
22

CHAPTER 4

ANALYSIS AND DESIGN

In this project, the author analyzes the sentiment classification of movie reviews by

implementing the Random Forest and Logistic Regression algorithms. With these two

algorithms, you can get results whether the reviews are more inclined to positive sentiment or

negative sentiment. This project also calculates the accuracy of each algorithm and compares

which algorithm has the highest accuracy. The algorithm that has the highest accuracy is a good

algorithm for this project. Both algorithms use steps that are slightly different from each other,

the steps are as follows:

4.1. Random Forest

Figure 4.1.1 Random Forest Workflow

As seen in Figure 4.1, there are 6 steps for Random Forest. First getting data, then data

preprocessing. Then do the TF-IDF calculation for each word. After that, the data is split into

70% for training and 30% for testing. Then implementation of Random Forest algorithm, and

finally evaluation.

4.1.1. Getting Data

 It can be seen in Figure 4.1, first getting data is done. The dataset used is IMDb Movie

Reviews 2021, which was taken from Kaggle. In this dataset, 2.000 rows have 5 variables or

features, namely id, title, review, rating, and author. Each review has a movie rating that is used

to label the review later. The movie rating itself has a range from 1 to 10. The dataset table can

be seen in Table 4.1.1.1.

23

Table 4.1.1.1 Random Forest Dataset

ID Title Review Rating Author

1 Not Bad I don't get the terrible reviews 5 margarida-44311

2

What are all the

bad reviews about

is it a woke thing

The movie was great 6 joemay-2

3
Great White=Jaws

Lite
The CGI is not great 4 nebk

4
Bare-bones killer

shark film
The movie is bad 4 kuarinofu

5
Terrible story,

dialogue, and CGI
I don’t like the terrible movie 4 Horror_Flick_Fanatic

...

4996

What are all the

bad reviews about

is it a woke thing

Its poorly written, very poorly

directed, poorly scripted
8 Jim_Screechy

4997
Utter Foolishness

This film is so pathetic and

low budget with a script that

has no plot

3 alinagoldenmeer

4998

Nicholas cage

should be

embarrassed

Over the top Cage in absurd

gore movie
1 metahumanity_01

4999
Don't waste your

time

It is unusual for me to stop

watching a movie half way,

even if I really don't like it

2 walteriandolo

5000
Nic Cage loves

pocket money
This is lazy and why movies

and filmmaking is dying
1 paul_obe

24

4.1.2. Data Preprocessing

In Figure 4.1 for Random Forest after getting the data, preprocessing the data is done.

Each review is labeled positive and negative based on the rating. If the movie rating is >= 5 then

it is labeled 1 which means it is positive, while the movie rating <= 5 is labeled 0 which means it

is negative. In preprocessing the data, the author column is omitted because it does not have an

effect on sentiment and adds a sentiment column that contains a label obtained from the rating.

Here, the writer takes 20 samples from the dataset that is carried out by the preprocessing data,

which can be seen in Table 4.1.2.1

Table 4.1.2.1 Data Preprocessing

ID Title Review Rating Label

1 Not Bad I do not get the terrible reviews

5 1

2
Horse The movie is great 6 1

3 Great White=Jaws Lite The CGI is not great 4 0

4
Bare-bones killer shark

film
The movie is bad 4 0

5 Taxi I do not like the terrible movie 4 0

6 A descent effort It is great enough 6 1

7 Greenland I like it 7 1

8 Mulan The movie is good 5 1

9 A Quite Place II It is bad 3 0

10 Spiderman I do not like 4 0

11 Superman The cgi is bad 4 0

12 Wonder Woman It is great 7 1

25

ID Title Review Rating Label

13 Ava It is good 4 0

14 Cinderella The movie is nice 7 1

15 Combat It is nice 7 1

16 Frozen Not good 4 0

17 Tenet Nice 5 1

18 Cruella Like it 6 1

19 Fast & Furious It is terrible 4 0

20 Twilight Terrible movie 7 1

4.1.3. TF-IDF (Term Frequency-Inverse Document Frequency)

 Then the TF-IDF calculation is carried out. TFI-DF is used to calculate the length of the

text and produce results of greater relevance, also to convert text reviews into numeric or vector

TFIDF and calculate the weight of each word feature. Here's the formula for calculating TF-IDF:

𝑇𝑓 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡𝑒𝑟𝑚 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

Function 4.2.3: TF

𝐼𝑑𝑓 = 𝑙𝑜𝑔
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

Function 4.2.3.1: Idf

𝑇𝑓 − 𝐼𝑑𝑓 = 𝑇𝑓 × 𝐼𝑑𝑓

Function 4.2.3.2: Tf-Idf

26

TF-IDF presents vector text data based on a review. TF can be seen in Function 4.2.3,

calculated by finding the number of occurrences of words in the data (per line) divided by the

length of the sentence. IDF can be seen in Function 4.2.3.1, which serves to reduce the weight of

a term if its occurrence is spread throughout the data, calculated by the log of the total data or

document divided by the occurrence of words in the data. In Random Forest, the use of TF-IDF

lowers the case for the review column and splits based on spaces named TempWord which can

be seen in Table 4.1.3.1.

Then create a WordArray to count the number of the same words in 1 document, and a

CountWord Table 4.2.3.1 to count the number of occurrences of the same word in the data. The

result is the implementation of the TF-IDF formula which can be seen in Function 4.2.3.2. The

author will take 20 samples from preprocessed data to calculate TF-IDF. The author takes 20

data samples to clarify the calculation of TF-IDF, which can be seen in Table 4.2.3.2.

Table 4.1.3.1 TempWord

Iterasi Lower case review column and split by space

1 ‘i’, ‘do’, ‘not’, ‘get’, ‘the’, ‘terrible’, ‘reviews’

2 ‘the’, movie, was, ‘great’

3 ‘the’, ‘cgi’, ‘is’, ‘not’, ‘great’

4 ‘the’, ‘movie’, ‘is’, ‘bad’

5 ‘i’, “don’t”, ‘like’, ‘the’, ‘terrible’, ‘movie’

6 ‘it’, ‘is’, ‘great’, ‘enough’

As can be seen in the table above, TempWord here lowers the case for the review column and

splits based on spaces. The table is displayed according to the iteration or order of the data.

27

Table 4.1.3.2 CountWord

Word
The number of the same

word appears in the data
Word

The number of the same word

appears in the data

 i 4 great 4

do 3 cgi 2

not 4 bad 3

get 1 like 4

the 8 enough 1

terrible 4 it 8

reviews 1 good 3

movie 6 nice 3

is 8

Next, the Count Word is calculated. Word count is obtained by counting the number of

occurrences of the same word in the data. It can be seen in Table 4.1.3.2.

