'] .sum() / (Y['hess'] .sum() +
self.lamda))

Here the functions that used to perform split gain calculations. If the missing value is
left it will create a “GL” or Gradient left variable which contains the number of gradients left

plus the gradient value, “HL” or Hessian left which contains the number of Hessian left plus

39

the hessian value, “GR” or Gradient right which contains the number of gradient right, “HR”
or Hessian right which contains the number of Hessian rights. Then if other, then create a “GL”
or Gradient left variable which contains the number of gradients left, “HL” or Hessian left
which contains the number of Hessian left, “GR” or Gradient right which contains the number
of gradient right plus the value of gradient, “HR” or Hessian right which contains the sum of

the hessian rights plus the hessian value. Then in line 230, the gain is calculated using the split

gain formula.

219. def cal split gain(self, left Y, right Y, NA grad, NA hess,
NA direction='left'):

220. if (NA_direction == 'left'):

221. GL = left Y['grad'].sum() + NA grad

222. HL = left Y['hess'].sum() + NA hess

223. GR = right Y['grad'].sum()

224 . HR = right Y['hess'].sum()

225. else:

226. GL = left Y['grad'].sum()

227. HL = left Y['hess'].sum()

228. GR = right Y['grad'].sum() + NA grad

229. HR = right Y['hess'].sum() + NA hess

230. gain = 0.5 * ((GL**2/ (HL+self.lamda)) +
(GR**2/ (HR+self.lamda)) - ((GL+GR)**2/ (HL+HR+self.lamda))) -

self.gamma

Here we will do functions to select the best feature to split, the best split value, and
the best gain value, set “best split value” to mnone, “best gain” to infinity,
“best NA_direction” to left, “selected dt” the feature column along with its label, gradient ,
and hessian, then “mask” to find the missing value, “ NA dt” contains the mask variable,
“Non_NA dt” contains data that is not in the “mask” (looking for data that is not a missing
value), “NA_grad” contains the number of gradients from the missing value, “NA_hess”
contains the hessian number of missing values, Then resets the index "Non_NA_dt", adds 1
column named "feature _index" whose contents are filled in according to the order of the value
of a feature, "Non_NA_dt" contains the hessian number of data that is not a missing value.
After that, the rank calculation is carried out.

Line 211 is looped for the amount of data -1, then the current rank is searched and the
next rank is used using the rank formula. If the result of the current rank minus the next rank
is greater than the epsilon value, then the looping will continue if it is smaller, then the data
will be separated using the split gain formula, filling the variable "left_Y" with the initial value

up to "j" and the variable "right_Y" with value "j" to the last. From these two variables, a split

40

gain calculation will be carried out on each data entered in the "go_left" and "go_right"

variables, if the "go_left" data is greater then it will become the left branch and set “this_gain"

to " go_left" and if other then it will be the right branch and set “this_gain” to “go_right”. If

“this_gain” is greater than “best gain”, it will set “best_split value” to split_value, “best gain”

to “this gain”, “best NA direction” to “this_direction”.

231. def weighted quantile_ sketch(self, dt, feature):

232. best_split value = None

233. best gain = -np.inf

234. best NA direction = 'left'

235. selected dt = dt[[feature, 'label', 'grad', 'hess']]

236. mask = selected dt[feature].isnull()

237. NA dt = selected dt[mask]

238. Non NA dt = selected dt[~mask]

239. NA grad = NA dt['grad'].sum()

240. NA hess = NA dt['hess'].sum(

241. Non NA dt.reset_index(inplace = True)

242. Non NA dt['feature_index'] = Non NA dt[feature].argsort()

243. Non NA dt = Non NA dt.iloc[Non NA dt['feature index']]

244 . hess _sum = Non NA dt['hess'].sum()

245. Non NA dt['rank'] = Non NA dt.apply (lambda x
(1/hess_sum)*sum(Non_NA;dt[Non_NA_dt[feature] <
x[feature]]['hess']), axis=1)

246. for j in range (Non NA dt.shape[0]-1):

247. rk sk j, rk sk j 1 = Non NA dt['rank'].iloc[]:j+2]

248. if (abs(rk_sk_j-rk sk j 1) >= self.eps):

249. continue

250. split value = (Non_NA dt[feature].iloc[]j+1] +
Non NA dt[feature].iloc[j])/2

251. left Y = Non NA dt.iloc[: (j+1)]

