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CHAPTER 5 

IMPLEMENTATION AND RESULTS 

5.1. Implementation 

The first step in this program is to retrieve the data first. The data retrieval process 

must have an API Key. What you will get is the consumer key, consumer secret, access 

token, and access secret. After that we can use it for crawling data. 

1. CONSUMER_KEY = 'MPc7Gg7lpJ70qwaCADwobAPx5' 
2. CONSUMER_SECRET= 'mlwP0RjYVbKaWpBGBnjYlbpQSPQJ1SP7k7Ng8eTO2JQ61tDFwS' 
3. ACCESS_TOKEN = '706895602404052992-6yFFdD4QSR8xbwY9DJccK36TJzNXx99' 
4. ACCESS_TOKEN_SECRET = '3ZTsgtSwqF1AnulJfc2nXgtfOTmJudgzyKIXzEBWTV06e' 

 

Now we can input keyword that become our concern in line 1. Spesification of the 

data is message, favorite count, retweet count, created user, username, followers count. 

The last procces is export it to csv  

1. tweets = api.search(q="pindah ibu kota OR pinda ibu kota OR 

#pindahibukota") 

2. message,favorite_count,retweet_count,created_at,user_name,followers_c
ount = [],[],[],[],[],[] 

 

In this section Before calculating using the algorithm, the data must be processed 

by going through. The following is case folding process that functions to convert all 

letters to lowercase. In addition to characters a to z will be omitted and will remove 

numbers and punctuation that have nothing to do with analysis. Also remove emoticon, 

URL, and mention. 

1. clean = BeautifulSoup(tweet.Message[i], 'lxml') 
2. clean = re.sub(r'@[A-Za-z0-9_]+','', tweet.cleanHTML[i]) 
3. clean = re.sub('https?://[A-Za-z0-9./]+','', tweet.cleanMention[i]) 
4. clean = re.sub(r"\\x(.){2}", "", tweet.cleanURL[i]) 
5. clean = re.sub(r"^b[\'\"]|#[A-Za-z0-9]+|RT|\\n|  

+|:\(|:\)|:v|:V|:'\)|:'\(", " ", tweet.cleanUnicode[i]) 

6. clean = re.sub(r"\d+", " ", tweet.cleanOther[i]) 
7. clean = tweet.cleanNum[i].lower() 
8. clean = re.sub(r" +", " ", tweet.result[i]) 

after cleaning is done the data is ready to next process, it is Tokenization. 

Tokenization is the process of separating text into parts of words so that they can be 

analyzed based on Lexicon to determine sentiment. In this process, Tokenization, 
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Filtering stopword, and Stemming will combined its result in one table. Before run this 

code, declare the process first.  

1. tweet['coba_token'] = 

tweet['hasil'].apply(nltk.word_tokenize) 

2. tweet['coba_token'] = 

tweet['coba_token'].apply(filteringText) 

3. tweet['coba_token'] = 

tweet['coba_token'].apply(stemmingText) 

4. tweet.coba_token 
5. tweet.head() 

The result in coba_token now is ready to determine its sentiment using lexicon 

based method. In line 1 dan 7 we add positive and negative lexicon and decided that tha 

value of positive is >0 in line 23, value of negative is <0 in line 26, and if none of them 

are fulfilled its mean neutral. 

1. lexicon_positive = dict() 
2. import csv 
3. with open('lexicon_positive.csv', 'r') as csvfile: 
4. reader = csv.reader(csvfile, delimiter=',') 
5. for row in reader: 
6. lexicon_positive[row[0]] = int(row[1]) 

 

7. lexicon_negative = dict() 
8. import csv 
9. with open('lexicon_negative.csv', 'r') as csvfile: 
10. reader = csv.reader(csvfile, delimiter=',') 
11. for row in reader: 
12. lexicon_negative[row[0]] = int(row[1]) 

 

13. def sentiment_analysis_lexicon_indonesia(text): 
14. #for word in text: 
15. score = 0 
16. for word in text: 
17. if (word in lexicon_positive): 
18. score = score + lexicon_positive[word] 
19. for word in text: 
20. if (word in lexicon_negative): 
21. score = score + lexicon_negative[word] 
22. polarity='' 
23. if (score > 0): 
24. polarity = 'positive' 
25. elif (score < 0): 
26. polarity = 'negative' 
27. else: 
28. polarity = 'neutral' 
29. return score, polarity 

now we can use it to determine sentimen to our dataset, add the dataset first and 

count polarity score in coloumn coba_token in line 1. After that we show the result by 

adding  2 more columm to store polarity_score and polarity. This procces is in line 4 



18 

 

and 5. After we got all of them, export again new data in CSV. New data is contain 

hasil,coba_token, polarity_score, and polarity. 

1. results = 
preprocessing['coba_token'].apply(sentiment_analysis_lexicon_

indonesia) 

2. results = list(zip(*results)) 
3. data["hasil"] = preprocessing["hasil"] 
4. data['polarity_score'] = results[0] 
5. data['polarity'] = results[1] 
6. print(data['polarity'].value_counts()) 
7. # Export to csv file 
8. data.to_csv(r'sentiment.csv', index = False, header = 

True,index_label=None) 

9. data 

 

After the labelling process is complete, change the sentiment in polarity column 

to number. Positive stand for 1, negative stand for 0, and then neutral stand for 2. This 

process running in line 2.  

