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CHAPTER 5 

IMPLEMENTATION AND RESULTS 

5.1   Implementation 

1. num_words = 2500 
2. tokenizer = Tokenizer(num_words) 
3. tokenizer.fit_on_texts(x_train) 
4. list_tokenized_train = tokenizer.texts_to_sequences(x_train) 
5. max_review_length = 100 
6. x_train = pad_sequences(list_tokenized_train, maxlen=max_review_length) 
7. model = Sequential() 
8. model.add(Embedding(num_words+1, 600, input_length=max_review_length)) 
9. model.add(LSTM(600)) 
10. model.add(Dense(1, activation='sigmoid')) 
11. model.compile(loss='binary_crossentropy',optimizer=opt,metrics=['accur

acy']) 
12. model.summary() 
13. model.fit(x_train,y_train,epochs=10,batch_size=32,validation_split=0.2

) 
14. list_tokenized_test = tokenizer.texts_to_sequences(x_test) 
15. x_test = pad_sequences(list_tokenized_test, maxlen=max_review_length) 
16. prediction = model.predict(x_test) 
17. y_pred = (prediction > 0.5) 
18. print(classification_report(y_test, y_pred)) 

 

The program code lines 1 - 18 above are the core program code for Long Short Term 

Memory method. Line 1 of the program code contains a command to limit words to a maximum 

of 2500 words so that the words to be carried out by the tokenizer process are not too long. Lines 

2 and 3 contain the Tokenizer command to split the text into a token or word. The 4th line 

contains the command to create a list of tokenizers that have been created for training data. The 

5th line contains the command to limit words that have been tokenized. Line 6 serves to change 

words that are not the same size to be the same for training data. The 7th line contains the 

command to create a Sequential LSTM model, which is to change the token to word embedding. 

The 8th line is the program code that functions to convert words that have become tokenized into 

vector form, the 8th line also functions as the input layer of the LSTM. The 9th row is the LSTM 

layer and the neurons that you want to test. The 10th line is the output layer with an activation 

function that functions to combine all layers, which is usually called a full layer connection. 

Lines 11 and 12 are codes for optimizing the already created model. The 13th line is the 

command to test the training data from the model that has been created. The 14th line contains 

the command to create a list of tokenizers that have been created for data testing. The 15th line 
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contains a command to change words that are not the same size to be equal for testing data. Lines 

16 to 18 contain commands to create predictive models from testing data based on models that 

have been tested using previous training data. 

 

1. class SVM 
2. def __init__(self, iters= 10, learning_rate= 1, parameter= 1): 
3. self.iterations = iters 
4. self.lr = learning_rate 
5. self.parameter = parameter 
6. self.weight = None 
7. self.bias = None 
8. def fit(self, x, y): 
9. y_ = np.where(y<=0, -1, 1) 
10. sample, features = x.shape 
11. self.weight = np.random.random_sample(features) 
12. self.bias = np.random.random_sample() 
13. for _ in range(self.iterations): 
14. for index, x_value in enumerate(x): 
15. condition = y_[index] * ((x_value @ self.weight) - self.bias) >= 1 
16. if condition: 
17. classification_weight = 2 * self.parameter * self.weight  
18. classifitation_bias = 0 
19. self.weight -= self.lr * classification_weight 
20. self.bias -= self.lr * classifitation_bias 
21. else: 
22. y_[index] = y_[index].reshape((1, 1)) 
23. classification_weight = (2 * self.parameter * self.weight) - 