252. right ¥ = Non NA dt.iloc[(j+1):]

253. go_left = self.cal split gain(left Y, right Y, NA grad,
NA hess, NA direction = 'left')

254. go_right = self.cal split gain(left Y, right Y,
NA grad, NA hess, NA direction = 'right')

255. if (go_left > go_right):

256. this_gain = go_left

257. this_direction = 'left'

258. else:

259. this gain = go_right

260. this direction = 'right'

261. if (this_gain > best gain):

41

262. best_split_value = split_value

263. best _gain = this_gain
264. best NA direction = this_direction
265. return feature, best split value, best gain,

best NA direction
Here we will select the best feature for split, best split value, best gain value. Here
“best gain” will be set to infinity, then “best feature”, “best split value”, “result” is set to
none, “features” is filled with a list of features or columns, “data” is filled with a combination
of inputs and labels. Then the number of features is looped, the contents of which are printing
the features, adding the WQS. Then it will look for the best split by sorting the results of the
WQS calculation. Then it will print the calculation of the best split, and fill in “best feature”,

“best_split_value”, “best gain”, “best NA direction”.

266. def find best split value and feature(self, X, Y):

267. best gain = -np.inf

268. best feature, best split value, results = None, None, None

269. features = list(X.columns) # get a list of all features

270. data = pd.concat([X, Y], axis = 1)

271. results = []

272. for j in range (len(features)):

273. print("----- Fitur dan WQS ----- \n", features[j])

274. results.append(self.weighted quantile_ sketch (data,
features[j]))

275. best = sorted(results, key = 1lambda =x: float(x[2]),
reverse = True) [0]

276. print("----—- Best split calc ----- \n", best)

277. best feature = best[0]

278. best split value = best[1]

279. best gain = best[2]

280. best NA direction = best[3]

281. return best feature, best split value, best gain,

best NA direction

And we will be done in a split direction. Here it will combine inputs and labels, define
a list of x and y columns, and if the NA_Direction is left then data with a value more than the
same as the split value will be placed in the right variable, then for data less than the split value,
it will be placed in the left variable along with the value NA (if any). Otherwise, data with a
value less than the split value will be placed in the left variable, while for data more than equal
to the split value, it will be placed in the right variable along with the NA value (if any). This

split will be returned in the form of data that has been separated.
282. def split(self, X, Y, feature, split value, NA direction):

42

283. data = pd.concat([X, Y], axis = 1)

284 . X cols, Y cols = list(X.columns), list(Y.columns)
285. print("----- Splitting ----- \n", feature, split_value)
286. if (NA direction == 'left'):

287. mask = (data[feature] >= split_value)

288. left = data[~mask] # left take all NA

289. right = data[mask]

290. else:

291. mask = (data[feature] < split value)

292. left = data[mask]

293. right = data[~mask] # right take all NA

294. return left[X cols], left[Y_cols], right[X cols],

right[Y cols]
Below is the function to create a tree, if the input is less than "min_sample_split" or
the tree depth is 0 or the number of hessian labels is less than the "min_child_weight", it will

calculate the leaf score.
295.def build tree(self, X, Y, depth):

296. print("----- Build a tree ----- \n")

297. if (X.shape[0] < self.min sample split) or (depth == 0)
or (Y['hess'].sum() < self.min child weight):

298. print("----- Buat leaf (X.shape[0] <
min_sample split / depth == 0 / Y['hess'].sum() < min_child weight)
————— \n")

299. print (X.shape[O0], self.min sample split,
Y['hess'].sum(), self.min child weight)

300. 1l score = self.cal leaf score(Y)

301. return TreeNode (is_leaf=True, leaf score=1l_score)

For checking whether there is overfitting or not we will use the function below. By
searching the “best feature”, “best split value”, “best gain”, “best NA direction” using the
“find_best_split value and feature(X sub, Y)” function. If the “best gain” value is less than
equal to O, then a leaf score will be calculated where the return process will be returned in the
form of a leaf node with the result of the leaf score. Then we will be splitting defined data into
“left X, “left Y™, “right X”, “right Y”. After that the left branch, right branch tree will be

created, and merges the right and left branch trees will be created too.

