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CHAPTER 4  

ANALYSIS AND DESIGN 

In this research project, to predict which creditors are accepted and rejected, Logistic 

Regression and Extreme Gradient Boosting algorithms will be implemented. The dataset used 

is taken from Kaggle which contains 13 variables including loan id, gender, marital status, 

dependents, education, self-employed, applicant income, applicant income, total loan, loan 

term, credit history, property area, loan status.  

 

Figure 4.1 Workflow 
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4.1. Data Collection  

The first step is to import NumPy and pandas which are used to read the dataset CSV 

file and perform calculations. Then data collection is carried out, namely reading the dataset, 

displaying the dataset information, the number of columns and rows from the dataset, and 

eliminating unnecessary columns such as Loan_Id.  

Table 4.1.1 Dataset 

Variable Description Data Type 

Loan_ID Unique Loan ID Integer 

Gender Male/Female Character 

Married Applicant marital status (Y/N) Character 

Dependent Applicant number of dependent Integer 

Education 
Applicant education (Graduate/Not 

Graduate) 
String 

Self_Employed Self employed (Y/N) Character 

ApplicantIncome Applicant income Integer 

CoapplicantIncome Coapplicant income Integer 

LoanAmount Loan amount in thousand Integer 

Loan_Amount_Ter

m 
Terms of loan in months Integer 

Credit_History Credit history meets guidelines Integer 

Property_Area Urban / Semi Urban / Rural  String 

Loan_Status Loan approved (Y/N) String 
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Table 4.1.2 Dataset Information 

#  Column  Non-Null Count Dtype  

0 Loan_ID  614 non-null object  

1 Gender  601 non-null object  

2 Married  611 non-null object  

3 Dependents  599 non-null object  

4 Education  614 non-null object  

5 Self_Employed  582 non-null object  

6 ApplicantIncome  614 non-null float64 

7 CoapplicantIncome  614 non-null float64 

8 LoanAmount  592 non-null float64 

9 Loan_Amount_Term  600 non-null float64 

10 Credit_History  564 non-null float64 

11 Property_Area  614 non-null object  

12 Loan_Status  614 non-null object  
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4.2. EDA (Exploratory Data Analysis) 

Then EDA (Exploratory Data Analysis) is carried out to find out and understand the 

contents of the dataset, from this step it can be seen which variables affect the results of the 

loan application decision (accepted or rejected). 

Table 4.2.1 EDA 

Column  EDA Result 

Loan_Status  Y    422 

N    192 

Name: Loan_Status, dtype: int64 

Gender  Male      489 

Female    112 

Name: Gender, dtype: int64 

Male and Loan Status accepted: 339 

Male and Loan Status not accepted: 150 

Female and Loan Status accepted: 75 

Female and Loan Status not accepted: 37 

Married  Yes    398 

No     213 

Name: Married, dtype: int64 

Married and Loan Status accepted: 285 

Married and Loan Status not accepted: 113 

Not Married and Loan Status accepted: 134 

Not Married and Loan Status not accepted: 79 

Dependents  0     345 

1     102 

2     101 

3+     51 

Name: Dependents, dtype: int64 

Dependents 0 and Loan Status accepted: 238 

Dependents 0 and Loan Status not accepted: 107 

Dependents 1 and Loan Status accepted: 66 

Dependents 1 and Loan Status not accepted: 36 

Dependents 2 and Loan Status accepted: 76 

Dependents 2 and Loan Status not accepted: 25 

Dependents 3 and Loan Status accepted: 33 

Dependents 3 and Loan Status not accepted: 18 
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Column  EDA Result 

Self_Employed  No     500 

Yes     82 

Name: Self_Employed, dtype: int64 

Self Employed and Loan Status accepted: 56 

Self Employed and Loan Status not accepted: 26 

Not Self Employed and Loan Status accepted: 343 

Not Self Employed and Loan Status not accepted: 

157 

ApplicantIncome  Minimum Applicant Income: 150 

Maximum Applicant Income: 81000 

Mean Applicant Income: 5403.459283387622 

Accepted Applicant Income: 

2500    8 

3333    5 

6250    4 

2583    4 

6000    4 

       .. 

1863    1 

3400    1 

3900    1 

1926    1 

7787    1 

Name: ApplicantIncome, Length: 364, dtype: int64 

Declined Applicant Income: 

4583     4 

2600     3 

10000    3 

4166     3 

5000     3 

        .. 