(x_value.T * y_[index]) 
24. classifitation_bias = y_[index] 
25. self.weight -= self.lr * classification_weight 
26. self.bias -= self.lr * classifitation_bias  
27. def predict(self, x): 
28. linear = x @ self.weight + self.bias 
29. sign_matrix = np.sign(linear) 
30. result = np.where(sign_matrix<=0, 0, 1).astype(np.float32)  
31. return result 
32. def accuracy(self, y_pred, y_test): 
33. return np.sum(y_pred == y_test)/ len(y_test) 
34. x_train, x_test, y_train, y_test = train_test_split(x, y, 

test_size=0.2) 
35. y_train = np.array(y_train) 
36. y_train = np.expand_dims(y_train, axis=-1) 
37. svm = SVM() 
38. svm.fit(x_train, y_train) 
39. predictions = svm.predict(x_test) 
40. score = svm.accuracy(predictions, y_test) 
41. score 
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The program code lines 1 - 41 above are the core program code for Support Vector 

Machine method. Lines 1-7 are program code that contains commands about parameters to be 

determined based on the model you want to create. Lines 8-10 are code to create a target or 

parameter y_ in conditions of only numbers 0, -1, and 1. Lines 11 and 12 are used to determine 

the weight and bias of the parameters that have been created. Lines 13-26 are the command code 

for building a classification using the SVM model. Lines 27-31 are program codes to generate 

output or predictions from the SVM model that has been created. Lines 32-33 are command 

codes to determine the accuracy of testing data from models that have been created and tested 

using training data. Line 34 is used to split the data into training data and testing data. Lines 35-

36 are the program code to add 1 dimension to the y parameter. Lines 37-38 are program codes 

to test the training data based on the model that has been created. Lines 39-41 are used to make 

predictions of the testing data based on the training data that has been tested previously.  
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5.2  Results 

 

5.2.1. Long Short Term Memory Training Results 

The first test is to test the number of neurons in the layer amounting to 100 to 900 

neurons by using the Sigmoid activation function in the output layer. In this test, the training data 

is divided and tested 3 times, the training data of 20%, 50% and 80%. It is also repeated for 

testing each neuron and test data 5 times. This test was conducted to determine the optimal 

number of neurons in the Sigmoid activation function. These parameters are trained to determine 

the value of accuracy and loss in the training and validation data. The training process uses 10 

epochs and 32 batch sizes. Based on the data obtained from training and validation testing, the 

highest accuracy value is 0.9994, accuracy loss is 0.0050, validation accuracy is 0.7876, and 

validation loss is 0.1459 on 600 neuron with 80% Training Data and 20% Testing Data. 

Table 5.1. LSTM Train Results 

Train Acc Train Loss Validation Acc Validation Loss 

0.7951 0.5218 0.8005 0.4818 

0.8619 0.3312 0.8057 0.5212 

0.9540 0.1233 0.7824 0.6628 

0.9812 0.0598 0.7668 0.8519 

0.9942 0.0245 0.8083 0.8697 

0.9968 0.0107 0.8187 0.0346 

0.9961 0.0148 0.7876 0.9093 

0.9981 0.0080 0.7746 0.0413 

0.9987 0.057 0.7953 0.0966 

0.9994 0.050 0.7876 0.1459 
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5.2.2. Long Short Term Memory Test results 

This stage is the stage of testing the model with data testing. The data to be tested 

amounted to 2411 data with a total of 1940 positive data and 471 negative data. Furthermore, the 

model will predict reviews in each class to know how accurately the model can predict that class. 

After the model is predicted, the results obtained from testing the Long short term memory 

model on 600 neurons and the distribution of test data of 20%. The best results of testing the 

predicted data neurons 100 to 900, obtained the highest accuracy results of 83.8% accuracy on 

neurons 600 and obtained results with 88.2% precision, 92.3% recall, and 90.2% F1-Score. It can 

be seen in Table 5.2, that a total of 483 data were tested. With positive original data 391, and 

negative original data 92. Then the model predicts positive data for 409 data and predicts 

negative data for 74 data. This means that the Long Short Term Memory method incorrectly 

predicts 18 positive data and incorrectly predicts 18 negative data.  

