

8

CHAPTER 4

ANALYSIS AND DESIGN

In this research project, to predict which creditors are accepted and rejected, Logistic

Regression and Extreme Gradient Boosting algorithms will be implemented. The dataset used

is taken from Kaggle which contains 13 variables including loan id, gender, marital status,

dependents, education, self-employed, applicant income, applicant income, total loan, loan

term, credit history, property area, loan status.

Figure 4.1 Workflow

9

4.1. Data Collection

The first step is to import NumPy and pandas which are used to read the dataset CSV

file and perform calculations. Then data collection is carried out, namely reading the dataset,

displaying the dataset information, the number of columns and rows from the dataset, and

eliminating unnecessary columns such as Loan_Id.

Table 4.1.1 Dataset

Variable Description Data Type

Loan_ID Unique Loan ID Integer

Gender Male/Female Character

Married Applicant marital status (Y/N) Character

Dependent Applicant number of dependent Integer

Education
Applicant education (Graduate/Not

Graduate)
String

Self_Employed Self employed (Y/N) Character

ApplicantIncome Applicant income Integer

CoapplicantIncome Coapplicant income Integer

LoanAmount Loan amount in thousand Integer

Loan_Amount_Ter

m
Terms of loan in months Integer

Credit_History Credit history meets guidelines Integer

Property_Area Urban / Semi Urban / Rural String

Loan_Status Loan approved (Y/N) String

10

Table 4.1.2 Dataset Information

Column Non-Null Count Dtype

0 Loan_ID 614 non-null object

1 Gender 601 non-null object

2 Married 611 non-null object

3 Dependents 599 non-null object

4 Education 614 non-null object

5 Self_Employed 582 non-null object

6 ApplicantIncome 614 non-null float64

7 CoapplicantIncome 614 non-null float64

8 LoanAmount 592 non-null float64

9 Loan_Amount_Term 600 non-null float64

10 Credit_History 564 non-null float64

11 Property_Area 614 non-null object

12 Loan_Status 614 non-null object

11

4.2. EDA (Exploratory Data Analysis)

Then EDA (Exploratory Data Analysis) is carried out to find out and understand the

contents of the dataset, from this step it can be seen which variables affect the results of the

loan application decision (accepted or rejected).

Table 4.2.1 EDA

Column EDA Result

Loan_Status Y 422

N 192

Name: Loan_Status, dtype: int64

Gender Male 489

Female 112

Name: Gender, dtype: int64

Male and Loan Status accepted: 339

Male and Loan Status not accepted: 150

Female and Loan Status accepted: 75

Female and Loan Status not accepted: 37

Married Yes 398

No 213

Name: Married, dtype: int64

Married and Loan Status accepted: 285

Married and Loan Status not accepted: 113

Not Married and Loan Status accepted: 134

Not Married and Loan Status not accepted: 79

Dependents 0 345

1 102

2 101

3+ 51

Name: Dependents, dtype: int64

Dependents 0 and Loan Status accepted: 238

Dependents 0 and Loan Status not accepted: 107

Dependents 1 and Loan Status accepted: 66

Dependents 1 and Loan Status not accepted: 36

Dependents 2 and Loan Status accepted: 76

Dependents 2 and Loan Status not accepted: 25

Dependents 3 and Loan Status accepted: 33

Dependents 3 and Loan Status not accepted: 18

12

Column EDA Result

Self_Employed No 500

Yes 82

Name: Self_Employed, dtype: int64

Self Employed and Loan Status accepted: 56

Self Employed and Loan Status not accepted: 26

Not Self Employed and Loan Status accepted: 343

Not Self Employed and Loan Status not accepted:

157

ApplicantIncome Minimum Applicant Income: 150

Maximum Applicant Income: 81000

Mean Applicant Income: 5403.459283387622

Accepted Applicant Income:

2500 8

3333 5

6250 4

2583 4

6000 4

 ..

1863 1

3400 1

3900 1

1926 1

7787 1

Name: ApplicantIncome, Length: 364, dtype: int64

Declined Applicant Income:

4583 4

2600 3

10000 3

4166 3

5000 3

 ..

