
78 

 

CHAPTER 5 

IMPLEMENTATION AND RESULTS 

5.1. Implementation 

5.1.1 Random Forest 

Line 1-5 import package used for Random Forest algorithm. Line 6 setup pandas display 

so that when reading the dataset it can reach the max column. 

1. import pandas as pd 

2. import numpy as np 

3. import random 

4. from random import choice 

5. import math 

6. pd.set_option('display.max_columns', None) 

 

Line 7-8 creates a function named PrintTable with data and limit parameters. PrintTable 

is to record the frame of the array (make the array into a table). 

7. def PrintTable(data, limit): 

8.  return pd.DataFrame(data).head(limit) 

 

Lines 9-10 to read the REVIEWS.csv dataset, from the top row to 2000 rows. With the 

dataset arrangement id, review, rating, author, title. 

9. review = pd.read_csv("REVIEWS.csv", header=0, nrows=2000) 

10. review = review.values 

 

Line 12-13 creates a function named PreProcessingData which is taken from the data and 

a new array named ArrayTemp. Line 13-17 looping for data labels, if the movie rating >= 5 then 

it is labeled 1 which means positive, otherwise it is labeled 0 which means negative. Line 18-19 

appends ArrTemp to the dataset and removes the author column, which means that the 

arrangement is id, review, rating, title, and label and then returned. 

11. def PreProcessingData(data): 

12.     ArrTemp = [] 
13. for a in data: 

14.         if a[2] >= 5: 

15.             label = int(1) 

16.         else: 

17.             label = int(0) 



79 

 

18.      ArrTemp.append( [ a[0], a[1], a[2], a[4], label ] ) 

19. return ArrTemp 

20. review = PreProcessingData(review) 

 

Line 21 creates a new function to calculate TF-IDF with the name Tfidf taken from the 

data. Line 24 creates a new array with the name WordArr (counts the number of occurrences of 

the word in the document) to hold the TempWord. Lines 23-24 for looping a in the data, 

TempWord contains a review column that is performed lower case and split by space, then 

displays TempWord. Line 25-34 looping b in TempWord, if the WordArr is not empty then 

count 0 and looping c for the long range of WordArr, if the word in WordArr is in b then count 1 

and then add 1 (eg the word 'do' already exists in WordArr , means the sum is 1 + 1). Line 31-33 

if the word in variable b has never existed in WordArr then it is appended to WordArr and 

calculated 1. Line 34-37 in variable b contains a review that only contains spaces, then it is also 

appended to WordArr and counted 1. 

21. def TfIdf(data): 

22.   WordArr = [] 

23.  for a in data: 

24.   TempWord = str.lower(a[1]).split(' ') 

25.  for b in TempWord: 

26.        if WordArr != []: 

27.         count = 0 

28.              for c in range(len(WordArr)): 

29.               if WordArr[c][0] == b: 

30.                         WordArr[c]=[WordArr[c][0], 

(int(WordArr[c][1]) + int(1))] 

33                       count = 1 

34       break 

31.    if count == 0: 

32.                   if b != '': 

33.                     WordArr.append([b, int(1)]) 

34.   else: 

35.    if b != '': 

36.     WordArr.append([b, int(1)]) 

 

  



80 

 

Line 37-41 creates a new array named TfArr to count the number of occurrences of a 

word in 1 row of data. Then loop a for the range in the data length. Created a new array named 

TempTf which will store TfArr. For words that are calculated using TempWord which is already 

in lower case. Line 43-55 looping b in TempWord, if in b does not contain spaces then looping if 

TempTf is not empty then count 0 and looping c for a long range of TempTf if the word in 

TempTf is in b then count 1 then add 1 (the eg word ' i' already exists in WordArr, so the sum is 

1 + 1). Line 53-55 if the word in variable b has never existed in TempTf then it is appended to 

TempTf and calculated 1. Line 57-59 in variable b there is a review that only contains spaces, 

then it is also appended to TempTf and counted 1. Line 65 TempTf is appended to TfArr. 

37. TfArr = [] 

38. for a in range(len(data)): 

39.   TempTf = [] 

40.   CountTf = 0 

41.   TempWord = str.lower(data[a][1]).split(' ')   

42.  

43.     for b in TempWord: 

44.       print(b) 

45.         if b != '':      

46.           if TempTf != []: 

47.                  

48.             count = 0 

49.             for c in range(len(TempTf)): 

50.                          

51.               if TempTf[c][0] == b: 

52.                              

53.                 TempTf[c] = [TempTf[c][0], TempTf[c][1], 

(int(TempTf[c][2]) + int(1))] 

54.                 count = 1 

55.                 break 

56.                          

57.              if count == 0: 

58.                if b != '': 

59.                  TempTf.append([data[a][0], b, int(1)]) 

60.                  

61.           else: 

62.              if b != '': 

63.                  TempTf.append([data[a][0], b, int(1)]) 

64.                          

65.     TfArr.append(TempTf) 

 



81 

 

Lines 66-75 create an array of results by looping an in length TfArr, then in looping a 

there is looping b in TfArr, in looping b looping c in WordArr to calculate TF-IDF. Line 80-87 

TF-IDF calculation, Tf is calculated by the word that appears divided by the length of TfArr[a] 

(length of 1 sentence or 1 line). IDF uses math previously imported in the package, logs 2000 

data divided by the occurrence of letters in the document. Then TF-IDF, the result of Tf is 

multiplied by the result of IDF. For line 84 CountTemp, in 1 sentence several words will add up 

the results of each TF-IDF then divided by 2. Line 76-78 append CountTemp on data[a] and 

return. 

66. result = [] 

67.   for a in range(len(TfArr)): 

68.     CountTemp = 0 

69.       for b in TfArr[a]:        

70.         for c in WordArr: 

71.                  

72.           if b[1] == c[0]: 

73.             Tf = b[2]/ len(TfArr[a]) 

74.             Idf = math.log(int(2000) / int(c[1])) 

75.             TfIdf = Tf * Idf 

76.             CountTemp = (float(CountTemp) + TfIdf) / 2 

77.                      

78.      data[a].append(CountTemp) 

79.             