 

Table 5.2. LSTM Confusion Matrix Evaluation Results 

Actual 

Label 

Predicted Label 

Negative Positive 

Negative 44 48 

Positive 30 361 

 

Table 5.3. LSTM Test Results 

Accuracy 83.8% 

Precision 88.2% 

Recall 92.3% 

F1-Score 90.2% 
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Table 5.4. LSTM All Test Results 

Neuron Datatest 20% Datatest 50% Datatest 80% 

 

 

100 

81.1 % 82.1 % 80.6 % 

80.9 % 79.1 % 80.0 % 

80.7 % 78.3 % 80.1 % 

79.9 % 77.1 % 80.9 % 

82.1 % 81.8 % 80.1 % 

 

 

200 

81.5  % 78.9 % 80.7 % 

81.5 % 81.1 % 79.9 % 

83.4 % 80.8 % 80.3 % 

81.3 % 79.9 % 80.0 % 

80.1 % 79.6 % 79.5 % 

 

 

300 

78.8 % 80.8 % 80.7 % 

81.9 % 81.4 % 80.7 % 

82.1 % 77.2 % 80.0 % 

82.6 % 80.5 % 80.0 % 

83.6 % 80.3 % 80.5 % 

 

 

400 

80.5 % 77.1 % 77.8 % 

80.7 % 78.1 % 80.7 % 

81.5 % 81.3 % 78.6 % 

80.9 % 80.4 % 79.6 % 

83.2 % 81.5 % 78.0 % 

 

 

81.5 % 80.5 % 77.3 % 

81.9 % 76.4 % 79.4 % 
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500 82.4 % 81.0 % 78.3 % 

80.9 % 78.8 % 79.4 % 

81.3 % 82.2 % 78.5 % 

 

 

600 

83.8 % 80.3 % 77.7 % 

81.1 % 81.0 % 78.6 % 

80.3 % 82.3 % 79.7 % 

79.5 % 80.5 % 80.4 % 

82.4 % 79.9 % 79.3 % 

 

 

700 

81.9 % 81.0 % 75.8 % 

83.0 % 81.2 % 80.1 % 

80.5 % 81.0 % 79.4 % 

77.8 % 79.5 % 75.0 % 

81.5 % 80.2 % 72.6 % 

 

 

800 

80.9 % 83.4 % 79.5 % 

81.1 % 78.1 % 76.8 % 

81.1 % 81.2 % 76.0 % 

80.5 % 79.1  % 79.7 % 

79.9 % 78.6 % 77.5 % 

 

 

900 

79.7 % 80.5 % 80.3 % 

81.3 % 81.0 % 77.6 % 

79.7 % 79.5 % 72.3 % 

76.8 % 81.7 % 72.9 % 

81.5 % 82.0 % 80.6 % 
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5.3   Support Vector Machine Results 

In the tests carried out for the Support Vector Machine. The first test is to change numpy 

which has been converted from a data frame into a vectorizer. After converting numpy to 

vectorizer, a Support Vector Machine model with Scratch is created and run. Then the test data 

was divided and tested 3 times, test data of 20%, 50%, and 80%. After split the test data, the 

Support Vector Machine algorithm is tested to get the results of the test. The test is repeated 10 

times for each test data using 1 lambda parameters (λ = 1). Based on the test by dividing 3 data 

test, the best prediction results were obtained, namely the distribution of 20% test data with an 

accuracy of 71.0%, the precision of 83.9%, recall of 79.6% and F1-Score 81.7%. It can be seen 

in Table 5.5, that a total of 483 data were tested. With positive original data 393, and negative 

original data 90. Then the model predicts positive data of 373 data and predicts negative data of 

110 data. This means that the Support Vector Machine method incorrectly predicts positive data 

by 20 data, and incorrectly predicts negative data by 20 data. 