3708 1

2917 1

1800 1

7333 1

6400 1

Name: ApplicantIncome, Length: 172, dtype: int64

13

Column EDA Result

LoanAmount Minimum Loan Amount: 9.0

Maximum Loan Amount: 700.0

Accepted Loan Amount:

120.0 17

110.0 12

100.0 11

130.0 10

187.0 9

 ..

236.0 1

380.0 1

296.0 1

156.0 1

59.0 1

Name: LoanAmount, Length: 161, dtype: int64

Declined Loan Amount:

110.0 5

160.0 4

113.0 4

80.0 4

100.0 4

 ..

308.0 1

124.0 1

570.0 1

111.0 1

214.0 1

Name: LoanAmount, Length: 119, dtype: int64

14

Column EDA Result

Credit_History 1.0 475

0.0 89

Name: Credit_History, dtype: int64

Credit History 1 and Loan Status accepted: 378

Credit History 1 and Loan Status not accepted: 97

Credit History 0 and Loan Status accepted: 7

Credit History 0 and Loan Status not accepted: 82

Property_Area Semiurban 233

Urban 202

Rural 179

Name: Property_Area, dtype: int64

Urban and Loan Status accepted: 133

Urban and Loan Status not accepted: 69

SemiUrban and Loan Status accepted: 179

SemiUrban and Loan Status not accepted: 54

Rural and Loan Status accepted: 110

Rural and Loan Status not accepted: 69

15

4.3. Data Cleaning

Then data cleaning will be carried out, this step is done so that the accuracy of the

decision is better. Here it will be checked and filled in for the missing value. For categorical

data such as Gender, Married, Dependents, Loan_Amount_Term, Credit_History,

Credit_History, Self_Employed will be filled with the mode of each variable. And for

numerical data such as LoanAmount, it will be filled with the mean of the variable.

Table 4.3.1 Sum of Missing Value

Column Total missing value before Total missing

value after

Gender 13 0

Married 3 0

Dependents 15 0

Education 0 0

Self_Employed 32 0

ApplicantIncome 0 0

CoapplicantIncome 0 0

LoanAmount 22 0

Loan_Amount_Term 14 0

Credit_History 50 0

Property_Area 0 0

Loan_Status 0 0

16

Table 4.3.2 Before Data Cleaning

 Gender Married Dependents Education Self_E

mploye

d

Applic

antInco

me

Coappl

icantIn

come

Loan

Amo

unt

Loan_

Amoun

t_Term

Credit_

History

Propert

y_Area

Loan

_Stat

us

0 Male No 0 Graduate No 5849 0.0 NaN 360.0 1.0 Urban Y

1 Male Yes 1 Graduate No 4583 1508.0 128.

0

360.0 1.0 Rural N

2 Male Yes 0 Graduate Yes 3000 0.0 66.0 360.0 1.0 Urban Y

3 Male Yes 0 Not

Graduate

No 2583 2358.0 120.

0

360.0 1.0 Urban Y

...

613 Female No 0 Graduate Yes 4583 0.0 133.

0

360.0 0.0 Semiur

ban

N

17

Table 4.3.3 After Data Cleaning

 Gender Married Dependents Education Self_Em

ployed

Appli

cantIn

come

Coappl

icantIn

come

LoanA

mount

Loan_

Amou

nt_Ter

m

Credit_

History

Propert

y_Area

Loan

_Stat

us

0 Male No 0 Graduate No 5849 0.0 146.41

2162

360.0 1.0 Urban Y

1 Male Yes 1 Graduate No 4583 1508.0 128.0 360.0 1.0 Rural N

2 Male Yes 0 Graduate Yes 3000 0.0 66.0 360.0 1.0 Urban Y

3 Male Yes 0 Not

Graduate

No 2583 2358.0 120.0 360.0 1.0 Urban Y

...

613 Female No 0 Graduate Yes 4583 0.0 133.0 360.0 0.0 Semiur

ban

N

18

4.4. Encoding

After that, so that the database can be read by the machine, encoding will be carried

out. This step will change the Property_Area column from Rural / Semi Urban / Urban to 0 / 1

/ 2, create new columns such as gender to gender_male and gender_female.