Table 4.1.3.3 Calculation of TF-IDF

Word

Number of

Word

Appears

Total

Number of

Document

TF IDF TF-IDF

(TF x IDF)

 i 4 20 4/20 = 0,2 log(20/4) = 0,6990 0,1398

do 3 20 3/20 = 0,15 log(20/3) = 0,8239 0,1236

not 4 20 4/20 = 0,2 log(20/4) = 0,6990 0,1398

get 1 20 1/20 = 0,05 log(20/1) = 1,3010 0,0652

the 8 20 8/20 = 0,4 log(20/8) = 0,3979 0,1592

terrible 4 20 4/20 = 0,2 log(20/4) = 0,6990 0,1398

reviews 1 20 1/20 = 0,05 log(20/1) = 1,3010 0,0652

28

Word

Number of

Word

Appears

Total

Number of

Document

TF IDF
TF-IDF

(TF x IDF)

movie 6 20 6/20 = 0,3 log(20/6) = 0,5229 0,1569

is 8 20 8/20 = 0,4 log(20/8) = 0,3979 0,1592

great 4 20 4/20 = 0,2 log(20/4) = 0,6990 0,1398

cgi 2 20 2/20 = 0,1 log(20/2) = 1 0,1

bad 3 20 3/20 = 0,15 log(20/3) = 0,8239 0.1236

like 4 20 4/20 = 0,2 log(20/4) = 0,6990 0,1398

enough 1 20 1/20 = 0,05 log(20/1) = 1,3010 0,0652

it 8 20 8/20 = 0,4 log(20/8) = 0,3979 0,1592

good 3 20 3/20 = 0,15 log(20/3) = 0,8239 0.1236

nice 3 20 3/20 = 0,15 log(20/3) = 0,8239 0.1236

After the TempWord and CountWord are obtained, they are entered into the TF-IDF formula. In

the Table 4.1.3.4, the TF-IDF calculation is based on the review column on the data. It can be

seen that the word 'i' appears in the data 4 times with a total of 20 data. Then the TF is calculated

by 4 divided by 20 so that the TF is 0.4. While the IDF log of 20 is divided by 4, so we get

0.6990. After obtaining the TF and IDF, the author can calculate the TF-IDF score, which is 0.4

multiplied by 0.6990 and the result is 0.1398.

29

Table 4.1.3.5 TF-IDF Results

ID Title Review Rating Label TF-IDF

1 Not Bad
I do not get the terrible

reviews
5 1 0,11895

2

What are all the

bad reviews about

is it woke thing

It is great 7 1 0,15273

3 Cinderella The movie is nice 7 1 0,14733

4
Bare-bones killer

shark film
The movie is bad 4 0 0,14973

5
Terrible story,

dialogue, and CGI

I do not like the

terrible movie
4 0 0,12464

6 A Descent Effort It is great enough 6 1 0,13085

7 Greenland I like it 7 1 0,14627

8 Mulan The movie is good 5 1 0,14973

9 A Quite Place II It is bad 7 1 0,15273

10 Spiderman I do not like 4 0 0,1344

11 Superman The cgi is bad 4 0 0,1355

12 Wonder Woman The movie is great 6 1 0,0996

13 Ava It is good 4 0 0,14733

14
Great White=Jaws

Lite
The CGI is not great 4 0 0,1396

15 Combat It is nice 7 1 0,14733

16 Frozen Not good 4 0 0,1317

17 Tenet Nice 5 1 0,1236

30

ID Title Review Rating Label TF-IDF

18 Cruella Like it 6 1 0,1495

19 Fast & Furious It is terrible 4 0 0,15723

20 Twilight Terrible movie 7 1 0,14835

In the Table 4.1.3.6, the results of the TF-IDF are obtained by adding up the results of the TF-

IDF per word for 1 line review and then averaging.

For example for id 1: i', 'do', 'not', 'get', 'the', 'terrible', 'reviews'

Each of the words above has a TF-IDF result: 0.1398 , 0.1236, 0,1398, 0,0652, 0,1592, 0,1398,

0,1398

TF-IDF results for id 1 = (0.1398 + 0.1236 + 0.1398 +.0.0652 +0.1592 + 0.1398 + 0.1398) / 7

 = 0,11895

This calculation applies to each ID.

31

4.1.4. Split Data

 After the TF-IDF calculation is obtained, the data is split, the data is divided into training

data and data testing. Split data made 70% for training data and 30% for data testing. In split data,

create 4 new arrays containing training data, training labels, testing data, testing labels. In the

table below, the authors take 20 samples of data to be divided. 14 for training data and 6 for

testing data. Training data and testing data will be displayed randomly.

Table 4.1.4.1 Training Data

Rating Score TF-IDF

5 0,11895

6 0,15273

7 0,14733

4 0,14973

4 0,12464

6 0,13085

7 0,14627

5 0,14973

3 0,15273

4 0,1344

4 0,1355

6 0,0996

4 0,14733

4 0,1396

In the training data Table 4.1.4.1, the author uses 2 features, namely the TF-IDF rating and score.

The TF-IDF score obtained in the table above is a calculation of 1 data or document. The author

splits the data for training 70% of the dataset.

32

Table 4.1.4.2 Training Label

Rating Score TF-IDF Label

5 0,11895 1

6 0,15273 1

7 0,14733 1

4 0,14973 0

4 0,12464 0

6 0,13085 1

7 0,14627 1

5 0,14973 1

3 0,15273 1

4 0,1344 0

4 0,1355 0

6 0,0996 1

4 0,14733 0

4 0,1396 0

After the training data is obtained, the training data is labeled with the name training label, which

can be seen in Table 4.1.4.2. If the movie rating >= 5 then it is labeled 1 which means it is

positive, while the movie rating <= 5 is labeled 0 which means it is negative.

33

Table 4.1.4.3 Testing Data

Rating Score TF-IDF

7 0,14733

4 0,1317

5 0,1236

6 0,1495

4 0,15723

7 0,14835

Table 4.1.4.4 Testing Label

Rating Score TF-IDF Label

7 0,14733 1

4 0,1317 0

5 0,1236 1

6 0,1495 1

4 0,15723 0

7 0,14835 1

In the testing data Table 4.1.4.3, 30% of the dataset is used. Just like the training data, the

features in the testing data consist of 2 features, namely the TF-IDF rating and score. While in

Table 4.1.4.5, testing data is labeled for each row.

34

4.1.5. Implementation of Random Forest Algorithm

Figure 4.1.5.1 Representation of Random Forest

Based on Figure 4.1.1 the next step is to implement the Random Forest algorithm. Its

representation can be seen in Figure 4.1.5.1 In the picture above, the training data has 2 variables,

namely the TF-IDF rating and score. X1 for rating and X2 score for TF-IDF. While Y is a column

label obtained from preprocessing data. Following are the steps for implementing the Random

Forest algorithm:

1. First, a random sample is selected from 14 training data.

In this project, a random sample selection was obtained by creating a bootstrap. The author

took 20 samples randomly. Bootstrapping is done to train each tree in the Random Forest on

subset observations or values. This bootstrap creation will calculate bootstrap data, bootstrap

labels, OOB data, OOB labels, bootstrap indices, and OOB indices. Subsets or values that are

not bootstrapped go into OOB. Bootstrap indices here take values randomly from the training

data along with the training data which can be seen in Table 4.1.5.1.

Table 4.1.5.1 Bootstrap Indices

0 1 2 4 5 6 6 5 9 4 10 11 12 13

35

Table 4.1.5.2 OOB Indices

3 7 8 9

The value of bootstrap indices is taken randomly from the training data and throughout the

training data. Whereas OOB indices take values that are not in bootstrap indices.

Table 4.1.5.3 Bootstrap Data

Rating Score TF-IDF

5 0,11895

6 0,15273

4 0,1396

4 0,12464

6 0,13085

7 0,14627

7 0,14627

6 0,13085

4 0,1344

4 0,12464

4 0,1355

7 0,15273

6 0,0996

4 0,1396

36

In the bootstrap data Table 4.1.5.3, in this project, is an append of the training data, which

means that the training data becomes the benchmark to get the bootstrap data value. The

length of the bootstrap data is based on the bootstrap indices. The previous bootstrap

indices were 14 lines long, so there are 14 lines in the bootstrap data. The values contained

in the bootstrap data are based on the array order of the training data, so the bootstrap

indices are known [0, 1, 2, 4, 5, 6, 6, 5, 4, 9, 10, 11, 12, 13] the first number is 0, then the

first row of bootstrap data contains the first row of training data.