 

Table 5.5. SVM Confusion Matrix Evaluation Results 

Actual 

Label 

Predicted Label 

Negative Positive 

Negative 30 60 

Positive 80 313 

 

Table 5.6. SVM Test Results 

Accuracy 71.0% 

Precision 83.9% 

Recall 79.6% 

F1-Score 81.7% 
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Table 5.7. SVM All Test Results 

Parameter Datatest 20% Datatest 50% Datatest 80% 

 

 

 

 

λ = 1 

70 % 68.3 % 67.3 % 

67.4 % 65.9 % 66.8 % 

65.4 % 65.4 % 66.9 % 

66.2 % 66.9 % 66.9 % 

71 % 66.6 % 67.3 % 

64.3 % 66.5 % 66.3 % 

69.1 % 65.3 % 66.9 % 

68.7 % 68.9 % 67.4 % 

67.9 % 67.9 % 67.2 % 

66.2 % 65 % 66.6 % 
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5.4  Support Vector Machine Result With Undersampling Method 

In this study, the Support Vector Machine model was tested with balanced data. Data 

balancing is done by the undersampling method. An undersampling method is a method to 

reduce the number of datasets from the majority class so that the amount of data in the majority 

class is close to the minority class. This research uses a data sharing of 20% of test data and uses 

a linear kernel. The test was repeated 10 times and the highest accuracy was 94%, 91% 

precision, 99% recall, and 95% F1-Score. It can be concluded here that the Support Vector 

Machine model is very good for processing balanced data. 

Table 5.8. SVM Undersampling Method Confusion Matrix Evaluation Results 

Actual 

Label 

Predicted Label 

Negative Positive 

Negative 423 48 

Positive 6 465 

 

Table 5.9. SVM Undersampling Method Test Results 

Accuracy 94 % 

Precision 91 % 

Recall 99 % 

F1-Score 95 % 
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Table 5.10. SVM Undersampling Method All Test Results 

Kernel Datatest 20% 

 

 

 

 

Linear 

94 % 

92 % 

93 % 

93 % 

93 % 

93 % 

91 % 

92 % 

93 % 

91 % 
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5.5  Support Vector Machine Using Kernel 

This time the test was carried out using a different kernel in Support Vector Machine 

method. In addition to testing using the Linear kernel, other kernels tested are the Polynomial, 

Radial Basis Function (RBF) and Sigmoid kernels. Testing each kernel uses a 20% test data and 

the test is repeated 5 times.  

In the Polynomial kernel, the highest accuracy is 84%, precision is 84%, recall is 100% and F1-

Score is 91%. Meanwhile, in the Radial Basis Function (RBF) kernel, the highest accuracy is 

83%, precision is 83%, recall is 100% and F1-Score is 91%. The last test is using the Sigmoid 

kernel, the highest accuracy is 84%, precision is 85%, recall is 98% and F1-Score is 91% 

Table 5.11. SVM Kernel All Test Result 

Polynomial RBF Sigmoid 

84 % 80 % 84 % 

81 % 81 % 83 % 

83 % 83 % 82 % 

80 % 82 % 82 % 

82 % 82 % 83 % 

 

Table 5.12. SVM Polynomial Kernel Confussion Matrix Evaluation Results 

Actual 

Label 

Predicted Label 

Negative Positive 

Negative 5 78 

Positive 0 400 
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Table 5.13. SVM Polynomial Kernel Test Results 

Accuracy 84 % 

Precision 84 % 

Recall 100 % 

F1-Score 91 % 

 

Table 5.14. SVM RBF Kernel Confussion Matrix Evaluation Results 

Actual 

Label 

Predicted Label 

Negative Positive 

Negative 7 80 

Positive 0 396 

 

Table 5.15. SVM RBF Kernel Test Results 

Accuracy 83 % 

Precision 83 % 

Recall 100 % 

F1-Score 91 % 
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Table 5.16. SVM Sigmoid Kernel Confussion Matrix Evaluation Results 

Actual 

Label 

Predicted Label 

Negative Positive 

Negative 16 71 

Positive 6 390 

 

Table 5.17. SVM Sigmoid Kernel Test Results 

Accuracy 84 % 

Precision 85 % 

Recall 98 % 

F1-Score 91 % 

 

 


