CHAPTER 4
 ANALYSIS AND DESIGN

1.5. Analysis

This research is Simple Linear Regression, used in Data Mining to predict all linear data against a value. In Simple Linear Regression, data is modeled in the form of a graph in the form of two-dimensional lines, so it takes the variables X and Y . And in this study using test data as many as 1000 datasets, with X as a free variable and Y as a bound variable.

In Linear Regression, the variable Y is referred to as the response variable while X is referred to as the predictor variable. The two variables are formulated staticallyk with the formula $y=\alpha+\beta x$.

The value of y in the above formulation is considered to be the value of constan, while the value α and β is the regression coefficient which affects the delineation of data in the twodimensional graph.

The value α and β can be searched using the least square method which functions to minimize the error value between the actual data and the data of the predicate resultksi. Given the sample value of the data S with dots $(x 1, y 1),(x 2, y 2), \ldots(x 3, y 3)$, then the regression coefficient can be searched using the following formula :

Constant (α) :

$$
\alpha=\frac{\left(\sum y\right)\left(\sum_{x} 2\right)-\left(\sum_{x}\right)\left(\sum x y\right)}{n\left(\sum_{x} 2\right)-\left(\sum_{x}\right) 2}
$$

Coefficient (β)

$$
\beta=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\left(\sum y\right)\right.}{n\left(\sum_{x} 2\right)-\left(\sum_{x}\right) 2}
$$

where x is the average of $\mathrm{x} 1, \mathrm{x} 2, \ldots \mathrm{x}$ and y are the averages of $\mathrm{y} 1, \mathrm{y} 2, \ldots \mathrm{Y}$.

1.6. Design

This is the X and Y value data for the 1000 datasets already provided.
Table 1 Values of Variable X and Variable Y

\mathbf{X}	\mathbf{Y}
77	79,77515201
21	23,17727887
22	25,60926156
20	17,85738813
36	41,84986439
15	9,805234876
62	97,87465933
95	18,39512747
20	8,746747654
5	2.811415826
4	
\ldots	\ldots

The above score data can be depicted in the form of a two-dimensional linear graph where the mid and final exam score data are in the form of linear lines. The x point is the data for the variable X while the y point is the data of the Variable Y .

