
24

CHAPTER 5

IMPLEMENTATION AND RESULT

5.1. Implementation

This project was developed using the Go programming language. In the initial stage or the

first stage, an application is built in the form of Client program code to send commands to the

Local Server using the gRPC protocol using the Go programming language and an application in

the form of Server program code is also built to send a response to the client.

In the client application program that uses the gRPC protocol, import the library

"google.golang.org/grpc" to access the gRPC protocol and import the "transaction service"

function library to receive the response service that the client will get from the server when it hits

the service. of transaction data.

The application developed uses the GO programming language and the gRPC protocol to

receive services from a local server, only connecting to a single database. Where the type of

database used is a PostgreSQL database.

1. import (

2. "google.golang.org/grpc"

3.)

Then in the main function, the program code is created to connect the client to the server.

Where the connection process is only done once. Also, when the connection to the database fails,

the function stops executing the program and returns an error message on the terminal side.

In the GO programming language, a client application that uses the gRPC protocol, the

program code declaration is almost the same as in the Java programming language, where the

executive function is stored in the main function section. Because of this, the connection process

from the client to the server can be done safely and not exposed to the environment outside the

application development. Therefore, some of the functions used in the client application are also

created separately in several packages.

After successfully connecting to the server, then the server function is declared to the client

which performs the process of calling data to the server.

4. c := ts.NewTransactionServiceClient(conn)

And if the server function declaration process takes too long, the connection will be

disconnected. After successfully declaring the server function from the client, the next stage is the

calling process from the server, where this process is done by receiving data from the client which

is then sent to the server or hit the server, which is done repeatedly using a looping process that

has been determined by the server. researcher.

After the data transmission process is successful, then the server will provide a response

service using the program code, along with an error response that will be given if the service from

the server process fails.

25

After the development of the application from the client side using the gRPC protocol is

completed, the second stage is to build an application from the server side that serves to send

services to clients according to requests sent by client applications. Where at this stage it is also

still carried out import libraries that function to support the process of the server application in the

form of libraries "google.golang.org/grpc" and "transaksiRepository". The library

"google.golang.org/grpc" is used for service delivery using the gRPC protocol and "transaction

repository" is used to provide access between server and client to the PostgreSQL database.

5. import (

6. "google.golang.org/grpc"

7. "project/transactions-service-

grpc/transaksiServer/transaksiRepository"

8.)

After the data import is done on the main server function, then the port variable declaration

process is carried out for the server to be run and calls the protobuf function to run on the server.

Then, after the function is successfully executed on the server side, the client will then make a

service call using the inquiry function, which at this stage begins with the declaration of the

response for the function, and continues with the process to get the value of 'cpuUsage' and

'memoryUsage'.

9. var result ts.ResponseInquiryTransaction

10. memory, _ := mem.VirtualMemory()

11. cpu, _ := cpu.Percent(time.Second, false)

12. memoryUsage := int(math.Ceil(memory.UsedPercent))

13. cpuUsage := int(math.Ceil(cpu[0]))

The next stage is to perform the variable values that will be sent from the client to be entered

into the transaction table. Service data sent from the server to the client is calculated in units of

time milliseconds (ms) using the time start variable. Service data that is successfully sent from the

server to the client will be marked as a success message, which is sent to the InquiryTransaction

function.

The process of sending requests from the client to the server and the process of service data

from the client-server is carried out in several trials or hits, where the process is carried out using

the JMeter measuring instrument with the results shown in ANNEX 1.

In the third stage, an application is built in the form of Client program code to send

commands to the Local Server using the Rest API protocol using the Go programming language,

but the Rest API does not build Server program code to send responses to the client, but program

commands can be executed directly through the server using the " net/HTTP".

The application developed for the Rest API protocol is the same as gRPC, which uses the

Go programming language and is used to receive services from a local server and continues with

a connection to a single database. Where the type of database used is a PostgreSQL database.

68. import (

69. "encoding/json"

26

70. "net/http"

71.)

In the GO programming language, a client application that uses the Rest API protocol, the

functions to be executed are stored in the main function section. Because the execution command

has been built directly on the server, there is no need to connect to the server but can directly

process file input at the request stage.

72. fmt.Println("Input Batch Data :")

73. fmt.Scanln(&dataAmount)

The next stage or the fourth stage is the process of calling data from the server, where this

process is done by receiving data from the client which is then sent to the server or hit the server,

which is done repeatedly using a looping process that has been determined by the researcher.

After the data transmission process is successful, then the server will provide a response

service using the program code, along with an error response that will be given if the service from

the server process fails when using the Rest API protocol.

The request or server hit process for each gRPC protocol and Rest API was carried out in

three trials, wherein in the first experiment 10 server hits were carried out, in the second experiment

100 server hits were carried out, and the last stage was 1000 server hits. for each of these protocols.