Table 4.1.5.4 Bootstrap Label

Rating Score TF-IDF Label

5 0,11895 1

7 0,15378 1

4 0,1396 0

4 0,12464 0

6 0,13085 1

7 0,14627 1

7 0,14627 1

6 0,13085 1

4 0,1344 0

4 0,12464 0

4 0,1355 0

7 0,15273 1

6 0,15378 0

7 0,14733 1

The bootstrap data is labeled in a bootstrap label, based on the training label. Value 1 for

positive and value 0 for negative. Based on the bootstrap data table, the bootstrap label can

be seen in Table 4.1.5.4.

37

Table 4.1.5.5 OOB Data

Rating Score TF-IDF

4 0,14973

5 0,14973

3 0,15273

4 0,1344

Table 4.1.5.6 OOB Label

Rating Score TF-IDF Label

4 0,14973 0

5 0,14973 1

3 0,15273 0

4 0,1344 0

The previous OOB indices were 4 lines long, so there are 4 lines in the OOB data. The

values contained in the OOB data are based on the array order of the training data, so the

OOB indices are known [3, 7, 8, 9], then the OOB data contains the fourth row of the

training data. With this step 1 has been completed.

38

2. Second, training and building a decision tree for each sample from bootstrap data with steps as

below:

a. Split Point

After calculating the bootstrap, a split point calculation is performed to find the child

value with the highest Information Gain. This is done by choosing a value from the

bootstrap randomly, each selected value is iterated and the Information Gain calculation is

performed. The value with the highest Information Gain represents a node in the tree

containing IDX features, value, left child node, and right child node. The split point count

uses bootstrap data, bootstrap label, and max features parameters. Max features are

features used in this project, there are 2, namely rating and results from TF-IDF. The split

point uses the ls feature, which is 1 or 0, and the value of the IDX feature comes from the

ls feature which is obtained randomly.

The split point value is obtained from the IDX+1 feature (this IDX feature is obtained

randomly from the ls feature). While the value is obtained from the IDX + 1 feature. There

are 2 conditions to form a child node, namely:

1) If the value <= the value of the split point it will form a left child node.

2) If the value >= the value of the split point will form a right child node.

The left and right children initially contain bootstrap data and an empty bootstrap label.

Left child : bootstrap data [], bootstrap label []

Right child : bootstrap data [], bootstrap label []

The following is a calculation based on a sample from bootstrap data:

• For feature IDX = 1 (out of 2 features, rating and TF-IDF, if Feature IDX = 1 which is

the benchmark for TF-IDF), it has 2 loops:

➢ Looping 1:

Feature IDX = 1

Value = Feature IDX 1+1 = 2 (takes the lowest 2 data from the training data) =

0,14733

Split point = Feature IDX 1+1= 2 (take the top 2 data from the training data) =

0,11895

39

Value 0,14733 > Split point 0,11895, then form a right child node.

Feature IDX = 1

Value = 0,0996

Split point = 0,11895

Value 0,0996 < Split point 0,11895, then form a left child node.

Table 4.1.5.7 Contents of Child in Feature IDX = 1 in Loop 1

Child Input

Left child
bootstrap data: [6 0,0996]

bootstrap label: [1]

Right child
bootstrap data: [4 0,14733]

bootstrap label: [0]

Table 4.1.5.7 above shows the contents of the left child and right child based on

Feature IDX = 1 when looping 1, with bootstrap data and bootstrap label input.

➢ Looping 2:

Feature IDX = 1

Value = 0,14733

Split point = 0,15273

Value 0,14733 < Split point 0,15273, then form a left child node.

Feature IDX = 1

Value = 0,0996

Split point = 0,15273

Value 0,0996 < Split point 0,15273, then form a left child node.

40

Table 4.1.5.8 Contents of Child in Feature IDX = 1 in Loop 2

Child Input

Left child
bootstrap data: [4 0,14733], [6 0,0996]

bootstrap label: [0, 1]

Table 4.1.5.8 above shows the contents of the left child based on Feature IDX = 1

when looping 2, with bootstrap data input and bootstrap label.

• For feature IDX = 0 (out of 2 features, rating and TF-IDF, if Feature IDX = 0 is the

rating benchmark), it has 1 looping:

Feature IDX = 0

Value = 6

Split point = 5

Value 6 > Split point 5, then form a right child node.

Table 4.1.5.9 Contentes of Child in Feature IDX = 0

Child Input

Right child
bootstrap data: [6 0,0996]

bootstrap label: [1]

Table 4.1.5.9 above shows the contents of the left child and right child based on

Feature IDX = 0, with input bootstrap data and bootstrap label.

41

b. Information Gain (IG) is calculated using entropy, takes the class list from the left and

right children, and returns the information gain from a certain separation. Information

Gain calculates how much information is obtained when splitting nodes at a certain value,

also to determine the next branch.

From the results of the split point count, Information Gain is calculated for each loop of

the IDX feature that was previously obtained. Here's the calculation:

➢ Looping 1:

Feature IDX = 1

Value = 0,14733

Split point = 0,11895

Value 0,14733 > Split point 0,11895, then form a right child node.

Feature IDX = 1

Value = 0,0996

Split point = 0,11895

Value 0,0996 < Split point 0,11895, then form a left child node.

Parent: obtained by combining the left child and right child, then the parent [1, 0] can

be seen in Table 4.1.5.7.

Left child: [1]

Right child: [0]

𝑝𝑃𝑎𝑟𝑒𝑛𝑡 =
𝑠𝑢𝑚 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 1 𝑖𝑛 𝑝𝑎𝑟𝑒𝑛𝑡

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡

Function 4.2.5: Probability of Parent

𝑝𝑃𝑎𝑟𝑒𝑛𝑡 =
1

2
= 0.5

𝐻(𝑋) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝)

Function 4.2.5.1: Entropy

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑃𝑎𝑟𝑒𝑛𝑡)

Function 4.2.5.2: Information Gain of Parent

42

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) = −0.5 log2 0.5 − (1 − 0.5) log2(1 − 0.5) = −0.1506

pParent = probability of parent

p = probability

IG (parent) = Information Gain of parent

Entropy (pParent) = entropy of parent probability

In calculating pParent using the entropy formula that can be seen in Function 4.2.5,

the probability is taken from the parent. Likewise for pLeft and pRight, taking the

probabilities of left and right.

𝑝𝐿𝑒𝑓𝑡 =
𝑠𝑢𝑚 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 1 𝑖𝑛 𝑙𝑒𝑓𝑡 𝑐ℎ𝑖𝑙𝑑

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑒𝑓𝑡 𝑐ℎ𝑖𝑙𝑑

Function 4.2.5.3: Probability of Left Child

𝑝𝐿𝑒𝑓𝑡 =
1

1
= 1

𝐼𝐺(𝑙𝑒𝑓𝑡) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝐿𝑒𝑓𝑡)

Function 4.2.5.4: Information Gain of Left Child

𝐼𝐺(𝑙𝑒𝑓𝑡) = −1 log2 1 − (1 − 1) log2(1 − 1) = −0.3011

pLeft = probability of left child

p = probability

IG (left) = Information Gain of left child

Entropy (pLeft) = entropy of left child probability

After obtaining the left child's Information Gain, then calculate the IG of the right

child.