302. X sub = X.sample(frac=self.col_sub_ frac, axis=l)

303. best_ feature, best_split value, best_gain,
best NA direction = self.find best split value and feature (X sub,
Y)

304. print("----- Best split wvalue and feature ----- \n",

best feature, best split value, best gain, best NA direction)

43

305. if (best gain <= 0):

306. print("----- Buat leaf (best gain <= 0) ----- \n")

307. 1l score = self.cal leaf score(Y)

308. return TreeNode(is leaf=True, leaf score=l1_score)

309. left X, left Y, right X, right Y = self.split(X sub, Y,
best feature, best split value, best NA direction)

310. print("----- Buat cabang tree kiri ----- \n")

311. left child = self.build tree(left X, left Y, depth - 1)

312. print("----- Buat cabang tree kanan ----- \n")

313. right child = self.build tree(right X, right Y, depth -
1)

314. print("----- Gabung cabang tree kanan dan kiri ----- \n")

315. sub _tree = TreeNode(is_leaf=False, leaf score=None,
split feature=best feature, split_threshold=best split value,
left child=left child, right child=right_child,

NA direction=best NA direction)
316. return sub_tree

Here is the function for the process of creating a tree. The function below is used to
search for nodes that match the tree that has been defined, if the tree_node is a leaf, it will be
returned as “tree_node.leaf _score”. If the data is not a missing value and the direction is left,
then the left branch will be used. If the split value of a feature is less than the split limit value,

predictions will be made using the left branch tree. Otherwise it will be predicted using the

right branch tree.

317. def fit(self, X, X max_depth=3, min child weight=1,
col sub frac=l1, min sample split=10, lamda=1, gamma=0.05,
eps=0.001) :

318. self.min child weight = min_child weight

319. self.col sub frac = col_sub_ frac

320. self .min sample split = min sample split

321. self.lamda = lamda

322. self.gamma = gamma

323. self.eps = eps

324. self.root = self.build tree(X, Y, max depth)

325. def predict one(self, tree node, X):

326. if tree node.is leaf == True:

327. return tree node.leaf score

328. elif (type(X[tree node.split feature].item()) != int)
and (type (X[tree_node.split feature].item()) = float) and
(tree_node.NA direction == 'left'):

329. return self.predict one(tree_node.left child, X)

44

330. elif ((X[tree_node.split feature] <
tree_node.split threshold) .item()):

331. return self.predict one(tree node.left child, X)
332. else:
333. return self.predict one(tree node.right child, X)

Here are functions for making predictions. As long as n is the number of data inputs,

predictions will be made using the tree that has been made.

334. def predict(self, X):

335. preds = []

336. for n in range (X.shape[0]):

337. preds.append (self.predict one(self.root,
X.iloc[[n]]))

338. return np.array (preds)

The functions below are for training the XGBoost model. Here we will initialize
variables and initialize prediction labels ("best metric value" is filled with infinity, "best round"
is filled with none, creates a variable "metric_value_list", resets index of input and label), loop
for training where in this process a tree will be created, as long as parameter “i” is in the
parameter range "max_round". And predictions will be made using the existing tree to find out
the accuracy value or f1-score in the current model, calculate the gradient and hessian used. to
create a tree in the next iteration.

339.def xgboost_train(X, Y, eta, max round, max depth, row_sub frac,
col sub frac, min_child weight, min sample split, lamda, gamma,

eps, metric):

340. trees = []

341. initialize pred =1

342. best metric _value, best round = -np.inf, None
343. metric value list = []

344. X.reset_index (drop=True, inplace=True)

345. Y = Y.to_frame(name='label')

346. Y.reset_ index (drop=True, inplace=True)

347. Y['y pred'] = initialize pred

348. Y['grad'] = grad(Y['y pred'], Y['label'])

349. Y['hess'] = hess(Y['y pred'], Y['label'])

350. print("----- Initialization = ----- \n", Y['y pred'],
Y['grad'], Y['hess'])

351. print("----- Training loop ----- \n")

352. for i in range (max_ round) :

353. print("Training step: ", i, "-—-——————-—————- \n")

354. data = pd.concat([X, Y], axis=1)

355. print("----- Data ----—- \n", data)

356. data = data.sample(frac=row_sub frac, axis=0)

357. print("----- Data sub-sampling ----- \n", data)

358. Y Selected = data[['label', 'y pred', 'grad',6 'hess']]

359. print("----- Y selected ----- \n", Y Selected)

360. X Selected = data[list(X.columns)]

361. print("----- X selected ----- \n", X Selected)

362. print("----- Tree inizialitation ----- \n")

363. tree = Tree()