80.  return data 

81. review = TfIdf(review) 

 

Line 90-100 function for data split which divides data into train and test, with parameters 

train, test, data. Create a new array to accommodate the results of training data, training labels, 

testing data, and testing labels. Then calculate CountTraining and CountTesting. Line 101-111 

loops for training data, takes as much data as CountTraining at random, and checks whether a 

word is present or not in the training data. The training data contains the TF-IDF rating and 

score. For training labels, append from the label. Line 102-110 loops for data testing, takes as 

much data as CountTesting at random, and checks whether a word exists or not in the testing 

data. The testing data contains the TF-IDF rating and score. For testing labels, append from 

labels. Line 123 returns TrainingData, TrainingLabel, TestingData, and TestingLabel. Line 114 

training and testing is split 70 and 30. 

  



82 

 

82. def SplitData(train, test, data): 

83.     TrainingData = [] 

84.     TrainingLabel = [] 

85.     TestingData = [] 

86.     TestingLabel = [] 

87.     CountTraining = int(len(data) * (train/100)) 

88.     CountTesting = int(len(data) * (test/100)) 

89.      

90.     for a in range(CountTraining): 

91.         temp = choice(data) 

92.         exists = temp in TrainingData 

93.         while exists == True: 

94.             temp = choice(data) 

95.             exists = temp in TrainingData 

96.  

97.         #temp[4]=label, temp[2]=rating, temp[5]=Tf-Idf 

98.         TrainingLabel.append(temp[4]) 

99.         temp = [temp[2], temp[5]] 

100.         TrainingData.append(temp) 

101.          

102.     for a in range(CountTesting): 

103.         temp = choice(data) 

104.         exists = temp in TestingData 

105.         while exists == True: 

106.             temp = choice(data) 

107.             exists = temp in TestingData    

108.         TestingLabel.append(temp[4]) 

109.         temp = [temp[2],temp[5]] 

110.         TestingData.append(temp) 

111.          

112.     return TrainingData, TrainingLabel, TestingData, TestingLabel 

113.  

114. TrainingData, TrainingLabel, TestingData, TestingLabel =  SplitData

(70, 30, review) 

 

  



83 

 

Line 115-117 implements the Random Forest algorithm and creates a tree list, OOB list. 

Line 136-142 creates a new array to hold bootstrap and OOB. Line 127-128 calculates bootstrap 

indices that take values randomly from the training data along with the training data. Line 130-

132 computes OOB indices, retrieving values that are not in the bootstrap indices. Line 134-136 

creates bootstrap data which is an append of the training data. The length of the bootstrap data is 

based on the bootstrap indices. The bootstrap data is labeled in a bootstrap label, based on the 

training label. Value 1 for positive and value 0 for negative. Line 138-140 creates OOB data 

which is an append of the training data. The length of the OOB data is based on the OOB 

indices. The OOB data is labeled in the OOB label. Line 142-143 function to build a random 

tree. Line 145-149 function to append tree and calculate OOB for each node then return tree_ls. 

115. def RandomForest(TrainingData, TrainingLabel, nIteration, 

maxFeature, max_depth, min_samples_split): 

116.     tree_ls = list() 

117.     oob_ls = list() 

118.      

119.     for i in range(nIteration): 

120.         bootstrapData = [] 

121.         bootstrapLabel = [] 

122.         oobData = [] 

123.         oobLabel = [] 

124.         bootstrapIndices = [] 

125.         oobIndices = [] 

126.  

127.         for count in range(len(TrainingData)): 

128.             bootstrapIndices.append(random.randint(0, 

len(TrainingData)-1)) 

129.          

130.         for count in range(len(TrainingData)): 

131.             if count not in bootstrapIndices: 

132.                 oobIndices.append(count) 

133.          

134.         for a in range(len(bootstrapIndices)): 

135.           bootstrapData.append(TrainingData[bootstrapIndices[a]]) 

136.          bootstrapLabel.append(TrainingLabel[bootstrapIndices[a]]) 

137.              

138.         for a in range(len(oobIndices)): 

139.             oobData.append(TrainingData[oobIndices[a]]) 

140.             oobLabel.append(TrainingLabel[oobIndices[a]]) 

141.          



84 

 

142.         rootNode = countSplitPoint(bootstrapData, bootstrapLabel, 

maxFeature) 

143.         splitNode(rootNode, maxFeature, min_samples_split, 

max_depth, 1) 

144.          

145.         tree_ls.append(rootNode) 

146.         oob_error = OobScore(rootNode, oobData, oobLabel) 

147.         oob_ls.append(oob_error) 

148.          

149.     return tree_ls 

 

Line 150-161 function for countSplitPoint, there are 2 features used, namely rating and 

TF-IDF. Feature_ls contains 1 or 0. Feature IDX is randomized if feature_ls is less than the max 

feature (ie 2). Lines 161-172 define a left child and a right child containing the bootstrap data 

and bootstrap label. Best_info_gain is made -999 taking the lowest value to get the best 

information gain value. This is done by choosing a value from the bootstrap randomly, each 

selected value is iterated and the Information Gain calculation is carried out. The value with the 

highest Information Gain represents a node in the tree containing IDX features, value, left child 

node, and right child node. The split point count uses bootstrap data, bootstrap label, and max 

features parameters. The split point value is obtained from the IDX+1 feature (this IDX feature is 

obtained randomly from the ls feature). While the value is obtained from the IDX + 1 feature. To 

determine the left child and right child nodes, if the value <= the value of the split point, it will 

form a left child node. Otherwise, it forms a right child node. Line 176-186 split information 

gain obtained from countInformationGain. A high value of split_info_gain will replace the value 

of best_info_gain. The node later forms the root node. Each node will calculate the Information 

Gain value. 

150. def countSplitPoint(bootstrapData, bootstrapLabel, maxFeature): 

151.     featureLs = list() 

152.     numFeatures = len(bootstrapData[0]) 

153.  

154.     while len(featureLs) < maxFeature: 

155.         feature_idx = random.sample(range(numFeatures), 1) 

156.         featureLs.extend(feature_idx) 

157.              

158.     best_info_gain = -999 

159.     node = None 

160.      