Table 4.4.1 Encoding

Column Before encoding After encoding

Gender Male / Female new column : Gender_Female,

Gender_Male

Married Graduate / Not

Graduate

new column :

Married_Yes

Married_No

Dependents 0 / 1 / 2 / 3+ 0 / 1 / 2 / 3

Education Graduate / Not graduate 1 / 0

Self_Employed Yes / No new column :

Self_Employed_Yes

Self_Employed_No

Property_Area Rural / Semiurban /

Urban

0 / 1 / 2

Loan_Status Y / N 1 / 0

4.5. Features Selection

In this step we will look for which variable have an effect on loan status using the

correlation function.

Table 4.5.1 Features Selection

Variable Values

Loan_Status 1.000000

CoapplicantIncome 0.540556

LoanAmount 0.036416

LoanAmount_Term 0.022549

ApplicantIncome 0.004710

19

4.6. Splitting Dataset

Then we will split the data into a data train to create a machine learning model and test

data to test the performance of the model, here we will divide the data into 70% for the data

train and 30% for the data test which divided by three so it will be three trials for testing, and

we will divided it too into 60% for the data train and 40% for the data test which divided by

three so it will be three trials for testing.

Figure 4.6.1 Splitting Dataset

20

4.7. Building model using Logistic Regression

After that, we will build a model using logistic regression. For logistic regression, the

first author determines several parameters such as learning rate and number of iterations, and

initializes weight and bias to 0.

Table 4.7.1 Initializes Weight and Bias

Features Weight Bias

Dependents 0 0

Education 0 0

ApplicantIncome 0 0

CoapplicantIncome 0 0

LoanAmount 0 0

Loan_Amount_Term 0 0

Credit_History 0 0

Property_Area 0 0

Loan_Status 0 0

Gender_Female 0 0

Gender_Male 0 0

Married_No 0 0

Married_Yes 0 0

Self_Employed_No 0 0

Self_Employed_Yes 0 0

21

Then the training process for some iteration parameters is carried out using this linear

regression function :

𝑧 = 𝑤 . 𝑥 + 𝑏

Function 4.7.1 Linear Regression Function

z = Linear regression

w = weights

x = input data

b = bias

For the example of calculation author use 1 row data of dataset, shown as below

𝑧 = 𝑤 . 𝑥 + 𝑏

= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] . [1 1 1 8080 2250 180 360 1 2 0 1 0 1 1 0] + 0

= 0

And using sigmoid function as shown below:

𝑦̂ =
1

1 + 𝑒−(𝑧)

Function 4.7.2 Sigmoid Function

𝑦̂ = Hypothesis / prediction

Z = Linear regression

For the example of calculation author use 1 row data of dataset, shown as below

𝑦̂ =
1

1 + 𝑒−(𝑧)

=
1

1 + 𝑒−(0)

 = 0.5

22

Then we will calculate the gradient function to find the optimal values of the parameter,

like new weight and new bias using this function:

𝑑𝑤 = (
1

𝑚
) ∗ (𝑦̂ − 𝑦) . 𝑥

Function 4.7.3 The Partial Derivative of Loss Function with Respect to Weight Function

𝑑𝑏 = (
1

𝑚
) ∗ (𝑦̂ − 𝑦)

Function 4.7.4 The Partial Derivative of Loss Function with Respect to Bias Function

𝑤: = 𝑤 − 𝑙𝑟 ∗ 𝑑𝑤

Function 4.7.5New Weight Function

𝑏: = 𝑏 − 𝑙𝑟 ∗ 𝑑𝑏

Function 4.7.6New Bias Function

w: = new weights

b: = new bias

lr = learning rate

w = weight

b = bias

dw = The partial derivative of loss function with respect to weight

db = The partial derivative of loss function with respect to bias

m = number of training data

𝑦̂ = Hypothesis / prediction

y = True value

X = Input data

For the example of calculation of 𝑑𝑤 author use 1 row data of dataset, shown as below

𝑑𝑤 = (
1

𝑚
) ∗ (𝑦̂ − 𝑦) . 𝑥

= (
1

1
) ∗ (0.5 − 1) . [1 1 1 8080 2250 180 360 1 2 0 1 0 1 1 0]