After the application is complete, several testing conditions are carried out on applications

that use the Rest API and gRPC protocols. After the application has been built, then the experiment

is carried out through several stages.

27

a) On Local Server in Computer A

The first experiment was carried out by making server requests from both applications using

the Rest API and gRPC protocols for 10 repetitions or hitting the server using the GET and POST

methods. In the first experiment, the request command was performed using Apache JMeter, so

the process could be carried out without the need for direct human assistance. After testing the two

applications using the Rest API and gRPC protocols, the results are shown in Table 5.1.
 Table 5.1. Testing Data 10 gRPC and RestAPI Computer A

Fitur

Data Average Get and Post Method (10 Request)

gRPC RestAPI

Get Post Get Post

CPU Usage 36.2 14.4 36.97 16.1

Memori Usage 82 72.9 83 74.3

TTL 1014.9 1009.5 1018.6 1018.3

After the first experiment was completed, the second experiment was carried out by

requesting a server from both applications using the Rest API and gRPC protocols for 100

repetitions or hitting the server using the GET and POST methods. In the second experiment, the

request command was carried out using Apache JMeter, so that the process could be carried out

without the need for direct human assistance. After testing the two applications using the Rest API

and gRPC protocols, the results are shown in Table 5.2.

 Table 5.2. Testing Data 100 gRPC and RestAPI Computer A

Fitur

Data Average Get and Post Method (100 Request)

gRPC RestAPI

Get Post Get Post

CPU Usage 31.95 23.99 40.2 27.92

Memori Usage 84 74.98 84 76

TTL 1015.32 1010.99 1038.52 1011.69

After the second experiment was completed, the third experiment was carried out by

requesting the server from the two applications using the Rest API and gRPC protocols for a

thousand repetitions or hitting the server using the GET and POST methods. In the third

experiment, the request command was carried out using Apache JMeter, so that the process could

be carried out without the need for direct human assistance. After experimenting with both

applications using the Rest API and gRPC protocols, the results are shown in Table 5.3 as follows.

 Table 5.3. Testing Data 1000 gRPC and RestAPI Computer A

Fitur

Data Average Get and Post Method (1000 Request)

gRPC RestAPI

Get Post Get Post

CPU Usage 63 54 65 58

Memori Usage 85.1 76 85.9 77

TTL 1532.17 1169.298 1608.95 1557.999

28

b) On Local Server on Computer B

The first experiment was carried out by making server requests from both applications using

the Rest API and gRPC protocols for 10 repetitions or hitting the server using the GET and POST

methods. In the first experiment, the request command was performed using Apache JMeter, so

the process could be carried out without the need for direct human assistance. After experimenting

with both applications that use the Rest API and gRPC protocols, the results are shown in table

5.4.
 Table 5.4. Testing Data 10 gRPC and RestAPI Computer B

Fitur

Data Average Get and Post Method (10 Request)

gRPC RestAPI

Get Post Get Post

CPU Usage 66.7 57 71.6 61

Memori Usage 52 54 61.5 54

TTL 1018.8 1015.6 1020.4 1043.1

After the first experiment was completed, the second experiment was carried out by

requesting a server from both applications using the Rest API and gRPC protocols for 100

repetitions or hitting the server using the GET and POST methods. In the second experiment, the

request command was carried out using Apache JMeter so that the process could be carried out

without the need for direct human assistance. After testing the two applications using the Rest API

and gRPC protocols, the results are shown in Table 5.5.

Table 5.5. Testing Data 100 gRPC and RestAPI Computer B

Fitur

Data Average Get and Post Method (100 Request)

gRPC RestAPI

Get Post Get Post

CPU Usage 99.13 92.55 99,735 99.62

Memori Usage 53 55 63.75 55

TTL 1449.03 1325.37 1455.73 1422.54

After the second experiment was completed, the third experiment was carried out by

requesting the server from the two applications using the Rest API and gRPC protocols for a

thousand repetitions or hitting the server using the GET and POST methods. In the third

experiment, the request command was carried out using Apache JMeter so that the process could

be carried out without the need for direct human assistance. After experimenting with both

applications using the Rest API and gRPC protocols, the results are shown in Table 5.6 as follows

29

 Table 5.6. Testing Data 1000 gRPC and RestAPI Computer B

Fitur

Data Average Get and Post Method (1000 Request)

gRPC RestAPI

Get Post Get Post

CPU Usage 99.486 99.703 100 100

Memori Usage 58.695 56,1 65.288 56.929

TTL 5461.308 4586.195 5711.028 5296.988

5.2. RESULT
Testing carried out in this study has results that depend on the amount of data sent. This test

was carried out in three tests, where the first test carried out 10 hits, the second test carried out 100

hits, and the third test carried out 1000 hits. The data obtained from the test results are in the form

of CPU usage, memory usage, and latency time.