161.     for featureIdx in featureLs: 



85 

 

162.         for splitPoint in bootstrapData[:featureIdx+1]: 

163.             leftChild = {'bootstrapData': [], 'bootstrapLabel': []} 

164.             rightChild = {'bootstrapData': [], 'bootstrapLabel': 

[]} 

165.  

166.             for i, value in 

enumerate(bootstrapData[featureIdx+1:]): 

167.                 if value <= splitPoint: 

168.                     

leftChild['bootstrapData'].append(bootstrapData[i]) 

169.                     

leftChild['bootstrapLabel'].append(bootstrapLabel[i]) 

170.                 else: 

171.                     

rightChild['bootstrapData'].append(bootstrapData[i]) 

172.                     

rightChild['bootstrapLabel'].append(bootstrapLabel[i]) 

173.              

174.             splitInfoGain = 

countInformationGain(leftChild['bootstrapLabel'], 

rightChild['bootstrapLabel']) 

175.              

176.             if splitInfoGain > best_info_gain: 

177.                 best_info_gain = splitInfoGain 

178.                 leftChild['bootstrapData'] = 

leftChild['bootstrapData'] 

179.                 rightChild['bootstrapData'] = 

rightChild['bootstrapData'] 

180.                 node = {'informationGain': splitInfoGain, 

181.                         'leftChild': leftChild, 

182.                         'rightChild': rightChild, 

183.                         'splitPoint': splitPoint, 

184.                         'featureIdx': featureIdx} 

185.  

186.     return node 

 

Line 187-193 function for entropy which will be used to calculate Information Gain. P is 

the probability. 1 for positive and 0 for negative. 

187. def entropy(p): 

188.     if p == 0: 

189.         return 0 

190.     elif p == 1: 

191.         return 0 

192.     else: 



86 

 

193.         return - (p * np.log2(p) + (1 - p) * np.log2(1-p)) 

 

Line 194-198 function to calculate Information Gain. Information Gain uses the left child 

and right child parameters that have been obtained in countSplitPoint. pParent is obtained by 

calculating the number of 1 in the parent divided by the length of the parent. Line 200-202 

calculates the Information Gain of the parent, left child, and right child using entropy. Line 204-

206 implementation of Information Gain and return formulas. This Information Gain calculation 

is carried out for each loop of the IDX feature that was previously obtained. 

194. def countInformationGain(leftChild, rightChild): 

195.     parent = leftChild + rightChild 

196.     pParent = parent.count(1) / len(parent) if len(parent) > 0 else 

0 

197.     pLeft = leftChild.count(1) / len(leftChild) if len(leftChild) > 

0 else 0     

198.     pRight = rightChild.count(1) / len(rightChild) if 

len(rightChild) > 0 else 0 

199.      

200.     igParent = entropy(pParent) 

201.     igLeft = entropy(pLeft) 

202.     igRight = entropy(pRight) 

203.      

204.     informationGain = igParent - len(leftChild) / len(parent) * 

igLeft - len(rightChild) / len(parent) * igRight 

205.      

206.     return informationGain 

 

  



87 

 

Line 207-211 creates a branch to the left child or right child. Split Node is obtained using 

node parameters, max features, min sample split, max depth, and depth. The max features in this 

project are 2, namely the TF-IDF rating and score. Max depth = 10, Min sample split = 2. While 

depth is the depth of the tree that will be created. The contents of the node are deleted first 

because they will be filled with new values. Line 213-217 conditions if there is one empty child, 

it will create an empty child. The empty child is obtained from left child [bootstrap label] + right 

child [bootstrap label]. Line 219-222 condition if the tree depth >= max depth, then the left node 

splits into a terminal node from the left child. Likewise for the right split. Line 224-228 condition 

if the length of the left child of the bootstrap data <= min sample split, then the left split node is 

filled with the terminal node of the left child. If the length of the left child of bootstrap data >= 

min sample split, it will calculate the split point count of the new left child and recalculate 

countSplitPoint and countInformationGain. Line 230-234 condition if the length of the right 

child of bootstrap data <= min sample split, then the right split node is filled with the terminal 

node of the right child. If the length of the left child of bootstrap data >= min sample split, it will 

calculate the split point count of the new right child and recalculate countSplitPoint and 

countInformationGain. 

207. def splitNode(node, maxFeature, minSampleSplit, maxDepth, depth): 

208.     left_child = node['leftChild'] 

209.     right_child = node['rightChild'] 

210.     del(node['leftChild']) 

211.     del(node['rightChild']) 

212.      

213.     if len(left_child['bootstrapLabel']) == 0 or 

len(right_child['bootstrapLabel']) == 0: 

214.         empty_child = {'bootstrapLabel': 

left_child['bootstrapLabel'] + right_child['bootstrapLabel']} 

215.         node['left_split'] = TerminalNode(empty_child) 

216.         node['right_split'] = TerminalNode(empty_child) 

217.         return 

218.  

219.     if depth >= maxDepth: 

220.         node['left_split'] = TerminalNode(left_child) 

221.         node['right_split'] = TerminalNode(right_child) 

222.         return node 

223.  

224.     if len(left_child['bootstrapData']) <= minSampleSplit: 

225.         node['left_split'] = node['right_split'] = 

TerminalNode(left_child) 



88 

 

226.     else: 

227.         node['left_split'] = 

countSplitPoint(left_child['bootstrapData'], 

left_child['bootstrapLabel'], maxFeature) 

228.         splitNode(node['left_split'], maxDepth, minSampleSplit, 

maxDepth, depth + 1) 

229.          

230.     if len(right_child['bootstrapData']) <= minSampleSplit: 

231.         node['right_split'] = node['left_split'] = 

TerminalNode(right_child) 

232.     else: 

233.         node['right_split'] = 

countSplitPoint(right_child['bootstrapData'], 

right_child['bootstrapLabel'], maxFeature) 

234.         splitNode(node['right_split'], maxFeature, minSampleSplit, 

maxDepth, depth + 1) 

 

Line 235-238 function terminal node for each node. Pred will calculate how many 

numbers 1 and 0, the maximum number will be the final result of the terminal node. The terminal 

node contains the bootstrap label of the node. 