364. tree.fit(X_Selected, Y Selected, max_depth=max depth,
min child weight=min child weight, col_sub_ frac=col_sub frac,
min sample split=min_ sample split, lamda=lamda, gamma=gamma ,
eps=eps)

365. preds = tree.predict (X)

366. print("----—- Prediction ----- \n", preds)

367. Y['y pred'] = Y['y pred'] + eta * preds

368. Y['grad'] = grad(Y['y pred'], Y['label'])

369. Y['hess'] = hess(Y['y pred'], Y['label'])

370. print("----- In Iter===t- \n", Y['y pred'], Y['grad'],
Y['hess'])

371. trees.append (tree)

372. print("----- Tress --——- \n", trees)

373. print("----—- Test step: ", i, "----- \n")

374. test perf = []

375. avg = Y['y pred'].mean()

376. for j in Y['y pred']:

377. if (3 > avg):

378. test _perf.append (1)

379. else:

380. test perf.append(0)

381. if (metric == 'f1'):

382. m = f1(Y['label'], test perf)

383. print ("Fl-Score: ", m)

384. if (metric == 'accuracy'):

385. m = accuracy(Y['label'], test perf)

386. print("Accuracy: ", m, "\n")

387. metric value list.append (m)

388. if (m > best metric_value):

389. best metric value = m

390. best_round = i

391. best_trees = trees[: (i+l)]

392. return best trees, eta

Then we will make predictions using the previously trained XGBoost model. Here,

predictions will be made using the existing tree in the XGBoost model, by multiplying the

46

predictions from the test data with the learning rate and then adding up the old predictions. And
by creating the variables for the final prediction and the average of the predictions. From all

predictions that have been obtained if the value is above the average then it becomes 1, if below

it becomes 0.
393.def xgboost predict(trees, X test, eta):
394. preds = np.ones (X_test.shape[0])
395. print("----- Initialization predict ----- \n", preds)
396. print("----- Tree loop ----- \n")
397. for tree in trees:
398. print("----- Before predict ----- \n", preds)
399. preds = preds + tree.predict(X test) * eta
400. print("----- After predict ----- \n", preds)
401. adj preds = [] # buat prediksi akhir
402. avg = preds.mean()
403. print ("----- Predict score average ----- \n", avg)
404. for i in preds:
405. if (i > avg):
406. ad]j_preds.append (1)
407. else:
408. ad]j_ preds.append(0)
4009. return ad]j_preds

And finally after we train the XGBoost with the dataset that we are using, then after
being trained it will be tested with the test dataset that has been defined previously. Here the
parameters will be set to find the best results. predictions were made using the XGBoost model
that had been previously trained and using a previously defined dataset. Then the results of

accuracy, precision, recall, and f1-score will be printed.

410.model, eta = xgboost train(X train, y train,

411. eta = 0.4,

412. max_round = 45,

413. max_depth = 3,

414. row_sub_ frac = 0.95,
415. col sub frac =1,
416. min child weight =1,
417. min_sample split = 10,
418. lambda = 1,

419. gamma = O,

420. eps = 0.003,

421. metric = 'accuracy')

422 .pred = xgboost_predict(model, X testl, eta)

423.print('accuracy :', accuracy(y_testl, pred))

47

424

426
427

428.
429.
430.

431
432

433.

434

435.
436.

.print('precision :', precision(y_testl, pred))
425.

print('recall :', recall(y_testl, pred))
.print('fl-score :', fl(y_testl, pred))

.pred = xgboost_predict(model, X test2, eta)
print('accuracy :', accuracy(y_test2, pred))
print('precision :', precision(y_test2, pred))
print('recall :', recall(y_test2, pred))
.print('fl-score :', fl(y_test2, pred))

.pred = xgboost predict(model, X test3, eta)
print('accuracy :', accuracy(y_test3, pred))
.print('precision :', precision(y_test3, pred))
print('recall :', recall(y_test3, pred))
print('fl-score :', fl(y_test3, pred))

48

5.2. Result

In this project, the existing code produces the following:
e Logistic Regression

In the Logistic Regression model, 2 parameters are used, namely the learning rate and
number iteration. Here is the Logistic Regression result of several testing from different

parameter and dataset ratio.
Table 5.2.1 Logistic Regression Result 60:40

Pembagian | Iteration | Learning Testing | accuracy | precision | Recall | F1 score
data number | rate