3708     1 

2917     1 

1800     1 

7333     1 

6400     1 

Name: ApplicantIncome, Length: 172, dtype: int64 
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Column  EDA Result 

LoanAmount  Minimum Loan Amount: 9.0 

Maximum Loan Amount: 700.0 

Accepted Loan Amount: 

120.0    17 

110.0    12 

100.0    11 

130.0    10 

187.0     9 

         .. 

236.0     1 

380.0     1 

296.0     1 

156.0     1 

59.0      1 

Name: LoanAmount, Length: 161, dtype: int64 

Declined Loan Amount: 

110.0    5 

160.0    4 

113.0    4 

80.0     4 

100.0    4 

        .. 

308.0    1 

124.0    1 

570.0    1 

111.0    1 

214.0    1 

Name: LoanAmount, Length: 119, dtype: int64 
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Column  EDA Result 

Credit_History  1.0    475 

0.0     89 

Name: Credit_History, dtype: int64 

Credit History 1 and Loan Status accepted: 378 

Credit History 1 and Loan Status not accepted: 97 

Credit History 0 and Loan Status accepted: 7 

Credit History 0 and Loan Status not accepted: 82 

Property_Area  Semiurban    233 

Urban        202 

Rural        179 

Name: Property_Area, dtype: int64 

Urban and Loan Status accepted: 133 

Urban and Loan Status not accepted: 69 

SemiUrban and Loan Status accepted: 179 

SemiUrban and Loan Status not accepted: 54 

Rural and Loan Status accepted: 110 

Rural and Loan Status not accepted: 69 
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4.3. Data Cleaning 

Then data cleaning will be carried out, this step is done so that the accuracy of the 

decision is better. Here it will be checked and filled in for the missing value. For categorical 

data such as Gender, Married, Dependents, Loan_Amount_Term, Credit_History, 

Credit_History, Self_Employed will be filled with the mode of each variable. And for 

numerical data such as LoanAmount, it will be filled with the mean of the variable. 

Table 4.3.1 Sum of Missing Value 

Column  Total missing value before  Total missing 

value after 

Gender  13 0 

Married  3 0 

Dependents  15 0 

Education  0 0 

Self_Employed  32 0 

ApplicantIncome  0 0 

CoapplicantIncome  0 0 

LoanAmount  22 0 

Loan_Amount_Term  14 0 

Credit_History  50 0 

Property_Area  0 0 

Loan_Status  0 0 
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Table 4.3.2 Before Data Cleaning 

 Gender Married Dependents Education Self_E

mploye

d 

Applic

antInco

me 

Coappl

icantIn

come 

Loan

Amo

unt 

Loan_

Amoun

t_Term 

Credit_

History 

Propert

y_Area 

Loan

_Stat

us 

0 Male No 0 Graduate No 5849 0.0 NaN 360.0 1.0 Urban Y 

1 Male Yes 1 Graduate No 4583 1508.0 128.

0 

360.0 1.0 Rural N 

2 Male Yes 0 Graduate Yes 3000 0.0 66.0 360.0 1.0 Urban Y 

3 Male Yes 0 Not 

Graduate 

No 2583 2358.0 120.

0 

360.0 1.0 Urban Y 

... ... ... ... ... ... ... ... ... ... ... ... ... 

613 Female No 0 Graduate Yes 4583 0.0 133.

0 

360.0 0.0 Semiur

ban 

N 
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Table 4.3.3 After Data Cleaning 

 Gender Married Dependents Education Self_Em

ployed 

Appli

cantIn

come 

Coappl

icantIn

come 

LoanA

mount 

Loan_

Amou

nt_Ter

m 

Credit_

History 

Propert

y_Area 

Loan

_Stat

us 

0 Male No 0 Graduate No 5849 0.0 146.41

2162 

360.0 1.0 Urban Y 

1 Male Yes 1 Graduate No 4583 1508.0 128.0 360.0 1.0 Rural N 

2 Male Yes 0 Graduate Yes 3000 0.0 66.0 360.0 1.0 Urban Y 

3 Male Yes 0 Not 

Graduate 

No 2583 2358.0 120.0 360.0 1.0 Urban Y 

... ... ... ... ... ... ... ... ... ... ... ... ... 