235. def TerminalNode(node): 

236.     bootstrapLabel = node['bootstrapLabel'] 

237.     pred = max(bootstrapLabel, key = bootstrapLabel.count) 

238.     return pred 

 

Line 239-245 function for OobScore. OobScore counts miss labels from the split point 

root node and OOB data (if labels are not the same, then miss label counts 1), then the number of 

miss labels is divided by the length of the testing data. This OobScore is performed for each 

node. 

239. def OobScore(tree, testingData, testingLabel): 

240.     mis_label = 0 

241.     for i in range(len(testingData)): 

242.         pred = PredictTree(tree, testingData[i]) 

243.         if pred != testingLabel[i]: 

244.             mis_label += 1 

245.     return mis_label / len(testingData) if len(testingData) > 0 

else 0 

 

  



89 

 

Line 246-253 function for PredictTree by comparing testing data and tree split points 

based on feature_idx that has been obtained by each node previously. If testing data based on 

feature_idx <= tree split point feature_idx, then return value to left split. If not then return value 

to right split. 

246. def PredictTree(tree, testingData): 

247.     feature_idx = tree['featureIdx'] 

248.     if testingData[feature_idx] <= tree['splitPoint'][feature_idx]: 

249.         else: 

250.             value = tree['left_split'] 

251.             return value 

252.         else: 

253.             return tree['right_split'] 

 

Line 254-260 function for PredictRf by using parameter tree_ls and testing data. In 

PredictRf there are 2 predictions, namely Ensemble Prediction and Final Prediction. Ensemble 

Prediction combines the results from the previous Predict Tree. While Final Prediction counts the 

number of labels 1 or 0 in Ensemble Prediction. The final prediction results are based on the 

majority voting of the Final Prediction. 

254. def PredictRf(tree_ls, testingData): 

255.     pred_ls = list() 

256.     for i in range(len(testingData)): 

257.         ensemble_preds = [PredictTree(tree, testingData[i]) for 

tree in tree_ls] 

258.        final_pred = max(ensemble_preds, key = ensemble_preds.count) 

259.        pred_ls.append(final_pred)     

260.     return np.array(pred_ls) 

 

  



90 

 

Line 261-270 parameters used in the Random Forest algorithm. Line 325-326 displays 

the results of the Random Forest model. Then line 328-331 calculates accuracy by matching the 

prediction results from PredictRf (ensemble_preds) with the testing label (looking for how many 

results are the same) then summed and divided by the length of the testing label. 

261. nIteration = 50 

262. maxFeature = 2 

263. maxDepth = 10 

264. minSampleSplit = 2 

265.  

266. model = RandomForest(TrainingData, TrainingLabel, nIteration, maxFe

ature, maxDepth, minSampleSplit) 

267.  

268. preds = PredictRf(model, TestingData) 

269. acc = sum(preds == TestingLabel) / len(TestingLabel) 

270. print("Testing accuracy: {}".format(np.round(acc,3))) 

 

Line 271-281 visualizes the number of positives and negatives to determine whether the 

sentiment is more inclined to be positive or negative with a pie chart. First, a positive is made to 

0 first, then the value of the preds result if there is a label 1 (meaning positive) will be added 

directly to the post. For the negative number (neg) subtract the total data by the positive number. 

Then it is displayed in the form of a pie chart, for the number of positive red labels and the 

number of pink negative labels. 

271. import matplotlib.pyplot as plt 

272. pos = int(0) 

273. for value in preds: 

274.     if value == 1: 

275.         pos += 1       

276. neg = len(preds) - pos 

277. SenLabels = ['Positif', 'Negatif'] 

278. preds = np.array([pos, neg]) 

279.  

280. plt.pie(preds, labels= SenLabels, colors= ['red', 'pink']) 

281. plt.show() 

 

  



91 

 

5.1.2 Logistic Regression 

Line 1-6 import package used for Logistic Regression algorithm. Line 6 setup pandas 

display so that when reading the dataset it can reach the max column. 

1. import pandas as pd 

2. import numpy as np 

3. import random 

4. from random import choice 

5. import math 

6. pd.set_option('display.max_columns', None) 

 

Line 7-8 creates a function named PrintTable with data and limit parameters. PrintTable 

is to record the frame of the array (make the array into a table). 

7. def PrintTable(data, limit): 

8.  return pd.DataFrame(data).head(limit) 

 

Line 9-10 function to split sentences using data and seperator parameters. 

9. def SplitSentence(data, seperator): 

10.     return data.split(seperator) 

 

Lines 11-12 to read the REVIEWS.csv dataset, from the top row to 2000 rows. With the 

dataset arrangement id, review, rating, author, title. Line 14 to display the dataset. 

11. review = pd.read_csv("REVIEWS.csv", header=0, nrows=2000) 

12. review = review.values 

 

Line 13-31 creates a new function to calculate TF-IDF with the name Tfidf taken from 

the data. Creates a new array with the name WordArr (counts the number of occurrences of the 

word in the document) to hold the TempWord. Then for looping an in the data, TempWord 

contains a review column that is performed lower case and split by space, then displays 

TempWord. Line After that looping b in TempWord, if the WordArr is not empty then count 0 

and looping c for the long-range of WordArr, if the word in WordArr is in b then count 1 and 

then add 1 (eg the word 'do' already exists in WordArr, means the sum is 1 + 1). Checked if the 

word in variable b has never existed in WordArr then it is appended to WordArr and counted 1. 

29-31 in variable b has a review that only contains spaces, then it is also appended to WordArr 

and counted 1. 

  



92 

 

Lines 32-36 create a new array named TfArr to count the number of occurrences of 

words in 1 row of data. Then loop a for the range in the data length. Created a new array named 

TempTf which will store TfArr. For words that are calculated using TempWord which is already 

in lower case. Line 38-47 looping b in TempWord, if in b does not contain spaces then looping if 

TempTf is not empty then count 0 and looping c for a long-range of TempTf if word in TempTf 

is in b then count 1 and then add 1 (the eg word ' i' already exists in WordArr, so the sum is 1 + 

1). Line 49-51 if the word in variable b has never existed in TempTf then it is appended to 

TempTf and calculated 1. Line 52-54 in variable b there is a review that only contains spaces, 

then it is also appended to TempTf and counted 1. Line 56 TempTf is appended to TfArr. 