60:40 50.000 0.0000001 1 0.6829 0.6829 1.0 0.8115

2 0.6829 0.6829 1.0 0.8115

0.6951 0.6951 1.0 0.8201

0.000001 il 0.6829 0.6829 1.0 0.8115

2 0.6829 0.6829 1.0 0.8115

3 0.6951 0.6951 1.0 0.8201

0.0000025 1 0.6463 0.6956 0.8571 | 0.7679

2 0.6097 0.6875 0.7857 | 0.7333

3 0.6463 0.7058 0.8421 | 0.7679

500.000 | 0.0000001 1 0.6829 0.6829 1.0 0.8115

2 0.6829 0.6829 1.0 0.8115

3 0.6951 0.6951 1.0 0.8201

0.000001 1 0.6829 0.6829 1.0 0.8159

2 0.6829 0.6829 1.0 0.8159

3 0.6951 0.6951 1.0 0.8201

0.0000025 1 0.6585 0.7 0.875 |0.7777

2 0.5853 0.6718 0.7678 | 0.7166

3 0.6463 0.7058 0.8421 | 0.7679

49

Table 5.2.2 Logistic Regression Result 70:30

Pembagian | Iteration | Learning Testing | accuracy | precision | Recall | F1 score
data number | rate

70:30 50.000 0.0000001 1 0.6885 0.6885 1.0 0.8155

2 0.6721 0.6833 0.9762 | 0.8039

3 0.6825 0.6825 1.0 0.1113

0.000001 1 0.6885 0.6885 1.0 0.8155

2 0.6721 0.6833 0.9762 | 0.8039

3 0.6825 0.6825 1.0 0.8113

0.0000025 15 0.6721 0.6833 0.9762 | 0.8039

2 0.6393 0.6786 0.9048 | 0.7755

3 0.7460 0.7368 0.9767 | 0.8399

500.000 | 0.0000001 1 0.6885 0.6885 1.0 0.8155

2 0.6721 0.6833 0.9762 | 0.8039

3 0.6825 0.6825 1.0 0.8113

0.000001 1 0.6885 0.6885 1.0 0.8155

2 0.6885 0.6855 1.0 0.8155

3 0.6825 0.6825 1.0 0.8113

0.0000025 1 0.6721 0.6833 0.9762 | 0.8039

2 0.6721 0.6964 0.9286 | 0.7959

3 0.7460 0.7288 1.0 0.8431

50

o XGBoost

The XGBoost model uses 10 parameters, namely learning rate, max_round, max_depth,
row_sub_frac, xol_sub_frac, min_child_weight, min_sample_split, lambda, gamma and
epsilon. Here is the extreme gradient boosting result of several testing from different parameter
and dataset ratio.

Table 5.2.3 Extreme Gradient Boosting Result 60:40

Pembagian | Iteration | Learning | Testing | accuracy | precision | Recall | F1
data number | rate score
60:40 30 0.3 1 0.8170 0.8474 0.8928 | 0.8695
2 0.7195 0.8 0.7857 | 0.7927
3 0.7926 0.8225 0.8947 | 0.8571
0.4 1 0.8658 0.8461 0.9821 | 0.9090
2 0.7073 0.7758 0.8035 | 0.7894
3 0.8170 0.85 0.8947 | 0.8717
05 1 0.8170 0.8596 0.875 |0.8672
2 0.6829 0.7884 0.7321 | 0.7592
3 0.7560 0.8245 0.8245 | 0.8245
45 0.3 1 0.8292 0.8387 0.9285 | 0.8813
2 0.7195 0.7619 0.8571 | 0.8067
3 0.7926 0.8225 0.8947 | 0.8571
0.4 1 0.7814 0.8412 0.9464 | 0.8907
2 0.6585 0.7592 0.7321 | 0.7454
3 0.7748 0.8474 0.8771 | 0.8620
0.5 1 0.8658 0.8571 0.9642 | 0.9075
0.7251 0.7719 0.7857 | 0.7787
3 0.8536 0.8461 0.9649 | 0.9016