613 Female No 0 Graduate Yes 4583 0.0 133.0 360.0 0.0 Semiur

ban 

N 
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4.4. Encoding 

After that, so that the database can be read by the machine, encoding will be carried 

out. This step will change the Property_Area column from Rural / Semi Urban / Urban to 0 / 1 

/ 2, create new columns such as gender to gender_male and gender_female. 

Table 4.4.1 Encoding 

Column  Before encoding After encoding 

Gender  Male / Female new column : Gender_Female, 

Gender_Male 

Married  Graduate / Not 

Graduate 

new column :  

Married_Yes 

Married_No 

Dependents  0 / 1 / 2 / 3+ 0 / 1 / 2 / 3 

Education  Graduate / Not graduate 1 / 0 

Self_Employed  Yes / No new column :  

Self_Employed_Yes 

Self_Employed_No 

Property_Area  Rural / Semiurban / 

Urban 

0 / 1 / 2 

Loan_Status  Y / N 1 / 0 

4.5. Features Selection 

In this step we will look for which variable have an effect on loan status using the 

correlation function. 

Table 4.5.1 Features Selection 

Variable  Values 

Loan_Status 1.000000 

CoapplicantIncome 0.540556 

LoanAmount 0.036416 

LoanAmount_Term 0.022549 

ApplicantIncome 0.004710 
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4.6. Splitting Dataset 

Then we will split the data into a data train to create a machine learning model and test 

data to test the performance of the model, here we will divide the data into 70% for the data 

train and 30% for the data test which divided by three so it will be three trials for testing, and 

we will divided it too into 60% for the data train and 40% for the data test which divided by 

three so it will be three trials for testing. 

 

 
Figure 4.6.1 Splitting Dataset 
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4.7. Building model using Logistic Regression 

After that, we will build a model using logistic regression. For logistic regression, the 

first author determines several parameters such as learning rate and number of iterations, and 

initializes weight and bias to 0.  

Table 4.7.1 Initializes Weight and Bias 

Features Weight Bias 

Dependents 0 0 

Education 0 0 

ApplicantIncome 0 0 

CoapplicantIncome 0 0 

LoanAmount 0 0 

Loan_Amount_Term 0 0 

Credit_History 0 0 

Property_Area 0 0 

Loan_Status 0 0 

Gender_Female 0 0 

Gender_Male 0 0 

Married_No 0 0 

Married_Yes 0 0 

Self_Employed_No 0 0 

Self_Employed_Yes 0 0 
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Then the training process for some iteration parameters is carried out using this linear 

regression function : 

𝑧 = 𝑤 . 𝑥 +  𝑏 

Function 4.7.1 Linear Regression Function 

z = Linear regression 

w = weights 

x = input data 

b = bias 

For the example of calculation author use 1 row data of dataset, shown as below  

𝑧 = 𝑤 . 𝑥 +  𝑏 

= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  . [1 1 1 8080 2250 180 360 1  2 0 1 0 1 1 0] + 0  

= 0 

And using sigmoid function as shown below: 

𝑦̂ =  
1

1 + 𝑒−(𝑧)
 

Function 4.7.2 Sigmoid Function 

𝑦̂ = Hypothesis / prediction 

Z = Linear regression 

For the example of calculation author use 1 row data of dataset, shown as below  

𝑦̂ =  
1

1 + 𝑒−(𝑧)
 

=  
1

1 + 𝑒−(0)
 

    = 0.5 
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Then  we will calculate the gradient function to find the optimal values of the parameter, 

like new weight and new bias using this function: 

𝑑𝑤 =  (
1

𝑚
) ∗ (𝑦̂ − 𝑦) . 𝑥 

Function 4.7.3 The Partial Derivative of Loss Function with Respect to Weight Function 

𝑑𝑏 =  (
1

𝑚
) ∗ (𝑦̂ − 𝑦) 

Function 4.7.4 The Partial Derivative of Loss Function with Respect to Bias Function 

𝑤: =  𝑤 − 𝑙𝑟 ∗ 𝑑𝑤 

Function 4.7.5New Weight Function 

𝑏: =  𝑏 − 𝑙𝑟 ∗ 𝑑𝑏 

Function 4.7.6New Bias Function 

w: = new weights 

b: = new bias 

lr = learning rate 

w = weight 

b = bias 

dw = The partial derivative of loss function with respect to weight  

db = The partial derivative of loss function with respect to bias 

m = number of training data 

𝑦̂ = Hypothesis / prediction 

y = True value 

X = Input data 

For the example of calculation of 𝑑𝑤 author use 1 row data of dataset, shown as below  