Line 57-65 creates a result array by looping an in length TfArr, then in looping a there is 

looping b in TfArr, in looping b looping c in WordArr to calculate TF-IDF. Line 91-93 TF-IDF 

calculation, Tf is calculated by the word that appears divided by the length of TfArr[a] (the 

length of 1 sentence or 1 line). IDF uses math previously imported in the package, logs 2000 data 

divided by the occurrence of letters in the document. Then TF-IDF, the result of Tf is multiplied 

by the result of IDF. For line 66 CountTemp, in 1 sentence several words will add up the results 

of each TF-IDF then divided by 2. Line 68-70 append CountTemp into a dataset with the format 

id, rating, review, author, title, CountTemp, and return result. 

13. def TfIdf(data):     

14.     WordArr = [] 

15.     for a in data: 

16.         TempWord = str.lower(a[1]).split(' ') 

17.         for b in TempWord: 

18.             if WordArr != []:             

19.                 count = 0 

20.                 for c in range(len(WordArr)):   

21.                     if WordArr[c][0] == b:                 

22.                         WordArr[c] = [WordArr[c][0], 

(int(WordArr[c][1]) + int(1))] 

23.                         count = 1 

24.                         break 

25.                      

26.                 if count == 0:       

27.                     if b != '': 

28.                         WordArr.append([b, int(1)]) 

29.             else: 

30.                 if b != '': 

31.                     WordArr.append([b, int(1)]) 



93 

 

32. TfArr = [] 

33.     for a in range(len(data)): 

34.         TempTf = [] 

35.         CountTf = 0 

36.         TempWord = str.lower(data[a][1]).split(' ') 

37.          

38.         for b in TempWord: 

39.             print(b) 

40.             if b != '':        

41.                 if TempTf != []: 

42.                     count = 0 

43.                     for c in range(len(TempTf)):                     

44.                         if TempTf[c][0] == b:                       

45.                             TempTf[c] = [TempTf[c][0], 

TempTf[c][1], (int(TempTf[c][2]) + int(1))] 

46.                             count = 1 

47.                             break 

48.                          

49.                     if count == 0: 

50.                         if b != '': 

51.                             TempTf.append([data[a][0], b, 

int(1)]) 

52.                 else: 

53.                     if b != '': 

54.                         TempTf.append([data[a][0], b, int(1)]) 

55.                          

56.         TfArr.append(TempTf) 

57.     result = [] 

58.     for a in range(len(TfArr)): 

59.         CountTemp = 0 

60.         for b in TfArr[a]: 

61.             for c in WordArr:         

62.                 if b[1] == c[0]: 

63.                     Tf = b[2]/ len(TfArr[a]) 

64.                     Idf = math.log(int(10000) / int(c[1])) 

65.                     TfIdf = Tf * Idf 

66.                     CountTemp = (float(CountTemp) + TfIdf) / 2 

67.                      

68.         result.append([data[a][0], data[a][1], data[a][2], 

data[a][3], data[a][4], CountTemp])          

69.     return result 

70. review = TfIdf(review) 

  



94 

 

Line 71-73 function for text processing, and create an array to group positive data and 

negative data respectively. Line 75-81 labels reviews and then inserts positive reviews into 

positive data and negative reviews into negative data. Then, calculate the training count, the test 

count and create a new array to hold the training and testing. Line 94-144 divides data into 

positive-negative training and testing, 70% for training data from positive data and negative data, 

and 30% for testing data from positive data and negative data. Training and testing data are 

selected randomly based on positive data and negative data, the author column is omitted. Then 

return training, testing, positive data, and negative data. 

71. def TextProcessing(train, test, data): 

72.     posData = [] 

73.     negData = [] 

74.      

75.     for value in data: 

76.         if value[2] >= 5: 

77.             label = 1 

78.             posData.append([value[0], value[1], value[2], 

value[4], label, value[5]]) 

79.         else: 

80.             label = 0 

81.             negData.append([value[0], value[1], value[2], 

value[4], label, value[5]]) 

82.          

83.     countTrainPos = int(train * (len(posData)/100)) 

84.     countTrainNeg = int(train * (len(negData)/100)) 

85.     countTestPos = int(test * (len(posData)/100)) 

86.     countTestNeg = int(test * (len(negData)/100)) 

87.     sizeArrayTest = countTestPos+countTestNeg 

88.      

89.     TrainingData = [] 

90.     TrainingLabel = [] 

91.     TestingData = [] 

92.     TestingLabel = []. 

93.      

94.     for iteration in range(countTrainPos): 

95.         temp = choice(posData) 

96.         checkTemp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

97.         exists = checkTemp in TrainingData 

98.         while exists == True: 

99.             temp = choice(posData) 

100.             checkTemp = [temp[0], temp[1], temp[2], temp[3], 

temp[5]] 



95 

 

101.             exists = checkTemp in TrainingData 

102.         TrainingLabel.append(temp[4]) 

103.         temp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

104.         TrainingData.append(temp) 

105.          

106.     for iteration in range(countTrainNeg): 

107.         temp = choice(negData) 

108.         checkTemp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

109.         exists = checkTemp in TrainingData 

110.         while exists == True: 

111.             temp = choice(negData) 

112.             checkTemp = [temp[0], temp[1], temp[2], temp[3], 

temp[5]] 

113.             exists = checkTemp in TrainingData 

114.         TrainingLabel.append(temp[4]) 

115.         temp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

116.         TrainingData.append(temp) 

117.          

118.     for iteration in range(countTestPos): 

119.         temp = choice(posData) 

120.         checkTemp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

121.         exists = checkTemp in TestingData 

122.         while exists == True: 

123.             temp = choice(posData) 

124.             checkTemp = [temp[0], temp[1], temp[2], temp[3], 

temp[5]] 

125.             exists = checkTemp in TestingData 

126.         TestingLabel.append(temp[4]) 

127.         temp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

128.         TestingData.append(temp) 

129.          