𝑝𝑅𝑖𝑔ℎ𝑡 =
𝑠𝑢𝑚 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 1 𝑖𝑛 𝑟𝑖𝑔ℎ𝑡 𝑐ℎ𝑖𝑙𝑑

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑐ℎ𝑖𝑙𝑑

Function 4.2.5.5: Probability of Right Child

𝑝𝑅𝑖𝑔ℎ𝑡 =
1

1
= 1

𝐼𝐺(𝑟𝑖𝑔ℎ𝑡) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑅𝑖𝑔ℎ𝑡)

Function 4.2.5.6: Information Gain of Right Child

43

𝐼𝐺(𝑟𝑖𝑔ℎ𝑡) = −1 log2 1 − (1 − 1) log2(1 − 1) = −0.3011

pRight = probability of right child

p = probability

IG (right) = Information Gain of right child

Entropy (pRight) = entropy of right child probability

𝐼𝐺 = 𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) −
𝑁𝑙𝑒𝑓𝑡

𝑁𝑝
× 𝐼𝐺(𝑙𝑒𝑓𝑡) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑝
× 𝐼𝐺(𝑟𝑖𝑔ℎ𝑡)

Function 4.2.5.7: I nformation Gain

𝐼𝐺 = (−0.1506) − (
1

1
× −0.3011) − (

1

1
× −0.3011) = 0.4516

After getting the Information Gain value in loop 1, the information gain split is done

to find the best Information Gain value. Best Info Gain is made to -999 first, and if

the new IG calculation is greater than the best info gain, the previous best info gain

will be replaced with the new value. Here's the calculation:

Best info gain = - 999

Information gain = 0.4516

Condition = information gain > best info gain = 0.4516 > -999

After that, immediately create a node as the root node to build a random tree:

Node 1 = Infomation Gain : 0.4516

 Left child: [6 0,0996]

 Right child: [4

0,14733]

 Split point: 0,11895

 Feature IDX: 1

44

Root Node 1 = Infomation Gain : -0.1506

 Left child: [6 0,0996]

 Right child: [4 0,14733]

 Split point: 0,11895

 Feature IDX: 1

➢ For the next loop, the IG is calculated in the same way as in loop 1.

Looping 2:

Feature IDX = 1

Value = 0,14733

Split point = 0,15273

Value 0,14733 < Split point 0,15273, then form a left child node.

Feature IDX = 1

Value = 0,0996

Split point = 0,15273

Value 0,0996 < Split point 0,15273, then form a left child node.

Parent: [0, 1]

Left child: [0, 1]

Right child: []

To calculate the IG, the author first calculates the probabilities of the parent in

Function 4.2.5, left child in Function 4.2.5.3, and right child in Function 4.2.5.5.

After that calculates the IG of each new calculates the entire IG.

𝑝𝑃𝑎𝑟𝑒𝑛𝑡 =
1

2
= 0.5

45

After obtaining the parent probability, the next step is to calculate the entropy in

Function 4.2.5.1 of pParent and then calculate the IG of the parent which can be seen

in Function 4.2.5.2.

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) = −0.5 log2 0.5 − (1 − 0.5) log2(1 − 0.5) = −0.1506

 Next, calculate the IG of the left child in Function 4.2.5.4.

𝑝𝐿𝑒𝑓𝑡 =
1

2
= 0.5

𝐼𝐺(𝑙𝑒𝑓𝑡) = −0.5 log2 0.5 − (1 − 0.5) log2(1 − 0.5) = −0.1506

Then calculate the overall Information Gain which can be seen in Function 4.2.5.7.

𝐼𝐺 = (−0.1506) − (
1

2
× −0.1506) − (0) = −0.0753

Best info gain = 0.4516

Information gain= -0.0753

Condition = information gain > best info gain = 0.4516 > -0.0753

Node 2 = Infomation Gain : 0.4516

 Left child: [4 0,14733], [6

0,0996]

 Right child: []

 Split point: 0,15273

 Feature IDX: 1

Root Node 2 = Infomation Gain : 0.4516

 Left child: [4 0,14733], [6

0,0996]

 Right child: []

 Split point: 0,15273

 Feature IDX: 1

46

➢ Looping 3:

For feature IDX = 0, has 1 loop:

Feature IDX = 0

Value = 6

Split point = 5

Value 6 > Split point 5, then form a right child node.

Parent:[1]

Right child: [1]

Same as before, calculate the IG of the parent first which can be seen in Function

4.2.5.2.

𝑝𝑃𝑎𝑟𝑒𝑛𝑡 =
1

2
= 0.5

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) = −0.5 log2 0.5 − (1 − 0.5) log2(1 − 0.5) = −0.1506

Then calculate the IG of the right child which can be seen in Function 4.2.5.6.

𝑝𝑅𝑖𝑔ℎ𝑡 =
1

2
= 0.5

𝐼𝐺(𝑟𝑖𝑔ℎ𝑡) = −0.5 log2 0.5 − (1 − 0.5) log2(1 − 0.5) = −0.1506

Because the 3rd node has no left child, the left child is 0.

𝐼𝐺 = (−0.1506) − (0) − (
1

2
× −0.1506) = −0.0753

Best info gain = 0.4516

Information gain = -0.0753

Condition = information gain > best info gain = 0.4516 > -0.0753

Node 3 = Infomation Gain : 0.4516

 Left child: []

 Right child: [6 0,0996]

 Split point: 5

 Feature IDX: 0

47

Root Node 3 = Infomation Gain : 0.4516

 Left child: []

 Right child: [6 0,0996]

 Split point: 5

 Feature IDX: 0

 After getting the node, the author does Split Node to create a branch to the left child or

right child. Split Node is obtained using node parameters, max features, min sample split, max

depth, and depth. The max features in this project are 2, namely the TF-IDF rating and score. For

max depth which is the maximum value of tree depth, in this project, the max depth is 10. Min

sample split is the minimum number of samples needed to divide internal nodes, in this project

the min sample split is 2. While depth is the depth of the tree that will be created later. For split

nodes, there are 6 conditions:

1) If one child is empty, it will create an empty child.

Empty child is obtained from left child [bootstrap label] + right child [bootstrap

label].

2) If tree depth >= max depth, then the left node splits into the terminal node of the left

child. Likewise for the right split.

3) If the length of the left child of bootstrap data <= min sample split, then the left split

node is filled with the terminal node of the left child.

4) If the length of the left child of bootstrap data >= min sample split, it will calculate

the split point count of the new left child and repeat steps a and b.

5) If the length of the right child of the bootstrap data <= min sample split, then the right

split node is filled with the terminal node of the right child.

6) If the length of the right child of the bootstrap data <= min sample split, then the right

split node is filled with the terminal node of the right child.

Previously, 3 nodes were obtained, then split the nodes:

48

1) Node 1 = Information Gain: 0.4516

Left child: Bootstrap data: [6 0,0996]

Bootstrap label: [1]

Right child: Bootstrap data: [4 0,14733]

Bootstrap label: [0]

 Split point: 0,11895

 Feature IDX: 1

 Min sample split = 2

 Node 1 is entered into condition no 3

 Then the split node:

 Length of left child 1 <= min sample split 2

Node 1 = Information Gain: 0.4516

 Left child: Terminal node (left split) = [1], [0]

 Right child: -

 Split point: 0,11895

 Feature IDX: 1

Delete the child node first, because it will be filled with a new value. Then the child are

converted into terminal nodes (left split).

After the split node, the author determines the terminal node for each node. The terminal

node will calculate how many numbers 1 and 0, the maximum number will be the final

result of the terminal node.

Terminal node 1:

Table 4.1.5.10 Terminal node 1

Node Terminal Node

1 bootstrap label: [1]

Terminal node 1 contains bootstrap label [1], in the table split node 1 terminal node is

filled with label 1 first and then filled with label 0. Label 1 is entered first, then terminal

node 1 is labeled 1.