= -0.5 . [1 1 1 8080 2250 180 360 1 2 0 1 0 1 1 0]

=[−0.5 − 0.5 − 0.5 − 4040 − 1125 − 90 − 180 − 0.5 − 1 0 − 0.5 0 − 0.5 − 0.5 0]

23

For the example of calculation of 𝑑𝑏 author use 1 row data of dataset, shown as below

𝑑𝑏 = (
1

𝑚
) ∗ (𝑦̂ − 𝑦)

 = (
1

1
) ∗ (0.5 − 1)

 = −0.5

For the example of calculation of 𝑤: author use 1 row data of dataset, shown as below

𝑤: = 𝑤 − 𝑙𝑟 ∗ 𝑑𝑤

= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] − 0.0000001 ∗ [−0.5 − 0.5 − 0.5 − 4040 − 1125 − 90 − 180 − 0.5 − 1 0 − 0.5 0 − 0.5 − 0.5 0]

= [−0.00000005 − 0.00000005 − 0.00000005 − 0.000404 − 0.0001125 − 0.000009 −0.000018 −

0.00000005 − 0.0000001 0 − 0.00000005 0 − 0.00000005 − 0.00000005 0]

For the example of calculation of 𝑏: author use 1 row data of dataset, shown as below

𝑏: = 𝑏 − 𝑙𝑟 ∗ 𝑑𝑏

 𝑏: = 0 − 0.0000001 ∗ −0.5

 = 0.00000005

After finding the new weight and new bias we will calculate the new linear regression

function using that new weight and new bias, and we calculate the new sigmoid function. Then

we calculate prediction using the function as show below

y=1 when 𝑦̂ ≥ 0.5

y=0 when 𝑦̂ < 0.5

Function 4.7.7 Predict Function

y = true value

𝑦̂ = prediction value

24

For the example of calculation author use 1 row data of dataset, and the result as shown

in Function 4.6.2 is y = 0.5 so 𝑦̂ =1

Then author will calculate the loss function using this function:

𝑗(𝑤, 𝑏) =
1

𝑚
∑

𝑚

𝑖=1

𝐿(𝑦̂(𝑖), 𝑦(𝑖))

= −
1

𝑚
∑

𝑚

𝑖=1

[(𝑦̂(𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦̂(𝑖)) + (1 − 𝑦̂(𝑖)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑦̂(𝑖)))]

Function 4.7.8 Loss Function

j(w,b) = loss of the training set

L = loss of the training example

i = data ke

m = number of training data

𝑦̂ = Hypothesis / prediction

y = True value

For the example of calculation author use 1 row data of dataset, shown as below

𝑗(𝑤, 𝑏) = −
1

𝑚
∑

𝑚

𝑖=1

[(𝑦̂(𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦̂(𝑖)) + (1 − 𝑦̂(𝑖)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑦̂(𝑖)))]

= −
1

1
[(0.5(0.5) + (1 − 0.5) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 0.5))]

= −1[(0.5(0.5) + (1 − 0.5) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 0.5))]

= -1 * -0.301029995

= 0.301029995

And for the last, we will analyze the result, like the accuracy, precision, recall, f1-score.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

Function 4.7.9 Accuracy Function

The following is an accuracy function where the False Positive and False-negative

values are almost the same. The description of this function is, TN is True-negative, FP is False-

positive, and is False-negative.

25

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Function 4.7.10 Precision Function

Then precision meaning is the ratio of the correct positive predictions to the total

positive predictions. The description of this function is, TP is True-positive, and is False-

positive.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Function 4.7.11 Recall Function

Then recall meaning is the ratio of the correct positive predictions from all the original

data. The description of this function is,TP is True-positive, and is False-negative.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Function 4.7.12 F-1 Score Function

Fi score meaning is the average of recall and precision.

4.8. Building model using Extreme Gradient Boosting

In the first xgboost, the author will initialize the calculation of the prediction score with

a value of 1.

And then the loss for each data will be calculated using the gradient & hessian function

formula.