130.     for iteration in range(countTestNeg): 

131.         temp = choice(negData) 

132.         checkTemp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

133.         exists = checkTemp in TestingData 

134.         while exists == True: 

135.             temp = choice(negData) 

136.             checkTemp = [temp[0], temp[1], temp[2], temp[3], 

temp[5]] 

137.             exists = checkTemp in TestingData 

138.         TestingLabel.append(temp[4]) 

139.         temp = [temp[0], temp[1], temp[2], temp[3], temp[5]] 

140.         TestingData.append(temp) 

141.          



96 

 

142.     return TrainingData, TrainingLabel, TestingData, 

TestingLabel, posData, negData 

143.      

144. TrainingData, TrainingLabel, TestingData, TestingLabel, posData, 

negData = TextProcessing(70, 30, review) 

 

Line 145-155 WordDict calculations to group positive words and negative words. For 

posWord, it is split based on spaces, then checks a word from the review column whether it is in 

the positive data or not. If there is, then the number is added by 1, otherwise, the number is 

counted by 1. Line 157-165 checks a word from the review column whether it is in the negative 

data or not. If there is, then the number is added by 1, otherwise, the number is counted by 1. 

Line 167-169 updates posWord and negWord in wordDict and returns wordDict. 

145. def WordDict(posData, negData): 

146.     posWord={} 

147.     for values in posData: 

148.          

149.         values = SplitSentence(str.lower(values[1]), ' ')      

150.         for value in values: 

151.             if value != '':   

152.                 if (value,1) not in posWord:                             

153.                     posWord[(value,1)]=1          

154.                 else: 

155.                     posWord[(value,1)]=posWord[(value,1)]+1 

156.                      

157.     negWord={} 

158.     for values in negData:    

159.         values = SplitSentence(str.lower(values[1]), ' ')        

160.         for value in values:            

161.             if value != '': 

162.                 if (value,1) not in negWord: 

163.                     negWord[(value,0)]=1                             

164.                 else: 

165.                     negWord[(value,0)]=negWord[(value,1)]+1 

166.      

167.     wordDict = dict(posWord) 

168.     wordDict.update(negWord)     

169.     return wordDict 

 

  



97 

 

Line 170-174 function for feature extraction that converts data into vectors. The data is 

converted into a 3-dimensional (X) vector containing, rating, TF-IDF score, posWord dict 

(number of positive words in positive data for each id), and negWord dict (number of negative 

words in negative data for each id). Line 176-183 counts the total occurrences of positive and 

negative words from wordDict (for try). Line 181 if there is no word in wordDict then it will be 

added to 0. Then it is inserted into the matrix and returns x. The initial 190 X line is set to 0 

throughout the training data. Line 192 fills X with the new value that was calculated on lines 

176-183. This extraction feature is repeated for all ids based on training data. 

170. def FeatureExtraction(data, wordDict): 

171.     word_l = SplitSentence(str.lower(data[1]), ' ') 

172.     x = np.zeros((1, 4)) 

173.     x[0,0] = data[2] 

174.     x[0,1] = data[4] 

175.     for word in word_l: 

176.         try: 

177.             x[0,2] += wordDict[(word,1)] 

178.         except: 

179.             x[0,2] += 0 

180.         try:  

181.             x[0,3] += wordDict[(word,0.0)] 

182.         except: 

183.             x[0,3] += 0 

184.              

185.     assert(x.shape == (1, 4)) 

186.     return x 

187.  

188. WordDicts = WordDict(posData, negData) 

189.  

190. X = np.zeros((len(TrainingData), 4)) 

191.         

192. for i in range(len(TrainingData)): 

193.     X[i, :]= FeatureExtraction(TrainingData[i], WordDicts) 

 

  



98 

 

Line 194-197 calculates the intercept, xData, yData, and weight used for the next step. 

Initializes the intercept to 1 throughout the training data. The xData intercept is merged vertically 

with feature extraction. yData here converts the data array into a NumPy array of training labels. 

As for the weight, it is initialized and set the value to 0 accordingly, the length corresponds to the 

number of contents of the matrix in 1 row and will be updated later. 

194. intercept = np.ones((X.shape[0], 1))   

195. xData = np.concatenate((intercept, X), axis=1) 

196. weight = np.zeros(xData.shape[1]) 

197. yData = np.asarray(TrainingLabel) 

 

Line 198-200 function for the sigmoid which is used for later model training functions. 

The final result of this sigmoid will be compared with the predicted label. 

198. def countSigmoid(x, weight): 

199.     z = np.dot(x, weight) 

200.     return 1 / (1 + np.exp(-z)) 

 

Line 201-202 function to calculate the loss. H here is the sigmoid result and y is yData. 

Line 204-209 the result of the loss is there, then it will be added to 0 and divided by 2, if the loss 

result is in the form of a value or number, then add the value and divide by 2. The smaller the 

loss value will produce a good prediction. 

201. def countLoss(h, y): 

202.     result = (-y * np.log(h) - (1 - y) * np.log(1 - h)) 

203.     mean = 0 

204.     for value in result: 

205.         if np.isnan(value): 

206.             mean = (mean + 0) / 2 

207.         else: 

208.             mean = (mean + value) / 2 

209.     return mean 

 

Line 210-214 gradient descent function to find the optimal value of the parameter. X is 

xData, h is the result of sigmoid and y is yData. The result of the loss that will be made is 0. 

210. def countGradientDescent(X, h, y): 

211.     hY = np.nan_to_num(h-y, copy=True, nan=0.0) 

212.     X = np.nan_to_num(X, copy=True, nan=0.0) 

213.     result = np.dot(X.T, hY)/ y.shape[0] 

214.     return result 

  



99 

 

Line 215 function for model training with learning rate, iteration, intercept, xData, 

weight, and yData parameters. Line 217-218 displays the sigmoid value results. Line 219 

displays the loss values of sigmoid and yData. Line 220 displays the gradient descent value. Line 

221 updates the weight value with a learning rate = 0.1. The new Weight will predict the label. 

Line 222-223 enters the new weight. This calculation is carried out in 50 iterations. 