49

After the terminal node is obtained, the next step is to calculate the OOB Score. OOB

Score calculates miss labels from predict tree of each node and OOB data. Predict tree

has not been obtained, so the author calculates the predicted tree first. Predict tree is

obtained by comparing the testing data and split point tree based on the IDX Feature that

has been obtained by each node previously. Because there are 6 testing data, then a

comparison is made from each split point with each line of testing data. The calculation

of the predicted tree and OOB Score is carried out for each node.

Predict Tree Node 1:

Feature IDX = 1 (take TF-IDF score)

• Comparison 1:

Testing data = 0,14733

Table 4.1.5.11 Testing Data

Rating Score TF-IDF

7 0,14733

4 0,1317

5 0,1236

6 0,1495

4 0,15723

7 0,14835

Split point: 0,11895

Condition: testing data (Feature IDX) <= tree ((split point) (FeatureIDX)) return to left

split, and vice versa.

0.14733 >= 0.11895 then it return into the right split.

50

• Comparison 2:

Testing data = 0,1317

Split point: 0,11895

0,1317 >= 0,11895 then it return into the right split.

• Comparison 3:

Testing data = 0,1236

Split point: 0,11895

0,1236 >= 0,11895 then it return into the right split.

• Comparison 4:

Testing data = 0,1495

Split point: 0,11895

0,1495 >= 0,11895 then it return into the right split.

• Comparison 5:

Testing data = 0,15723

Split point: 0,11895

0,15723 >= 0,11895 then it return into the right split.

• Comparison 6:

Testing data = 0,14835

Split point: 0,11895

0,14835 >= 0,11895 then it return into the right split.

From 6 comparisons at node 1, the Predict Tree label is obtained from each comparison

based on split point = 5. The value of 5 is a rating, in preprocessing data if rating >= 5

then it is labeled 1 or positive. Then the label Predict Tree Node 2 = [1, 1, 1, 1, 1, 1].

After getting the Predict Tree, the next step is to calculate the OOB Score.

The calculation of the OOB Score is obtained by calculating the missing label from the

split point root node and OOB data (if the labels are not the same, then the missing label

is counted 1).

51

Table 4.1.5.12 OOB Data

Rating Score TF-IDF Label

4 0,14973 0

5 0,14973 1

3 0,15273 0

4 0,1344 0

Table 4.1.5.13 Split Point from Node 1

Rating Score TF-IDF Label

5 0,11895 1

OOB Score node 1: compares the split node labels from node 1 and the testing data (per

row).

Table 4.1.5.14 OOB Score from Node 1

Label 1 0

 1

 0

 0

Miss label: 3 (there is only 1 label from the split point which is the same as the label from

testing data, while there are 3 that are not the same, then the missing label is 3).

So the OOB Score: 3/6 = 0,5.

2) Node 2 = Information Gain: 0.4516

Left child: Bootstrap data: [4 0,14733], [6 0,0996]

Bootstrap label: [0, 1]

 Right child: []

 Split point: 0,15273

 Feature IDX: 1

52

 Node 2 is entered into condition no 1

 Then the split node:

Node 2 = Information Gain: 0.4516

 Left child: Terminal node (empty child)

 Right child: Terminal node (empty child)

 Split point: 0,15273

 Feature IDX: 1

Delete the child node first, because it will be filled with a new value. Because one child is

empty, it will create a terminal node (empty child).

Terminal node 2:

Table 4.1.5.15 Terminal node 2

Node Terminal Node

2 bootstrap label: [0]

Terminal node 2 contains bootstrap label [0], in the split table node 2 because it does not

have a right child, it creates a terminal node (empty child) which contains the label of the

left child. The terminal node is filled with label 0 first, then label 1. Label 0 is entered

first, then terminal node 2 is labeled 0.

Predict Tree Node 2:

• Comparison 1:

Feture IDX = 1 (takes TF-IDF score)

Testing data = 0,14733

Split point = 0,15273

0,14733 <= 0,15273 then it return into the left split.

• Comparison 2:

Testing data = 0,1317

Split point = 0,15273

0,1317 <= 0,15273 then it return into the left split.

53

• Comparison 3:

Testing data = 0,1236

Split point = 0,15273

0,1236 <= 0,15273 then it return into the left split.

• Comparison 4:

Testing data = 0,1495

Split point = 0,15273

0,1495 >= 0,15273 then it return into the right split.

• Comparison 5:

 Testing data = 0,15723

 Split point = 0,15273

 0,15723 >= 0,15273 then it return into the right split.

• Comparison 6:

Testing data = 0,14835

Split point = 0,15273

0,14835 <= 0,15273 then it return into the left split.

From 6 comparisons at node 2, the Predict Tree label is obtained from each comparison

based on split point = 5. The value of 5 is a rating, in preprocessing data if rating >= 5

then it is labeled 1 or positive. Then the label Predict Tree Node 2 = [1, 1, 1, 1, 1, 1].

Same as in node 1, after calculating the Predict Tree, the OOB Score is calculated.

54

Table 4.1.5.16 Split Point from Node 2

Rating Score TF-IDF Label

7 0,15273 1

OOB Score Node 2:

Table 4.1.5.17 OOB Score from Node 2

Label 1 0

 1

 0

 0

 Miss label: 3

So the OOB Score: 3/6 = 0,5.

3) Node 3 = Information Gain: 0.4516

 Left child: []

 Right child: Bootstrap data: [6 0,0996]

Bootstrap label: [1]

 Split point: 5

 Feature IDX: 0

 Node 3 is entered into condition no 1

 Then the split node:

Node 3 = Information Gain: 0.4516

 Left child: Terminal node (empty child)

 Right child: Terminal node (empty child)

 Split point: 5

 Feature IDX: 1

Delete the child node first, because it will be filled with a new value. Because one child is

empty, it will create a terminal node (empty child).

55

Terminal node 3:

Table 4.1.5.18 Terminal Node 3

Node Terminal Node

3 bootstrap label: [1]

Terminal node 3 contains a bootstrap label [1], in the split table node 3 because does not

have a left child value, it creates a terminal node (empty child). The empty child is the

result of a right child which has label 1. Then terminal node 3 is labeled 1.

Predict Tree Node 3:

• Comparison 1:

Feture IDX = 0 (takes the TF-IDF score)

Testing data = 7

Split point = 5

7 >= 5 then it return into the right split.

• Comparison 2:

Testing data = 4

Split point = 5

4 <= 5 then it return into the left split.

• Comparison 3:

Testing data = 5

Split point = 5

5 <= 5 then it return into the left split.

• Comparison 4:

Testing data = 6

Split point = 5

6 >= 5 then it return into the right split.

56

• Comparison 5:

Testing data = 4

Split point = 5

4 <= 5 then it return into the left split.

• Comparison 6:

Testing data = 7

Split point = 5

7 >= 5 then it return into the right split.

From 6 comparisons at node 3, the Predict Tree label is obtained from each comparison

based on split point = 5. The value of 5 is a rating, in preprocessing data if rating >= 5

then it is labeled 1 or positive. Then the label Predict Tree Node 3 = [1, 1, 1, 1, 1, 1].

After getting the Predict Tree, the OOB Score is calculated.

Table 4.1.5.19 Split Point from Node 3

Rating Score TF-IDF Label

5 0,11895 1

Table 4.1.5.20 OOB Score from Node 3

Label 1 0

 1

 0

 0

Miss label: 3

So the OOB Score: 3/6 = 0.5.

From the three nodes above, tree_ls is formed, which combines the three nodes.