1. data = pd.read_csv('BigSentiment.csv',encoding='utf-

8',error_bad_lines=False) 

2. data.polarity.replace(['negative','positive', 
'neutral'],[0,1,2],inplace=True) 

3. data 

the next step is split the data. This is the process of dividing the data into 2 

namely test data and train data. The data divide 30% for data test, and the rest of it is data 

training.  

1. data_train, data_test = train_test_split(data, 

test_size=0.30) 

2. data_train['hasil']=data_train['hasil'].values.astype('U') 
3. data_test['hasil']=data_test['hasil'].values.astype('U')  

 

If the data split process is complete, the next step is the TF-IDF process. This 

algorithm will helps transform text into a meaningful representation of numbers which is 

used to fit machine algorithm for prediction. Next process is started using SVM algorithm 

to test accuracy of this prediction based on vectorized and the sentiment from lexicon. 

1. classifier_linear = LinearSVC(verbose=1) 
2. t0 = time.time() 
3. history = classifier_linear.fit(train_vectors, 

data_train["polarity"]) 

4. t1 = time.time() 
5. prediction_linear = classifier_linear.predict(test_vectors) 
6. t2 = time.time() 
7. time_linear_train = t1-t0 
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8. time_linear_predict = t2-t1 
9. # results 
10. print("Training time: %fs; Prediction time: %fs" % 

(time_linear_train, time_linear_predict)) 

11. report = classification_report(data_test["polarity"], 

prediction_linear, output_dict=True) 

12. print('positive: ', report['1']) 

13. print('negative: ', report['0']) 

14. print('neutral: ', report['2']) 

15. y_train_hat=classifier_linear.predict(train_vectors) 

16. y_test_hat=classifier_linear.predict(test_vectors) 

 

To test again this data, author using K-Folding Cross Validation to validate the 

distribution. When folds get cross contaminated like this, models get a misleading boost 

in performance. What we want is for the cross validation metrics to tell us how the model 

will generalize with unseen data. 

1. train = kfoldproperty.iloc[split1[0]] 
2. test = kfoldproperty.iloc[split1[1]] 

 

3. print("Train -----\nAnalysis =", Id, "Counts:") 
4. print(train['polarity'][train['polarity'] == 

Id].value_counts(sort=False)) 

5. display(train['polarity'][(train['polarity'] == Id)]) 

 

6. print("Test -----\nAnalysis =", Id, "Counts:") 
7. print(test['polarity'][test['polarity'] == 

Id].value_counts(sort=False)) 

8. display(test['polarity'][(test['polarity'] == Id)]) 
 

After that is getting the accuracy of K-fold Validitaion and the result is about 

88%.  

1. from sklearn.model_selection import cross_validate 
2. pipeline.set_params(lr__C=gs.best_params_['lr__C']) 
3. print("Running stratified k-fold...", end='') 
4. skf_results = cross_validate( 
5. pipeline,  
6. X=kfoldproperty['hasil'],  
7. y=kfoldproperty['polarity'],  
8. cv=skf,  
9. return_train_score=False,  
10. verbose=False) 

11. print(" done.") 

12. print("Stratified k-fold average accuracy:", 

np.mean(skf_results['test_score'])* 100) 
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5.2. Results 

In this study, it showed that in 3000 data of Twitter, 1674 users gave positive response to 

the topic of the new capital city of Indonesia. But there are 1005 of the people who gave a 

negative response. Rest of them, 321 gave a neutral response. In this study, before classifying the 

data, the thing that must be done is to retrieve data using the crawling method. Here are some 

data results that have been successfully retrieved from Twitter.  

 

Figure 5.1 Crawling Result 

Total data is about 3000 and then preprocessing can be done. Detail of it is remove 

Unicode, URL, emoticon or symbol, mention, and lowercase the result. After that the result 

stored in column  hasil. It is the clean tweet, and ready to tokenize, filtering stopword, and 

stemming. 3 process that mention before stored the result in new column named coba_token. 

 

Figure 5.2 Preprocessing Result 
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The data in coba_token is the result of all steps in preprocessing. Its mean this data is 

ready to determine sentiment steps using lexicon based method. This lexicon is in Indonesian. 

The detail is lexicon work with token and match them so in the end you will get polarity_score. 

It is the sum of all word in coba_token but in range point -5 until 5 based on lexicon. To get the 

sentiment. We declare if polarity score <0 its mean negative, and if >0 it is positive, and 0 mean 

neutral. In this section total data is 3000 divided by positive sentiment 1674, negative sentiment 

1005, and neutral sentiment 321. 

 

Figure 5.3 Sentiment Determination Result 

Performance evaluation of Accuracy, Precision and Recall from experiments that have 

been done, the final result of the test has an accuracy of 87%. 

 

Figure 5.4 Classification Report 
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Entering the classification process, this process is carried out to test the accuracy of the 

method Lexicon Based in determining the sentiment of an opinion tweet. In the data 

classification process, it is tested using the 5-fold cross validation method. So the dataset will be 

divided into two, namely 5 parts with 4/5 parts used for the training process and 1/5 of the part is 

used for the testing process. Iteration takes place 5 times with variations of training and testing 

data using a combination of 5 sections data. The Acuraccy result after that is about 88,23% 

  

 

Figure 5.5 K-Folding Cross Validation Result 