215. def fit(lr , iterations, intercept, xData, weight, yData):   

216.     for i in range(iterations): 

217.         sigma = countSigmoid(xData, weight) 

218.         sigma = np.nan_to_num(sigma, copy=True, nan=0.0) 

219.         loss = countLoss(sigma,yData) 

220.         dW = countGradientDescent(xData , sigma, yData) 

221.         weight -= lr * dW 

222.     return weight 

223. weight = fit(0.1 , 50, intercept, xData, weight, yData) 

Line 224 function for prediction. Line 225 predicts the class label by calculating the new 

sigmoid first using the new weight. Line 226 looks for the result after from result before with a 

threshold. If result before >= threshold then True, if result before <= threshold then False. 

Threshold = 0.5. Line 227 label prediction is made, the value is set to 0 first as long as the result 

before. Line 228-233 compares the result after with the predicted label. If the result value is after 

'True', then it is labeled 1, if 'False' then it is labeled 0. Line 235 calculates the accuracy of the 

model by checking the similarity of yData and predicting the label of the percentage of the same 

number divided by the length of yData. 

224. def predict(xData , treshold, intercept, weight): 

225.     result = countSigmoid(xData, weight) 

226.     result = result >= treshold 

227.     predLabel = np.zeros(result.shape[0]) 

228.     for i in range(len(predLabel)): 

229.         if result[i] == True:  

230.             predLabel[i] = 1  

231.         else: 

232.             continue 

233.     return predLabel 

234. predLabel = predict(xData, 0.5, intercept, weight) 

235. print('\nAccuracy -> {}\n'.format(sum(predLabel == yData) / 

yData.shape[0])) 

  



100 

 

Line 236-246 visualizes the number of positives and negatives to determine whether 

sentiment is more inclined to be positive or negative with a pie chart. First, a positive is made to 

0 first, then the value of the preds result if there is a label 1 (meaning positive) will be added 

directly to the post. For the negative number (neg) subtract the total data by the positive number. 

Then it is displayed in the form of a pie chart, for the number of positive red labels and the 

number of pink negative labels. 

236. import matplotlib.pyplot as plt 

237. pos = int(0) 

238. for value in predLabel:    

239.     if value == 1: 

240.         pos += 1         

241. neg = len(predLabel) - pos 

242. SenLabels = ['Positif', 'Negatif'] 

243. predLabel = np.array([pos, neg]) 

244.  

245. plt.pie(predLabel, labels= SenLabels, colors= ['red', 'pink']) 

246. plt.show() 

 

5.2. Results 

 Based on the program code above, the results obtained from the implementation of the 

Random Forest and Logistic Regression algorithms on film review sentiment analysis. Random 

Forest and Logistics Regression can analyze movie review sentiment. In training or testing data 

this time from existing data, the two algorithms are more dominant to positive so that the 

sentiment results obtained are positive. Random forest program requires 4 hours of running time 

for 2000 data, 50 iterations, and the number of trees set in this project is 50 trees. Here are the 

results of the program by implementing the Random Forest algorithm: 

Table 5.2.1 Results of Random Forest 

Total number of 

Positive Label 

Prediction 

Total Number of 

Negative Label 

Prediction 

Total Data Accuracy 

458 142 2.000 79,97% 

 



101 

 

Table 5.2.1 above shows the results from Random Forest. From 2,000 data obtained the 

number of iterations and the tree is 50, the number of positive labels, the number of negative 

labels, and accuracy with a maximum depth of 10. It can be seen from the table that the more 

data, the accuracy will increase. And for analysis, later the maximum depth in this project is 

made 2, 5, 10, and 12 to see its effect on accuracy. The accuracy itself is obtained by matching 

the predicted results of the label with the test label then divided by the test data. 

Meanwhile, the Logistic Regression algorithm takes 3 hours and 30 minutes to run the 

program for 2.000 data, 50 iterations with a learning rate = 0.1, and a threshold = 0.5. The 

following are the results of the program by implementing the Logistic Regression algorithm: 

Table 0.1 Results of Logistic Regression 

Total number of 

Positive Label 

Prediction 

Total Number of 

Negative Label 

Prediction 

Total Data Accuracy 

1.363 36 1.399 73,21% 

 In Table 5.2.2 above, the results from Logistic Regression are obtained, with the number 

of positive labels being 1.363 obtained from the predicted label results, as well as for the number 

of negative labels. Then obtained a total of 1.393 data was taken from testing labels. Then the 

accuracy is obtained by matching the predicted results of the label with the testing label and then 

divided by the testing data. The prediction label is obtained. Predict Label: [1 1 1 … 1 1 1] with a 

total data of 1.399, so the accuracy is 73,21%.  

After getting the accuracy of the Random Forest and Logistic Regression algorithms, an 

accuracy comparison was made. The Random Forest accuracy is 79,97% and Logistics accuracy 

is 73,21%, the accuracy for Random Forest is better than Logistic Regression, so the Random 

Forest algorithm is the best and is suitable for this case. 

  



102 

 

5.3. Analysis 

In this project, the authors label the reviews based on ratings. It is labeled positive if the 

movie rating is more than equal to 5, and labeled negative if the movie rating is less than equal to 

5. To see that sentiment is more inclined to negative or positive, the author uses the Random 

Forest and Logistic Regression algorithm using 2 factors, namely TF-IDF score and rating. This 

TF-IDF score is obtained from the calculation of movie reviews. Then this project compares the 

accuracy of the two algorithms. Accuracy is obtained from matching the predicted results of the 

training label with the testing label and then dividing by the testing data. 