𝑔 = 𝑙′(𝑦̂) =
𝜕𝑙

𝜕𝑦̂
=

1

1 + 𝑒−(𝑦̂)
− 𝑦

Function 4.8.1 Gradient Function

l' = first loss

𝑦̂ = prediction

y = true value

ℎ = 𝑙′′(𝑦̂) =
𝜕2𝑙

𝜕2𝑦̂
= 𝑝(1 − 𝑝)

Function 4.8.2 Hessian Function

l'' = second loss

𝑦̂ = prediction

p = sigmoid from prediction label

26

For the example of calculation author use 1 row data of dataset, shown as below

𝑔 = 𝑙′(𝑦̂) =
𝜕𝑙

𝜕𝑦̂
=

1

1 + 𝑒−(𝑦̂)
− 𝑦

 =
1

1+𝑒−(1)
− 1

 = 0.268941421

 ℎ = 𝑙′′(𝑦̂) =
𝜕2𝑙

𝜕2𝑦̂
= 𝑝(1 − 𝑝)

 =
1

1+𝑒𝑦̂ (1 −
1

1+𝑒𝑦̂)

 = 0.731058578 (1 − 0.731058578)

 = 0.1966119335326179

Then from the results of the loss function, a tree will be created and implemented rank

formula:

𝑟𝑘(𝑧) =
1

∑(𝑥,ℎ)𝜖𝐷𝑘
ℎ

 ∑
(𝑥,ℎ)𝜖𝐷𝑘𝑥<𝑧

ℎ

Function 4.8.3 Rank Function

∑(𝑥,ℎ)𝜖𝐷𝑘
ℎ = total hessian from all data

∑(𝑥,ℎ)𝜖𝐷𝑘𝑥<𝑧 ℎ = total hessian from all eligible data, where all data has a value less

than the current value

ℎ = hessian

For the example of calculation author use 1 feature data of dataset called credit history

which the label is 1, shown as below

𝑟𝑘(𝑧) =
1

∑(𝑥,ℎ)𝜖𝐷𝑘
ℎ

 ∑
(𝑥,ℎ)𝜖𝐷𝑘𝑥<𝑧

ℎ

=
1

80.21766876252457
 ∗ 500 ∗ 0.1966119335326179 = 1.2549

27

And for the limiting value for splitting data, using the split gain function formula:

𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑𝑖𝜖𝐼𝐿 𝑔𝑖)
2

∑𝑖𝜖𝐼𝐿 𝑔𝑖 + 𝜆
+

(∑𝑖𝜖𝐼𝑅 𝑔𝑖)
2

∑𝑖𝜖𝐼𝑅 𝑔𝑖 + 𝜆
−

(∑𝑖𝜖𝐼 𝑔𝑖)
2

∑𝑖𝜖𝐼 𝑔𝑖 + 𝜆
− 𝛾]

Function 4.8.4 Split Gain Function

∑𝑖𝜖𝐼𝐿 𝑔𝑖 = total left gradient tree

∑𝑖𝜖𝐼𝑅 𝑔𝑖 = total right gradient tree

∑𝑖𝜖𝐼 𝑔𝑖 = total gradien (left gradien tree + right gradien tree)

∑𝑖𝜖𝐼𝐿 ℎ𝑖 = total left hessian tree

∑𝑖𝜖𝐼𝑅 ℎ= total right hessian tree

∑𝑖𝜖𝐼 ℎ𝑖 = total hessian (left hessian tree + right hessian tree)

𝜆 = lambda

𝛾 = gamma

For the example of calculation author use 1 feature data of dataset called credit history

which the label is 1, shown as below

𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑𝑖𝜖𝐼𝐿 𝑔𝑖)
2

∑𝑖𝜖𝐼𝐿 𝑔𝑖 + 𝜆
+

(∑𝑖𝜖𝐼𝑅 𝑔𝑖)
2

∑𝑖𝜖𝐼𝑅 𝑔𝑖 + 𝜆
−

(∑𝑖𝜖𝐼 𝑔𝑖)
2

∑𝑖𝜖𝐼 𝑔𝑖 + 𝜆
− 𝛾]

=
1

2
[
(−0.2689)2

0.1966 + 1
+

(16.5408)2

80.021 + 1
−

(16.003)2

82.2176 + 1
− 0]