Table 4.1.5.21 Tree_ls

Node Rating Score TF-IDF Label

1 5 0,11895 1

2 7 0,15273 1

3 5 0,11895 1

57

c. The next step is to find predict Random Forest (RF), with parameter tree_ls and testing

data. In predict RF there are 2 predictions, namely Ensemble Prediction and Final

Prediction. Ensemble Prediction is a combination of the results of the previous Predict

Tree. While Final Prediction counts the number of labels 1 or 0 in the Ensemble

Prediction. The final prediction results are based on the majority voting of the Final

Prediction.

Ensemble Prediction = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Final Prediction = sum of numbers 1 = 18

Majority Vote = 1

The majority voting is 1, which means that the sentiment analysis on the movie review by

implementing the Random Forest algorithm produces sentiments that tend to be positive

(1).

3. Finally, evaluate the Random Forest algorithm. Here the author evaluates the model by

calculating the accuracy. Which can be seen in Function 4.2.5.8, by matching the predicted

results from the predictions with the testing label (looking for how many results are the

same) then summed and divided by the length of the testing label.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ 𝑙𝑎𝑏𝑒𝑙 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙

 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙

Function 4.2.5.8: Accuracy

58

4.2. Logistic Regression

Figure 4.2.1 Logistic Regression Design Scheme

 As seen in Figure 4.2, there are 6 steps for Random Forest. First getting data, then the

TF-IDF calculation is done for each word. Then text processing, labeling, and data split are done

here. After that, make a matrix for the feature extraction. Then implementation of Random

Forest algorithm, and finally evaluation.

4.2.1. Getting Data

According to Figure 4.2.1, first getting data is done. The data used in the form of the

same dataset as Random Forest can be seen in Table 4.2.1.1.

Table 4.2.1.1 Logistic Regression Dataset

ID Title Review Rating Author

1 Not Bad I don't get the terrible reviews 5 margarida-44311

2

What are all the

bad reviews about

is it a woke thing

The movie was great 6 joemay-2

3
Great White=Jaws

Lite
The CGI is not great 4 nebk

4
Bare-bones killer

shark film
The movie is bad 4 kuarinofu

59

ID Title Review Rating Author

5
Terrible story,

dialogue, and CGI
I don’t like the terrible movie 4 Horror_Flick_Fanatic

...

4996

What are all the

bad reviews about

is it a woke thing

Its poorly written, very poorly

directed, poorly scripted
8 Jim_Screechy

4997
Utter Foolishness

This film is so pathetic and

low budget with a script that

has no plot

3 alinagoldenmeer

4998

Nicholas cage

should be

embarrassed

Over the top Cage in absurd

gore movie
1 metahumanity_01

4999
Don't waste your

time

It is unusual for me to stop

watching a movie half way,

even if I really don't like it

2 walteriandolo

5000
Nic Cage loves

pocket money
This is lazy and why movies

and filmmaking is dying
1 paul_obe

4.2.2. TF-IDF (Term Frequency-Inverse Document Frequency)

 Then the TF-IDF calculation is carried out in the same way as in the Random Forest

which can be seen in Table 4.2.2.1, as many as 20 data samples.

60

Table 4.2.2.1 TF-IDF Logistic Results

ID Title Review Rating TF-IDF

1 Not Bad
I do not get the terrible

reviews
5 0,11895

2

What are all the bad

reviews about is it woke

thing

It is great 7 0,15273

3 Cinderella The movie is nice 7 0,14733

4
Bare-bones killer shark

film
The movie is bad 4 0,14973

5
Terrible story, dialogue,

and CGI

I do not like the terrible

movie
4 0,12464

6 A Descent Effort It is great enough 6 0,13085

7 Greenland I like it 7 0,14627

8 Mulan The movie is good 5 0,14973

9 A Quite Place II It is bad 7 0,15273

10 Spiderman I do not like 4 0,1344

11 Superman The cgi is bad 4 0,1355

12 Wonder Woman The movie is great 6 0,0996

13 Ava It is good 4 0,14733

14 Great White=Jaws Lite The CGI is not great 4 0,1396

15 Combat It is nice 7 0,14733

16 Frozen Not good 4 0,1317

17 Tenet Nice 5 0,1236

18 Cruella Like it 6 0,1495

61

ID Title Review Rating TF-IDF

19 Fast & Furious It is terrible 4 0,15723

20 Twilight Terrible movie 7 0,14835

4.2.3. Text Processing

 Next is text processing, labeling based on the rating on the dataset. If the rating is >= 5

then it is labeled 1 which means it is positive, while the movie rating <= 5 is labeled 0 which

means it is negative. The labeling is directly added in the dataset column. Here the labeling is

classified as positive and negative and is named Positive Data and Negative Data.

Table 4.2.3.1 Positive Data

ID Title Review Rating Label TF-IDF

1 Not Bad
I do not get the terrible

reviews
5 1 0,11895

2

What are all the

bad reviews about

is it woke thing

It is great 7 1 0,15273

3 Cinderella The movie is nice 7 1 0,14733

6 A Descent Effort It is great enough 6 1 0,13085

7 Greenland I like it 7 1
0,14627

8 Mulan The movie is good 5 1
0,14973

9 A Quite Place II It is bad 7 1
0,15273

12 Wonder Woman The movie is great 6 1
0,0996

15 Combat It is nice 7 1 0,14733

17 Tenet Nice 5 1 0,1236

18 Cruella Like it 6 1 0,1495

62

ID Title Review Rating Label TF-IDF

20 Twilight Terrible movie 7 1 0,14835

Table 4.2.3.2 Negative Data

ID Title Review Rating Label TF-IDF

4
Bare-bones killer

shark film
The movie is bad 4 0 0,14973

5
Terrible story,

dialogue, and CGI

I do not like the

terrible movie
4 0 0,12464

10 Spiderman I do not like 4 0 0,1344

11 Superman The cgi is bad 4 0 0,1355

13 Ava It is good 4 0 0,14733

14
Great White=Jaws

Lite
The CGI is not great 4 0 0,1396

16 Frozen Not good 4 0 0,1317

19 Fast & Furious It is terrible 4 0 0,15723

In text processing, the author column is omitted because it is not needed in this project.

Then in text processing, a data split is done. The data is divided into training data and testing

data. Split data made 70% for training data from positive data and negative data and 30% for

testing data from positive data and negative data. In split, data create 4 new arrays containing

training data, training labels, testing data, testing labels. Training and testing data were selected

randomly based on positive and negative data. Here's the training and testing:

63

Table 0.3 Training Data Positive

ID Title Review Rating TF-IDF

1 Not Bad
I do not get the

terrible reviews
5 0,11895

2

What are all the bad

reviews about is it woke

thing

It is great 7 0,15273

3 Cinderella The movie is nice 7 0,14733

6 A Descent Effort It is great enough 6 0,13085

7 Greenland I like it 7 0,14627

8 Mulan The movie is good 5 0,14973

9 A Quite Place II It is bad 7 0,15273

12 Wonder Woman The movie is great 6 0,0996

Table 0.4 Training Data Negative

ID Title Review Rating TF-IDF

4
Bare-bones killer shark

film
The movie is bad 4 0,14973

5
Terrible story, dialogue,

and CGI

I do not like the

terrible movie
4 0,12464

10 Spiderman I do not like 4 0,1344

11 Superman The cgi is bad 4 0,1355

13 Ava It is good 4 0,14733

64

Table 0.5 Training Label

ID Title Review Rating Label TF-IDF

1 Not Bad
I do not get the

terrible reviews
5 1 0,11895

2

What are all the

bad reviews about

is it woke thing

It is great 7 1 0,15273

3 Cinderella The movie is nice 7 1 0,14733

6 A Descent Effort It is great enough 6 1 0,13085

7 Greenland I like it 7 1 0,14627

8 Mulan The movie is good 5 1 0,14973

9 A Quite Place II It is bad 7 1 0,15273

12 Wonder Woman The movie is great 6 1 0,0996

4
Bare-bones killer

shark film
The movie is bad 4 0 0,14973

5
Terrible story,

dialogue, and CGI

I do not like the

terrible movie
4 0 0,12464

10 Spiderman I do not like 4 0 0,1344

11 Superman The cgi is bad 4 0 0,1355

13 Ava It is good 4 0 0,14733

From the positive training data and negative training data, they are combined to be given a

label which becomes a training label which can be seen in Table 4.2.3.5.