 Random Forest and Logistics Regression can analyze movie review sentiment. In training 

or testing data this time from existing data, the two algorithms are more dominant to positive so 

that the sentiment results obtained are positive. Random forest program requires 4 hours of 

running time for each data with a range of 650-2.000 data, 50 iterations, and the number of trees 

set in this project is 50 trees. Here are the results of the trial: 

Table 5.3.1 Analysis of Random Forest 

Total Data Max Depth Total number of 

Positive Label 

Prediction 

Total number of 

Negative Label 

Prediction 

Sentiment Accuracy 

650 2 3 192 Negative 52,31% 

5 16 179 Negative 55,9% 

10 192 3 Positive 64,41% 

12 104 91 Positive 65,71% 

800 2 225 15 Positive 54,77% 

5 45 195 Negative 58,14% 

10 162 78 Positive 66,97% 

12 213 27 Positive 67,55% 

950 

 

2 246 39 Positive 56,89% 

5 210 75 Positive 60,33% 



103 

 

Total Data Max Depth Total number of 

Positive Label 

Prediction 

Total number of 

Negative Label 

Prediction 

Sentiment Accuracy 

10 193 93 Positive 68,45% 

12 239 47 Positive 69,27% 

1100 2 205 125 Positive 58,31% 

5 89 241 Negative 61,09% 

10 234 96 Positive 71,68% 

12 58 272 Negative 72,50% 

1250 

 

 

 

2 91 375 Negative 59,23% 

5 322 53 Positive 62,67% 

10 311 64 Positive 72,44% 

12 318 57 Positive 73,12% 

1400 2 351 69 Positive 61,35% 

5 150 270 Negative 63,05% 

10 312 108 Positive 74,19% 

12 384 36 Positive 75,70% 

1550 2 412 53 Positive 62,33% 

5 434 31 Positive 64,81% 

10 439 26 Positive 75,22% 

12 375 90 Positive 76,78% 

1700 

 

 

2 508 2 Positive 63,79% 

5 459 51 Positive 65,12% 

10 417 93 Positive 77,93% 



104 

 

Total Data Max Depth Total number of 

Positive Label 

Prediction 

Total number of 

Negative Label 

Prediction 

Sentiment Accuracy 

12 484 26 Positive 78,48% 

1850 2 468 87 Positive 65,05% 

5 243 312 Negative 66,70% 

10 140 415 Negative 78,35% 

12 457 98 Positive 79,43% 

2000 

 

 

 

2 474 126 Positive 66,89% 

5 575 25 Positive 68,11% 

10 458 142 Positive 79,97% 

12 507 93 Positive 80,43% 

 

Table 5.3.1 above shows the results from Random Forest. From the range of 650-2.000 

data, the number of iterations and the tree is 50, the number of positive labels, the number of 

negative labels, and accuracy with different max depths are obtained. It can be seen from the 

table that the more the amount of data the accuracy will increase. And for the max depth in this 

project, 2, 5, 10, and 12 were made to see their effect on accuracy. The greater the number of 

max depths, will affect the accuracy obtained (the accuracy increases). Accuracy itself is 

obtained by matching the predicted results of the label with the test label then divided by the test 

data. In this training or data testing, the existing data is more dominant to positive so that the 

sentiment results obtained are positive. 

 Meanwhile, the Logistic Regression algorithm takes 3 hours and 30 minutes to run the 

program for 2000 data, 50 iterations with a learning rate = 0.1, and a threshold = 0.5. The 

following are the results of the program by implementing the Logistic Regression algorithm: 

  



105 

 

Table 5.3.2 Analysis of Logistic Regression 

Number of Positive 

Labels 

Number of Negative 

Labels 
Accuracy Sentiment 

445 9 59,04% Positive 

548 12 60,11% Positive 

664 0 61,45% Positive 

749 20 63,53% Positive 

854 20 65,61% Positive 

995 24 67,31% Positive 

84 1080 68,34% Negative 

175 1014 69,44% Negative 

1263 31 72,09% Positive 

1363 36 74,21% Positive 

In Table 5.3.2 above, the results of Logistic Regression are obtained, with a range of 

650-2.000 data and 50 iterations, the number of positive labels, the number of negative labels, 

and different accuracy are obtained. It can be seen from the table that the more amount of data, 

the accuracy will increase. So the amount of data influences the accuracy of the results. In 

training or testing data, this time the existing data is more dominant to positive so that the 

sentiment results obtained are postive. 

It can be seen in the Table 5.3.1 and Table 5.3.2 above, that the sentiment results 

obtained by the two algorithms produce more positive sentiments. This is because the training 

data and testing data are taken randomly. In training and testing, the randomized data this time is 

more dominant to positive so that the sentiment results obtained are positive.



106 

 

 

 

Figure 0.1 Random Forest Graph 

It can be seen in Figure 5.3, from 10 trials with the number of datasets from the range of 

650-2.000, the accuracy of Random Forest data continues to increase. This accuracy can 

continue to increase if the amount of data used is increasing. To determine the final accuracy 

result from Random Forest, the accuracy of 10 trials was averaged. The average result is 

72,961%. 

  



107 

 

 

Figure 0.2 Logistic Regression Graph 

It can be seen in Figure 5.3.1 and Figure 5.3.2, from 10 trials with the number of 

datasets from the range 650-2.000, the accuracy of Logistic Regression data continues to 

increase. This accuracy can continue to increase if the amount of data used is increasing. To 

determine the final accuracy result of Logistic Regression, the accuracy of 10 trials is carried out 

on average. The average result is 66,310%. 

       So from the comparison of accuracy, Random Forest is better and suitable for this research 

because it has an average accuracy of 72,961% while the average accuracy of Logistic 

Regression is 66,310%. 

 The accuracy obtained by both algorithms from 10 experiments with a data range of 650-

2000 data, the accuracy obtained is small (60%-70%). Because in this project the dataset and 

variables that I use are few. The dataset used 2,000 data and variables used 2 variables, namely 

rating and score TF-IDF. 

  

 

 


	1091c6003d9d99cfdf005f4ffb7214f428e937e9829620ff469653f6a65ab7b3.pdf
	0f284e8d9e2ab24e8ca072a84659b5d9c1f6e596c88407a2aa023d6518dd6234.pdf
	652313ace088d3e069e5cc9060e53e5f1314d2df97a9fb55677f6fd0e9d8cad6.pdf

	d6f43c5d33b0eed7e95553d5cf00268ea47ed37745ca40ea4d8baa4ac962c958.pdf
	1091c6003d9d99cfdf005f4ffb7214f428e937e9829620ff469653f6a65ab7b3.pdf
	132bb8ac0dcb9bbc043b46d2683dbbdd08fa6566e7c5fac6f780d9c7a1975e02.pdf