=
1

2
[
(−0.2689)2

1.1966
+

(16.5408)2

81.021
−

(16.003)2

83.2176
]

=
1

2
[
−0.07230721

1.1966
+

273.598

81.021
−

256.096009

83.2176
]

=
1

2
[−0.06 + 3.37 − 3.07]

=
1

2
[0.24]

= 0.12

28

After that the author looks for candidates for tree branches with the formula candidate

split function.

|𝑟𝑘(𝑠𝑘𝑗) − 𝑟𝑘(𝑠𝑘𝑗+1)| <∈, 𝑠𝑘1 = 𝑚𝑖𝑛𝑖𝑥𝑖𝑘 , 𝑠𝑘1 = 𝑚𝑎𝑥𝑖𝑥𝑖𝑘

Function 4.8.5Find the Candidate Split Function

𝑟𝑘(𝑠𝑘𝑗) = ranking from the first data

𝑟𝑘(𝑠𝑘𝑗+1) = ranking from the second data

∈ = epsilon

𝑠𝑘1 = 𝑚𝑖𝑛𝑖𝑥𝑖𝑘 = first input data

𝑠𝑘1 = 𝑚𝑎𝑥𝑖𝑥𝑖𝑘 = last input data

For the example of calculation the author uses 1 feature data of the dataset called credit

history which the label is 1, from the dataset the first data is 0 and second data is 0 and the

epsilon is 0.003. Shown as below

|𝑟𝑘(𝑠𝑘𝑗) − 𝑟𝑘(𝑠𝑘𝑗+1)| <∈, 𝑠𝑘1 = 𝑚𝑖𝑛𝑖𝑥𝑖𝑘 , 𝑠𝑘1 = 𝑚𝑎𝑥𝑖𝑥𝑖𝑘

= |0 − 0| < 0.003 , 𝑠𝑜 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 𝑎 𝑠𝑝𝑙𝑖𝑡

These results are used to calculate the new prediction score, by adding the old

prediction score with the prediction from the tree that has been formed (leaf function score)

multiplied by the learning rate.

𝑤𝑗 =
𝑔

ℎ + 𝜆

Function 4.8.6 Score Function

𝑦:̂ = 𝑦̂ − 𝑙𝑟 ∗ 𝑤𝑗

Function 4.8.7 New Score Prediction Function

𝑤𝑗 = score leaf

g = gradient

h= hessian

𝜆 = lambda

𝑦:̂ = new prediction

𝑦̂ = prediction

29

For the example of calculation author use 1 feature data of dataset called credit history

which the label is 1, shown as below

𝑤𝑗 =
𝑔

ℎ + 𝜆

=
−0.2689

0.1966 + 𝜆

= 0.22472

𝑦:̂ = 𝑦 − 𝑙𝑟 ∗ 𝑤𝑗

= 1 − 0.03 ∗ 0.22472

= 1 − 0.0067416

= 0.9932584

Then it is iterated again by calculating the loss of the latest prediction score. To get

prediction results, if the prediction score of a data is below average, the prediction score for

all data will be 0, whereas if the prediction score for a data is above average, the prediction

score for all data will be 1.

y=1 when 𝑦̂ ≥ 0.5

y=0 when 𝑦̂ < 0.5

Function 4.8.8 Predict Function

y = true value

𝑦̂ = prediction value

For the example of calculation from calculation Function 4.7.9 the prediction result is y=1

After that the author calculates the accuracy, precision, recall, and f1-score.

The following is an accuracy function where the False Positive and False-negative

values are almost the same. The description of this function is, TN is True-negative, FP is False-

positive, and is False-negative.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

Function 4.8.9 Accuracy Function

30

Then precision meaning is the ratio of the correct positive predictions to the total

positive predictions. The description of this function is, TP is True-positive, and is False-

positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Function 4.8.10 Precision Function

Then recall meaning is the ratio of the correct positive predictions from all the original

data. The description of this function is,TP is True-positive, and is False-negative.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Function 4.8.11 Recall Function

Fi score meaning is the average of recall and precision.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Function 4.8.12 F1-Score Function