1.a. Local Server Latency Time In Computer A

Figure 5.1 below shows the average value of latency time (ms) generated by applications

that request data using the gRPC and RestAPI protocol. The speed of the latency time is affected

by the amount of data sent in one test. Figure 5.1 shows an image of the graph of the average

latency time for three tests, with 10 data, 100 data, and 1000 data sent each.

Figure 5.1.Latency Time gRPC and RestAPI Computer A

A comparison of latency time speed performance between gRPC and RestAPI protocols

when requesting data is shown in table 5.7. The gRPc and RestAPI protocols show an increasingly

large time difference, which depends on the amount of data sent. From table 5.7, it can also be

seen that the RestAPI protocol will be more suitable if it is used to transmit small amounts of data,

while the gRPC protocol will be more suitable if it is used for sending larger amounts of data.

30

Table 5.7. Average Latency Time Computer A

Data Sent gRPC RestAPI

10_Get 1014.90 1018.60

10_Post 1009.50 1018.30

100_Get 1015.32 1038.52

100_Post 1010.99 1011.69

1000_Get 1532.17 1608.95

1000_Post 1169.30 1557.99

STDEV 208.92 290.65

1.b. Local Server Latency Time Computer B

Figure 5.2 below shows the average value of latency time (ms) generated by applications

that request data using the gRPC and restAPI protocol. The speed of the latency time is affected

by the amount of data sent in one test. Figure 5.2 shows an image of the graph of the average

latency time for three tests, with 10 data, 100 data, and 1000 data sending each.

Figure 5.2 Latency Time gRPC and RestAPI Computer B

The comparison of latency time speed performance between gRPC and RestAPI protocols

when requesting data is shown in table 5.8. The gRPc and RestAPI protocols show a larger time

difference, which depends on the amount of data sent. From table 5.8, it can also be seen that the

RestAPI protocol will be more suitable if it is used for sending small amounts of data, while the

gRPC protocol will be more suitable if it is used for sending larger amounts of data.

31

Table 5.8. Average Latency Time Computer B

Data Sent gRPC RestAPI

10_Get 1018.8 1020.4

10_Post 1015.6 1043.1

100_Get 1449.03 1455.73

100_Post 1325.37 1422.54

1000_Get 5461.308 5711.028

1000_Post 4586.195 5296.988

STDEV 1999.99 2215.70

2.a. CPU Usage Computer A

Figure 5.3 below shows the average value of CPU Usage (bytes) generated by applications

that request data using the gRPC and RestAPI protocol. CPU Usage value is affected by the amount

of data sent in one test. Figure 5.3 shows a graph of the average CPU Usage value for three tests,

with 10 data, 100 data, and 1000 data sent each.

Figure 5.3 CPU Usage gRPC and RestAPI Computer A

The comparison of CPU Usage value performance between gRPC and RestAPI protocols

when requesting data is shown in table 5.9. The gRPc and RestAPI protocols show a relatively

large CPU Usage value, which depends on the amount of data sent. From table 5.9, it can also be

seen that the RestAPI protocol will be more suitable if it is used to transmit small amounts of data,

while the gRPC protocol will be more suitable if it is used for sending larger amounts of data.

32

Table 5.9. Average CPU Usage Computer A

Data Sent gRPC RestAPI

10_Get 31.95 36,97

10_Post 14.4 16.1

100_Get 36.2 40,2

100_Post 23.99 27.92

1000_Get 63 65

1000_Post 54 58

STDEV 18.28 18.29

2.b. CPU Usage Computer B

Figure 5.4 below shows the average value of CPU Usage (bytes) generated by applications

that request data using the gRPC and RestAPI protocol. CPU Usage value is affected by the amount

of data sent in one test. Figure 5.4 shows a graph of the average CPU Usage value for three tests,

with 10 data, 100 data, and 1000 data sent each.

Figure 5.4 CPU Usage gRPC and RestAPI Computer B

The comparison of CPU Usage value performance between gRPC and RestAPI protocols

when requesting data is shown in table 5.10. The gRPc and RestAPI protocols show relatively

large CPU Usage values, which depend on the amount of data sent. From table 5.10, it can also be

seen that the RestAPI protocol will be more suitable if it is used to transmit small amounts of data,

while the gRPC protocol will be more suitable if it is used for sending larger amounts of data.

33

Table 5.10. Average CPU Usage Computer B

Data Sent gRPC RestAPI

10_Get 66.7 71.6

10_Post 57 61

100_Get 99.13 99,735

100_Post 92.55 99.62

1000_Get 99.486 100

1000_Post 99.703 100

STDEV 18.96 17.64

3.a. Memory Usage Computer A

Figure 5.5 below shows the average value of Memory Usage (bytes) generated by

applications that request data using the gRPC and RestAPI protocol. Figure 5.5 shows a graph of

the average value of Memory Usage for three tests, with 10 data, 100 data, and 1000 data sent

each.