65

Table 0.6 Testing Data Positive

ID Title Review Rating TF-IDF

15 Combat It is nice 7 0,14733

17 Tenet Nice 5 0,1236

18 Cruella Like it 6 0,1495

20 Twilight Terrible movie 7 0,14835

Table 0.7 Testing Data Negative

ID Title Review Rating TF-IDF

14
Great White=Jaws

Lite
The CGI is not great 4 0,14733

16 Frozen Not good 4 0,1236

19 Fast & Furious It is terrible 4 0,1495

Table 0.8 Testing Label

ID Title Review Rating Label TF-IDF

15 Combat It is nice 7 1 0,14733

17 Tenet Nice 5 1 0,1236

18 Cruella Like it 6 1 0,1495

20 Twilight Terrible movie 7 1 0,14835

14
Great White=Jaws

Lite
The CGI is not great 4 0 0,14733

16 Frozen Not good 4 0 0,1236

19 Fast & Furious It is terrible 4 0 0,1495

66

From testing positive data and testing negative data, they are combined to be given a label

which becomes a testing label which can be seen in Table 4.2.3.8.

Furthermore, based on positive-negative training data and positive-negative data testing,

the calculation of positive training counts, negative training counts, positive testing counts, and

negative testing counts is carried out. The calculation grouped positive negative training and

positive-negative testing itself. The positive training count counts the amount of data that is

labeled positively on the training data, while the negative training count counts the amount of data

that is labeled negatively on the training data. Positive count testing counts the number of positive

data on testing data and negative count testing counts on the number of negative data on testing

data. Here are the results of count training and count testing:

Count Training Positif = 8

Count Training Negatif = 5

Count Testing Positif = 4

Count Testing Negatif = 3

4.2.4. Feature Extraction

 In feature extraction, Word Dict calculations are performed, namely grouping positive

data and negative data. To count each the same number of words in positive reviews and

negative reviews. Data is lower case and split by space. The first dictionary is created, namely,

posWord which contains the number of occurrences of words in positive data, and the second

negWord dictionary contains the number of occurrences of words in negative data. For more

details, see the table below:

67

Table 4.2.4.1 Word Dict

Word
The number of the same word

appears in the data

Total Words on

Positive Data (1)

Total Words on

Negative Data (0)

 i 4 2 2

do 3 1 2

not 4 1 3

get 1 1 -

the 8 4 4

terrible 4 2 2

reviews 1 1 -

movie 6 4 2

is 8 7 5

great 4 2 1

cgi 2 - 2

bad 3 1 2

like 4 2 2

enough 1 1 -

it 8 6 2

good 3 1 2

nice 3 2 -

In the table above, is the number of each word that appears in the positive data and

negative data. The number of occurrences of the word is stored as a dictionary type. For example,

[nice, 1] = 3, [good, 1] = 2, [nice, 0] = 2.

68

Furthermore, the calculation of feature extraction is carried out. Because computers do not

deal with text, and only understand the language of numbers. So the author converts the data into

vectors so that it can be entered into the logistic regression algorithm. The data is converted into a

3-dimensional (X) vector containing, rating, TF-IDF score, posWord dictionary (number of

positive words in positive data for each id), and negWord dictionary (number of negative words in

negative data for each id).

For example id 1: 'i do not get the terrible reviews'

 i do not get the terrible reviews

Number of word in positive data 2 1 1 1 4 2 1

Number of word in negative data 2 2 3 0 4 2 0

Total occurrence of words in positive data = 13

Total occurrence of words in negative data = 13

The matrix has a rating, TF-IDF in it, the number of words in the positive data, the

number of words in the negative data.

Matrix id 1 = [5 0.11895 13 13]

This calculation is repeated for each id based on the training data. Then the results of the X matrix

from the training data:

X = [[5 0.11895 13 13], [7 0,15273 15 8], [7 0,14 733 17 11],

[6 0,13085 16 8], [7 0,14627 10 6], [8 0,149733 16 13], [7

0,15273 14 9], [6 0,0996 17 12], [4 0,14973 16 13], [4

0,12464 16 17], [4 0,1344 6 9], [4 0,1355 12 13], [4 0,14733

14 9]]

69

4.2.5. Implementation of Logistic Regression Algorithm

The next step according to the design is the implementation of the Logistic Regression

algorithm. The intercept, xData, yData, and weight calculations are used for the next step. Then

the calculations for intercept, xData, yData, and weight are as follows:

a. The intercept is initialized to 1 throughout the training data, the length of the training data is

13 data. So it is made 13 to the right.

Intercept = [1 1 1 1 1 1 1 1 1 1 1 1 1]

b. xData combines intercept vertically and X.

xData = [[1 5 0.11895 13 13]

 [1 7 0,15273 15 8]

 [1 7 0,14733 17 11]

 [1 6 0,13085 16 8]

 [1 7 0,14627 10 6]

 [1 8 0,14973 16 13]

 [1 7 0,15273 14 9]

 [1 6 0,0996 17 12]

 [1 4 0,14973 16 13]

 [1 4 0,12464 16 17]

 [1 4 0,1344 6 9]

 [1 4 0,1355 12 13]

 [1 4 0,14733 14 9]]

c. Weight is set to 0 (as many as 5) in length according to the number of contents of the matrix

in 1 row and will be updated later.

Weight = [0 0 0 0 0]

70

d. yData is obtained from training labels.

yData = [1 1 1 1 1 1 1 1 0 0 0 0 0]

In the next step, the author creates a function for the training model that requires

parameters LR (Learning Rate), iteration, intercept, xData, weight, and yData. This function is

used to calculate sigmoid, loss, and gradient descent. Later it will also update the weight to fit into

the data. The new weight is used to predict the label. This function is used for each iteration, here

is the implementation of 1 iteration:

1st iteration:

First calculate the Sigmoid:

The sigmoid function returns a value from 0 to 1. If the output is greater than or equal to 0.5, it is

classified as positive data. Otherwise, it is classified as negative data. Sigmoid depiction can be

seen in Figure 4.2.5.1.

Figure 0.1 Curve of Sigmoid Function

In the graph above, it will return a value between 0 to 1. If the value of x (z) goes to positive

infinity then the predicted value of y will be 1 and if it goes to negative infinity then the

predicted value of y becomes 0.

Find the z-value first:

𝑧 = 𝑥 × 𝑤

Function 4.2.5: Z

71

X = xData

W = weight

Then the z value:

Z = [0 0 0 0 0 0 0 0 0 0 0 0 0]

After getting the z value, implement it to the sigmoid formula:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒−𝑧

Function 4.2.5.1: Sigmoid

Sigmoid calculation:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒−(0)
= 0.5

Sigmoid = [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0. 5 0.5]

The next step is to calculate the loss value, find the optimal parameters, and minimize

errors from the model to get the best predictions. The function for count loss can be seen in

Function 4.2.5.2.