𝑑𝑤 =  (
1

𝑚
) ∗ (𝑦̂ − 𝑦) . 𝑥 

=  (
1

1
) ∗ (0.5 − 1) .  [1 1 1 8080 2250 180 360 1  2 0 1 0 1 1 0] 

= -0.5 . [1 1  1 8080  2250 180  360 1  2 0 1 0 1 1 0]  

=[−0.5 − 0.5 − 0.5 − 4040 − 1125 − 90 − 180 − 0.5 − 1 0 − 0.5 0 − 0.5 − 0.5  0] 
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For the example of calculation of 𝑑𝑏 author use 1 row data of dataset, shown as below 

𝑑𝑏  =  (
1

𝑚
) ∗ (𝑦̂ − 𝑦) 

      =  (
1

1
) ∗  (0.5 − 1) 

      = −0.5  

For the example of calculation of 𝑤: author use 1 row data of dataset, shown as below 

𝑤: =  𝑤 − 𝑙𝑟 ∗ 𝑑𝑤 

= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] − 0.0000001 ∗ [−0.5 − 0.5 − 0.5 − 4040 − 1125 − 90 − 180 − 0.5 − 1  0 − 0.5  0 − 0.5 − 0.5 0] 

= [−0.00000005 − 0.00000005  − 0.00000005 − 0.000404  − 0.0001125 − 0.000009       −0.000018 −

0.00000005  − 0.0000001 0  − 0.00000005   0  − 0.00000005 − 0.00000005  0] 

For the example of calculation of 𝑏: author use 1 row data of dataset, shown as below 

𝑏: =  𝑏 − 𝑙𝑟 ∗ 𝑑𝑏 

                     𝑏: =  0 − 0.0000001 ∗ −0.5 

 = 0.00000005 

After finding the new weight and new bias we will calculate the new linear regression 

function using that new weight and new bias, and we calculate the new sigmoid function. Then 

we calculate prediction using the function as show below  

y=1  when  𝑦̂ ≥ 0.5   

y=0  when  𝑦̂ < 0.5   

Function 4.7.7 Predict Function 

y = true value 

𝑦̂ = prediction value 
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For the example of calculation author use 1 row data of dataset, and the result as shown 

in Function 4.6.2 is y = 0.5 so 𝑦̂ =1 

Then author will calculate the loss function using this function: 

𝑗(𝑤, 𝑏) =  
1

𝑚
∑

𝑚

𝑖=1

𝐿(𝑦̂(𝑖), 𝑦(𝑖))

=  −
1

𝑚
∑

𝑚

𝑖=1

[(𝑦̂(𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦̂(𝑖))  + (1 −  𝑦̂(𝑖)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 −  𝑦̂(𝑖)) )] 

Function 4.7.8 Loss Function 

j(w,b) = loss of the training set 

L = loss of the training example 

i = data ke  

m = number of training data 

𝑦̂  = Hypothesis / prediction 

y = True value 

For the example of calculation author use 1 row data of dataset, shown as below  

𝑗(𝑤, 𝑏) = −
1

𝑚
∑

𝑚

𝑖=1

[(𝑦̂(𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦̂(𝑖))  +  (1 −  𝑦̂(𝑖)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑦̂(𝑖)) )] 

=  −
1

1
[(0.5(0.5)  +  (1 − 0.5) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 0.5) )] 

= −1[(0.5(0.5)  +  (1 − 0.5) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 0.5) )] 

= -1 * -0.301029995 

= 0.301029995 

And for the last, we will analyze the result, like the accuracy, precision, recall, f1-score.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

Function 4.7.9 Accuracy Function 

The following is an accuracy function where the False Positive and False-negative 

values are almost the same. The description of this function is, TN is True-negative, FP is False-

positive, and is False-negative. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Function 4.7.10 Precision Function 

Then precision meaning is the ratio of the correct positive predictions to the total 

positive predictions. The description of this function is, TP is True-positive, and is False-

positive. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Function 4.7.11 Recall Function 

Then recall meaning is the ratio of the correct positive predictions from all the original 

data. The description of this function is,TP is True-positive, and is False-negative. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Function 4.7.12 F-1 Score Function 

Fi score meaning is the average of recall and precision. 

4.8. Building model using Extreme Gradient Boosting 

In the first xgboost, the author will initialize the calculation of the prediction score with 

a value of 1. 