51

Table 5.2.4 Extreme Gradient Boosting Result 70:30

Pembagian | Iteration | Learning | Testing | accuracy | precision | Recall | F1
data number | rate score
70:30 30 0.3 1 0.8196 0.8163 0.9523 | 0.8791
2 0.8032 0.8 0.9523 | 0.8695
3 0.8253 0.9767 0.9767 | 0.8842
0.4 1 0.8032 0.8125 0.9285 | 0.8666
2 0.7613 0.7906 0.8095 | 0.8
3 0.7777 0.8085 0.8837 | 0.8444
0.5 1 0.7704 0.8043 0.8809 | 0.8409
v, 0.7377 0.7826 0.8571 | 0.8181
3 0.7936 0.8125 0.9069 | 0.8571
45 0.3 il 0.8032 0.8125 0.9285 | 0.8666
2 0.7840 0.8 0.8571 | 0.8275
3 0.7936 0.8260 0.8837 | 0.8837
0.4 1 0.7704 0.8043 0.8809 | 0.8409
2 0.7377 0.7826 0.8571 | 0.8181
3 0.7936 0.8125 0.9069 | 0.8571
0.5 1 0.7540 0.8139 0.8333 | 0.8235
2 0.7613 0.8048 0.7857 | 0.7951
3 0.7619 0.8333 0.8139 | 0.8235

52

5.3. Analysis

In this project, for the first time, data collection was carried out by reading the dataset.
Then EDA is carried out, here will be analyzed the variables in the dataset used, which ones
affect and do not affect the loan status. After that, data cleaning is carried out by removing
unused columns, filling in missing values with the mode or mean of the variable column. And
the separation of the data in 2 ways, namely 70% training data, 30% test data and 60% training
data, 40% test data, each of them will be divided into three tests to see the consistency of the
model, then it will be used for testing the Extreme Gradient Boosting and Logistic Regression

algorithm models.

The way Logistic Regression works is by calculating the linear regression function,
then predictions are made using the sigmoid function which is then calculated from the gradient
of the error created by this algorithm. From the error, the gradient is multiplied by the learning
rate, where the results of the calculation used in the next iteration have drawbacks, by using

this model and several parameters applied, namely the learning rate and number iteration.

The way extreme gradient boosting works is the first prediction is made, then gradient
and hessian calculations will be carried out, then the results will be made a tree where the tree
is made based on the best variables. Then the tree that has been made will be predicted, the
process will be looped until the iteration process is complete, so that it will produce some of
the best trees. With this model and several parameters applied. The accuracy result can change
because this algorithm forms a tree with random data that is selected to be a sample of the
entire dataset which aims to reduce overfit. The one of sample data that used in this experiment

as shown below :

53

Table 5.3.1 Extreme Gradient Boosting Sample Data

Dependents | Education | Applicant y_pred grad hess
Income

427 1 1 14692 0.914935 [0.714009 | 0.2042
357 0 1 12500 0.914935 [0.714009 | 0.2042
363 0 1 14166 0.914935 [-0.285991 | 0.2042
110 0 1 12137 0.914935 [-0.285991 | 0.2042
233 2 1 6250 0.914935 | -0.285991

383 0 i’ 2432 0.914935 [-0.285991 [0.2042
158 3 1 5266 0.914935 [-0.285991 | 0.2042
57 2 1 5417 0.914935 [-0.285991 | 0.2042
26 0 1 4843 0.914935 | -0.285991 | 0.2042
253 0 1 2980 0.914935 [-0.285991 | 0.2042

If the two models are compared, the better one is extreme gradient boosting because it
has gradient and hessian as the error calculation while logistic regression only uses gradient for
error calculation. Then extreme gradient boosting can choose the best variable using the gain
calculation function, while logistic regression cannot choose a variable because this model uses
all existing variables. Extreme gradient boosting can have better accuracy because apart from

being able to choose the best few variables, this model has its weighting for the variables used.

From the three trials, we can see that in this project the results between the two are
consistent, which indicates that there is no overfitting. For comparison of dataset ratios between
70:30 and 60:40, logistic regression shows that the classification result is better at 70:30,
although extreme gradient produces better accuracy than logistic regression, but extreme
gradient boosting have the highest accuracy result at 60:40, although the highest accuracy
results in this project were obtained with a data ratio of 60:40, overall the average accuracy
result was better at 70:30 this is due to poor training data, which the dataset has many missing
values, and the influence of the parameters used on the dataset. In addition, the Project also
conducted several trials to get the best accuracy results by changing the parameters in the
model, the parameters that were changed were the learning rate and the number of iterations.

The best parameter from these experiments for extreme gradient boosting is a learning rate of

54

0.5 and the number of iterations is 45. While for Logistic Regression the best parameter is a
learning rate of 0.0000025 and the number of iterations is 500000.

55