Figure 5.5 Memory Usage gRPC and RestAPI Computer A

The comparison of Memory Usage value performance between gRPC and RestAPI protocols

when requesting data is shown in table 5.11. The gRPc and RestAPI protocols show Memory

Usage values that are relatively the same value, which depends on the amount of data sent. From

table 5.11, it can also be seen that the RestAPI and gRPC protocols are equally suitable for sending

any amount of data with a relatively small and negligible difference in the Memory Usage value.

34

Table 5.11. Average Memory Usage Computer A

Data Sent gRPC RestAPI

10_Get 82 83

10_Post 72.9 74.3

100_Get 84 84

100_Post 74.98 76

1000_Get 85.1 85.9

1000_Post 76 77

STDEV 5.17 4.8

3.b. Memory Usage Computer B

Figure 5.6 below shows the average value of Memory Usage (bytes) generated by

applications that request data using the gRPC protocol. In Figure 5.6, a graph of the average value

of Memory Usage is shown for three tests, with 10 data, 100 data, and 1000 data sent each.

Figure 5.6 Memory Usage gRPC and RestAPI Computer B

The comparison of Memory Usage value performance between gRPC and RestAPI protocols

when requesting data is shown in table 5.12. The gRPc and RestAPI protocols show Memory

Usage values that are relatively the same value, which depends on the amount of data sent. From

table 5.12, it can also be seen that the RestAPI and gRPC protocols are equally suitable to be used

to transmit any amount of data with a relatively small and negligible difference in the Memory

Usage value.

35

Table 5.12. Average Memory Usage Computer B

Data Sent gRPC RestAPI

10_Get 52 61.5

10_Post 54 54

100_Get 53 63.75

100_Post 55 55

1000_Get 58.695 65.288

1000_Post 56,1 56.929

STDEV 2.39 4.74

From the results of the tests carried out previously, several overall performance comparison

results were obtained which are shown in table 7. From the table, it is shown which protocol has a

better performance value when compared to other protocol values.

 Table 5.13. Performance Comparison Latency

Data Sent

Latency Time

gRPC RestAPI

Computer A Computer B Computer A Computer B

Get Post Get Post Get Post Get Post

10 V v v v - - - -

100 V v v V - - - -

1000 V v v v - - - -

 Table 5.14. Performance Comparison Memory Usage

Data Sent

Memory Usage

gRPC RestAPI

Computer A Computer B Computer A Computer B

Get Post Get Post Get Post Get Post

10 - v v - - - - -

100 - v v - - - - -

1000 V v v v - - - -

 Table 5.15. Performance Comparison CPU Usage

Data Sent

CPU Usage

gRPC RestAPI

Computer A Computer B Computer A Computer B

Get Post Get Post Get Post Get Post

10 v v v v - - - -

100 v v v v - - - -

1000 v v v v - - - -

36

According to Johnston [11] service activities are activities that involve contact and interaction

that generally occur in "real time", so that in service applications the communication process that

occurs is synchronous communication. Because the communication process runs synchronously,

the best performance of the service transaction process can be achieved optimally if the latency

time is low. results Based on the research conducted, gRPC has a lower latency value than

RestAPI in service transaction activities. So that gRPC is the right choice for service transaction

activities when compared to restAPI, because gRPC uses the HTTP2 protocol, while restAPI is

built using HTTP1.1.

	f3ed664bbb513e8d7aadacfc30de18abf1d9d141d8e7620f39c936886d1ff426.pdf
	PROJECT REPORT

	9744bd6613e55c6d45e7994bbed05517a9479ddcc146bba290d8f46468792977.pdf
	Untitled-2
	f3ed664bbb513e8d7aadacfc30de18abf1d9d141d8e7620f39c936886d1ff426.pdf
	HALAMAN PERNYATAAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS
	ACKNOWLEDGMENT
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURE
	LIST OF TABLE
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2. Problem Formulation
	1.3. Objective
	1.4. Scope

	CHAPTER 2
	LITERATURE STUDY
	CHAPTER 3
	RESEARCH METHODOLOGY
	3.1. Literature Study
	3.2. Building gRPC Client and Server Program Code Using the Go
	3.4. Build Local Server
	3.5. Build Database Using PostgreSQL
	3.6. Testing
	3.7. Analysis

	CHAPTER 4
	ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Design

	CHAPTER 5
	IMPLEMENTATION AND RESULT
	5.1. Implementation
	5.2. RESULT

	CHAPTER 6
	CONCLUSION
	REFERENCES
	APPENDIX

	16ed0c30c983e5126f9a39cb4ba75069d686808a44a5d2cc02e8bea3ea4bbd10.pdf