And then the loss for each data will be calculated using the gradient & hessian function 

formula. 

𝑔 = 𝑙′(𝑦̂) =
𝜕𝑙

𝜕𝑦̂
=  

1

1 + 𝑒−(𝑦̂)
− 𝑦 

Function 4.8.1 Gradient Function 

l' = first loss 

𝑦̂ = prediction 

y = true value 

ℎ = 𝑙′′(𝑦̂) =
𝜕2𝑙

𝜕2𝑦̂
=  𝑝(1 − 𝑝) 

Function 4.8.2 Hessian Function 

l'' = second loss  

𝑦̂ = prediction 

p = sigmoid from prediction label 
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For the example of calculation author use 1 row data of dataset, shown as below  

𝑔 = 𝑙′(𝑦̂) =
𝜕𝑙

𝜕𝑦̂
=  

1

1 + 𝑒−(𝑦̂)
− 𝑦 

   =  
1

1+𝑒−(1)
− 1 

   = 0.268941421 

       ℎ  = 𝑙′′(𝑦̂) =
𝜕2𝑙

𝜕2𝑦̂
=  𝑝(1 − 𝑝)   

        =
1

1+𝑒𝑦̂  (1 −
1

1+𝑒𝑦̂)   

        = 0.731058578 (1 − 0.731058578)  

        = 0.1966119335326179  

Then from the results of the loss function, a tree will be created and implemented rank 

formula:  

𝑟𝑘(𝑧) =
1

∑(𝑥,ℎ)𝜖𝐷𝑘
ℎ

  ∑
(𝑥,ℎ)𝜖𝐷𝑘𝑥<𝑧

ℎ 

Function 4.8.3 Rank Function 

∑(𝑥,ℎ)𝜖𝐷𝑘
ℎ = total hessian from all data  

∑(𝑥,ℎ)𝜖𝐷𝑘𝑥<𝑧 ℎ = total hessian from all eligible data, where all data has a value less 

than the current value 

ℎ = hessian 

For the example of calculation author use 1 feature data of dataset called credit history 

which the label is 1, shown as below  

𝑟𝑘(𝑧) =
1

∑(𝑥,ℎ)𝜖𝐷𝑘
ℎ

  ∑
(𝑥,ℎ)𝜖𝐷𝑘𝑥<𝑧

ℎ 

=
1

80.21766876252457
 ∗ 500 ∗ 0.1966119335326179   = 1.2549 
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And for the limiting value for splitting data, using the split gain function formula: 

𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑𝑖𝜖𝐼𝐿 𝑔𝑖)
2

∑𝑖𝜖𝐼𝐿 𝑔𝑖 + 𝜆
+

(∑𝑖𝜖𝐼𝑅 𝑔𝑖)
2

∑𝑖𝜖𝐼𝑅 𝑔𝑖 + 𝜆
−

(∑𝑖𝜖𝐼 𝑔𝑖)
2

∑𝑖𝜖𝐼 𝑔𝑖 + 𝜆
− 𝛾] 

Function 4.8.4 Split Gain Function 

∑𝑖𝜖𝐼𝐿 𝑔𝑖 = total left gradient tree  

∑𝑖𝜖𝐼𝑅 𝑔𝑖 = total right gradient tree 

∑𝑖𝜖𝐼 𝑔𝑖 = total gradien (left gradien tree + right gradien tree) 

∑𝑖𝜖𝐼𝐿 ℎ𝑖 = total left hessian tree  

∑𝑖𝜖𝐼𝑅 ℎ= total right hessian tree 

∑𝑖𝜖𝐼 ℎ𝑖 = total hessian (left hessian tree + right hessian tree) 

𝜆 = lambda  

𝛾 = gamma 

For the example of calculation author use 1 feature data of dataset called credit history 

which the label is 1, shown as below  

𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑𝑖𝜖𝐼𝐿 𝑔𝑖)
2

∑𝑖𝜖𝐼𝐿 𝑔𝑖 + 𝜆
+

(∑𝑖𝜖𝐼𝑅 𝑔𝑖)
2

∑𝑖𝜖𝐼𝑅 𝑔𝑖 + 𝜆
−

(∑𝑖𝜖𝐼 𝑔𝑖)
2

∑𝑖𝜖𝐼 𝑔𝑖 + 𝜆
− 𝛾] 