Loss :

𝑙𝑜𝑠𝑠 = [((−𝑦 log ℎ)) − ((1 − 𝑦) log 1 − ℎ))]

Function 4.2.5.2: loss

h = sigmoid

y = yData

Calculate the log h along the sigmoid, then the result is:

log h = log0.5

= [-0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718 -

0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718 -

0.69314718]

72

After getting log h, implementation to loss formula:

Loss = ([-1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0] * [-0.69314718 -

0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718 -

0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718 -0.69314718]) – ([1-1

1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-0 1-0 1-0 1- 0 1-0] * [1-(-0.69314718)

1-(-0.69314718) 1-(-0.69314718) 1-(-0.69314718) 1-(-0.69314718) 1-(-

0.69314718) 1-(-0.69314718) 1-(-0.69314718) 1-(-0.69314718) 1-(-0.69314718)

1-(-0.69314718) 1-(-0.69314718) 1-(-0.69314718)])

= ([0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718

0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718

0.69314718]) – ([0 0 0 0 0 0 0 0 1 1 1 1 1] *

[1.69314718 1.69314718 1.69314718 1.69314718 1.69314718 1.69314718

1.69314718 1.69314718 1.69314718 1.69314718 1.69314718 1.69314718

1.69314718])

= ([0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718

0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718

0.69314718]) – ([0 0 0 0 0 0 0 0 1.69314718 1.69314718

1.69314718 1.69314718 1.69314718])

= [0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718

0.69314718 0.69314718 -1 -1 -1 -1 -1]

Then look for gradient descent which updates the weights by minimizing loss. The

gradient descent formula can be seen in Function 4.2.4, the gradient descent formula is obtained

from the loss derivative.

Gradient Descent :

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡 =
(ℎ − 𝑦). 𝑋𝑇

𝑙𝑒𝑛(𝑦)

Function 4.2.5.3: Gradient Descent

73

h = sigmoid

y = yData

len(y) = lenght of yData

𝑋𝑇 = xData transpose

Calculate the value of (h-y) first:

h-y = ([0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]) – ([1 1 1

1 1 1 1 1 0 0 0 0 0])

= [-0. 5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 0.5 0.5]

Then transpose matrix xData:

𝑋𝑇 = [[1 1 1 1 1 1 1 1 1 1 1 1 1]

 [5 7 7 6 7 8 7 6 4 4 4 4 4]

[0.11895 0,15273 0,14733 0,13085 0,14627 0,14973 0,15273

0,0996 0,14973 0,12464 0,1344 0,1355 0,14733]

[13 15 17 16 10 16 14 17 16 16 6 12 14]

After that, just implement the gradient descent formula which can be seen in Function 4.2.5.3.

Gradient Descent =
[−1.2 −16.5 −0.203295 −27 −9]

13

 = [-0.9231 -1.2692 -0.0156 -2.0769 -0.6923]

 Then gradient descent is obtained, the weight update is performed. The new weight is used

to predict the label. This update weight is also calculated for each iteration.

Update Weight :

𝑛𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑜𝑊𝑒𝑖𝑔ℎ𝑡 − 𝑙𝑟 . 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡

Function 4.2.5.4: Update Weight

nWeight = new weight

oWeight = old weight

lr = learning rate

74

So the update weight calculation:

oWeight = [0 0 0 0 0]

Lr = 0.1

Gradient Descent = [-0.9231 -1.2692 -0.0156 -2.0769 -0.6923]

Lr * Gradient Descent = [-0.09231 -0.12692 -0.00156 -0.20769 -0.06923]

Update Weight = ([0 0 0 0 0]) – ([-0.09231 -0.12692 -0.00156 -0.20769 -

0.06923])

 = [0.09231 0.12692 0.00156 0.20769 0.06923]

The next step is to predict the class label. Calculate the new sigmoid first using the new

weight. The sigmoid function can be seen in Function 4.2.5.1.

New Sigmoid:

Z = xData * nWeight

X = xData

75

xData = [[1 5 0.11895 13 13]

 [1 7 0,15273 15 8]

 [1 7 0,14733 17 11]

 [1 6 0,13085 16 8]

 [1 7 0,14627 10 6]

 [1 8 0,14973 16 13]

 [1 7 0,15273 14 9]

 [1 6 0,0996 17 12]

 [1 4 0,14973 16 13]

 [1 4 0,12464 16 17]

 [1 4 0,1344 6 9]

 [1 4 0,1355 12 13]

 [1 4 0,14733 14 9]]

New Weight = [0.09231 0.12692 0.00156 0.20769 0.06923]

Z

=

[[1 5 0.11895 13 13]

 [1 7 0,15273 15 8]

 [1 7 0,14733 17 11]

 [1 6 0,13085 16 8]

 [1 7 0,14627 10 6]

 [1 8 0,14973 16 13]

 [1 7 0,15273 14 9]

 [1 6 0,0996 17 12]

 [1 4 0,14973 16 13]

 [1 4 0,12464 16 17]

*
[0.09231 0.12692 0.00156 0.20769

0.06923]

76

 [1 4 0,1344 6 9]

 [1 4 0,1355 12 13]

 [1 4 0,14733 14 9]]

Z = [[4.32706 4.65018 5.27324 4.73092 3.47326 5.33094 4.51172 5.21548

4.82326 5.10014 2.46941 3.99248 4.13095]]

The sigmoid calculation for the first value of z:

𝑠 =
1

1 + 𝑒−(4.32706)
= 0.98696582

Then the result of the sigmoid (result before):

Result Before = [[0.98696582 0.99053064 0.99489918 0.99125873

0.99125873 0.96991728 0.99518379 0.98913968

0.99459752 0.9920236 0.99394104 0.92196933

0.98188048 0.98418648]]

After that, find the result after from the result before with a threshold. If result before >=

threshold then True, if result before <= threshold then False.

Threshold = 0.5 (dibuat 0.5)

Result After = [[True True True True True True True True True True

True True True True]]

 The next step is to make a label prediction, the value is made 0 first as long as the result

before.

Label Prediction = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0]]

 Then compare the Result After with the predicted label. If the result after 'True', then it is

labeled 1, if 'False' then it is labeled 0.

So the final result of the label prediction:

Prediction Label = [[1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

77

 The prediction label is all 1, then the sentiment analysis on the movie review using the

Logistic Regression algorithm is more inclined to positive sentiment, the same as Random Forest.

The last step is the evaluation of the model, calculating accuracy by checking the

similarity of yData and predicting the label of the percentage of the same number divided by the

length of yData.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ 𝑙𝑎𝑏𝑒𝑙 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙

 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙

Function 4.2.5.5: Accuracy

 So all steps for Random Forest and Logistic Regression algorithm have been completed.

From the implementation of the two algorithms, it is found that both have sentiments that tend to

be positive. Then to evaluate the model, calculate the accuracy of the Random Forest and

Logistic Regression algorithms, perform an accuracy comparison. The algorithm that has the

greatest accuracy is the best algorithm and is suitable for this case.

	1091c6003d9d99cfdf005f4ffb7214f428e937e9829620ff469653f6a65ab7b3.pdf
	0f284e8d9e2ab24e8ca072a84659b5d9c1f6e596c88407a2aa023d6518dd6234.pdf
	652313ace088d3e069e5cc9060e53e5f1314d2df97a9fb55677f6fd0e9d8cad6.pdf

	d6f43c5d33b0eed7e95553d5cf00268ea47ed37745ca40ea4d8baa4ac962c958.pdf
	1091c6003d9d99cfdf005f4ffb7214f428e937e9829620ff469653f6a65ab7b3.pdf
	132bb8ac0dcb9bbc043b46d2683dbbdd08fa6566e7c5fac6f780d9c7a1975e02.pdf