=
1

2
[
(−0.2689)2

0.1966 + 1
+

(16.5408)2

80.021 + 1
−

(16.003)2

82.2176 + 1
− 0] 

=
1

2
[
(−0.2689)2

1.1966
+

(16.5408)2

81.021
−

(16.003)2

83.2176
] 

=
1

2
[
−0.07230721

1.1966
+

273.598

81.021
−

256.096009

83.2176
] 

=
1

2
[−0.06 + 3.37 − 3.07] 

=
1

2
[0.24] 

= 0.12 
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After that the author looks for candidates for tree branches with the formula candidate 

split function. 

|𝑟𝑘(𝑠𝑘𝑗) −  𝑟𝑘(𝑠𝑘𝑗+1)|  <∈, 𝑠𝑘1 = 𝑚𝑖𝑛𝑖𝑥𝑖𝑘 , 𝑠𝑘1 = 𝑚𝑎𝑥𝑖𝑥𝑖𝑘 

Function 4.8.5Find the Candidate Split Function 

𝑟𝑘(𝑠𝑘𝑗) = ranking from the first data  

𝑟𝑘(𝑠𝑘𝑗+1) = ranking from the second data 

∈ = epsilon 

𝑠𝑘1 = 𝑚𝑖𝑛𝑖𝑥𝑖𝑘  = first input data  

𝑠𝑘1 = 𝑚𝑎𝑥𝑖𝑥𝑖𝑘 = last input data  

For the example of calculation the author uses 1 feature data of the dataset called credit 

history which the label is 1, from the dataset the first data is 0 and second data is 0 and the 

epsilon is 0.003. Shown as below  

|𝑟𝑘(𝑠𝑘𝑗) −  𝑟𝑘(𝑠𝑘𝑗+1)|  <∈, 𝑠𝑘1 = 𝑚𝑖𝑛𝑖𝑥𝑖𝑘 , 𝑠𝑘1 = 𝑚𝑎𝑥𝑖𝑥𝑖𝑘 

=  |0 − 0| < 0.003 , 𝑠𝑜 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 𝑎 𝑠𝑝𝑙𝑖𝑡  

These results are used to calculate the new prediction score, by adding the old 

prediction score with the prediction from the tree that has been formed (leaf function score) 

multiplied by the learning rate. 

𝑤𝑗 =
𝑔

ℎ + 𝜆
 

Function 4.8.6 Score Function 

𝑦:̂ = 𝑦̂ − 𝑙𝑟 ∗ 𝑤𝑗 

Function 4.8.7 New Score Prediction Function 

𝑤𝑗 = score leaf  

g = gradient 

h= hessian 

𝜆 = lambda 

𝑦:̂ = new prediction 

𝑦̂ = prediction 
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For the example of calculation author use 1 feature data of dataset called credit history 

which the label is 1, shown as below 

𝑤𝑗 =
𝑔

ℎ + 𝜆
 

=
−0.2689

0.1966 + 𝜆
 

= 0.22472 

𝑦:̂ = 𝑦 − 𝑙𝑟 ∗ 𝑤𝑗 

= 1 − 0.03 ∗ 0.22472 

= 1 −  0.0067416 

= 0.9932584 

Then it is iterated again by calculating the loss of the latest prediction score. To get 

prediction results, if the prediction score of a data is below average, the prediction score for 

all data will be 0, whereas if the prediction score for a data is above average, the prediction 

score for all data will be 1. 

y=1  when  𝑦̂ ≥ 0.5   

y=0  when  𝑦̂ < 0.5   

Function 4.8.8 Predict Function 

y = true value 

𝑦̂ = prediction value 

For the example of calculation from calculation Function 4.7.9 the prediction result is y=1   

After that the author calculates the accuracy, precision, recall, and f1-score. 

The following is an accuracy function where the False Positive and False-negative 

values are almost the same. The description of this function is, TN is True-negative, FP is False-

positive, and is False-negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

Function 4.8.9 Accuracy Function 
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Then precision meaning is the ratio of the correct positive predictions to the total 

positive predictions. The description of this function is, TP is True-positive, and is False-

positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Function 4.8.10 Precision Function 

Then recall meaning is the ratio of the correct positive predictions from all the original 

data. The description of this function is,TP is True-positive, and is False-negative. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Function 4.8.11 Recall Function 

Fi score meaning is the average of recall and precision. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Function 4.8.12 F1-Score Function


