(1]

(2]

(3]

(4]

[5]

(6]

[7]

(8]

REFERENCES

S. A. Krishnaswamy, M. Paul, and Srivatsa Krishnaswamy, “A Comparative Study and
Analysis of Time Series Forecasting Techniques | Enhanced Reader,” 2020. Available:
https://www.researchgate.net/publication/337244936_Comparative_Study_on_Time_S
eries_Forecasting_Models.

K. Yang and C. Shahabi, “A pca-based kernel for kernel pca on multivariate time
series,” Proc. ICDM 2005 Work. ..., no. June, 2005, [Online]. Available:
http://w2.math.bme.hu/kanya/astor/tdm05.pdf.

K. Nazmoon, T. Tahmid, A. Rafi, and M. Ehsanul, “Forecasting COVID-19 cases: A
comparative analysis between recurrent and convolutional neural networks,” no.
January, 2020. Available:
https://www.researchgate.net/publication/350978557_Forecasting_ COVID-
19_cases_A_comparative_analysis_between_recurrent_and_convolutional_neural_net
works.

J. G. Taylor, “Univariate and Multivariate Time Series Predictions,” no. January, pp.
11-22, 2002, doi: 10.1007/978-1-4471-0151-2_2. Available:
https://www.sciencegate.app/app/document/download/10.1007/978-1-4471-0151-2_2

L. Siilo, S. R. Keskin, G. Dogan, and T. Brown, “Energy Efficient Smart Buildings:
LSTM Neural Networks for Time Series Prediction,” Proc. - 2019 Int. Conf. Deep
Learn. Mach. Learn. Emerg. Appl. Deep. 2019, pp. 18-22, 2019, doi: 10.1109/Deep-
ML.2019.00012. Available: https://ieeexplore.ieee.org/document/8876919.

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent Neural Networks
for Multivariate Time Series with Missing Values,” Sci. Rep., vol. 8, no. 1, Dec. 2018,
doi: 10.1038/s41598-018-24271-9.

K. Ouyang, Y. Hou, S. Zhou, and Y. Zhang, “Convolutional neural network with an
elastic matching mechanism for time series classification,” Algorithms, vol. 14, no. 7,
2021, doi: 10.3390/a14070192. Available:
https://mdpi-res.com/d_attachment/algorithms/algorithms-14-00192/article_deploy/
algorithms-14-00192.pdf

Y. Wen, P. Lin, and X. Nie, “Research of stock price prediction based on PCA-LSTM
model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 790, no. 1, 2020, doi: 10.1088/1757-
899X/790/1/012109. Available:
https://www.researchgate.net/publication/340490809_Research_of Stock_Price_Predic
tion_Based _on_PCA-LSTM_Model

53



[9] Y. Yuan et al., “Bus dynamic travel time prediction: Using a deep feature extraction
framework based on rnn and dnn,” Electron., vol. 9, no. 11, pp. 1-20, 2020, doi:
10.3390/electronics9111876. Available: https://www.mdpi.com/2079-9292/9/11/1876

[10] L. Badal and S. Franzén, “A Comparative Analysis of RNN and SVM Electricity Price
Forecasting in Energy Management Systems,” DEGREE Proj. Comput. Eng., 2019. Available:
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A 1353342 &dswid=-602

54



	APPROVAL PAGE FOR PUBLICATION OF SCIENTIFIC PAPERS FOR ACADEMIC INTREST
	CHAPTER 1 18.K1.0084
	ACKNOWLEDGMENT
	ABSTRACT
	Keyword: Autoencoders, deep learning, LSTM, Bi-LSTM
	CHAPTER 1 INTRODUCTION
	1.1. Background
	1.2. Problem Formulation
	1.3. Scope
	1.4. Objective

	CHAPTER 2 LITERATURE STUDY
	CHAPTER 3 RESEARCH METHODOLOGY
	3.1. Literature Review
	3.2. Data Anlaysis and Preprocessing
	3.2.1. Data Selection and Variable Analysis
	3.2.2. Data Visualization
	3.2.3. Split Data
	3.2.4. Feature Scaling

	3.3. it must be noted that feature scaling is must be done after the data is splited because if feature scaling is done before then the splited data could not be inverted back into its normal form.
	3.4. Creating Models
	3.4.1. LSTM Autoencoder-Bi-LSTM Hybrid Models
	3.4.2. Bi-LSTM Model

	3.5. Models Evaluation and Comparison

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Data Preprocessing
	4.1.1. Data Selection and Variable Analysis
	4.1.2. Feature Extraction
	4.1.3. Split Data
	4.1.4. Data Analysis and feature scaling

	4.2. Deeplearning Model
	4.2.1. LSTM Autoencoder-Bi-LSTM Hybrid
	4.2.2. Bi-LSTM Model


	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.1.1. Pre-Processing
	5.1.2. LSTM-Autoencoders-Bi-LSTM hybrid model
	5.1.3. Bi-LSTM model
	This code is a function to create a new Bi-LSTM models. Line 2 and 3 is to create the input layer. Line 4 is where the input layer is concatenated into 1. Line 6 is where bi-LSTM layer created with total neuron of 77. Then finally, line 7 is the output layer where dense layer is used with 1 neuron which represent 1 single route prediction.
	This code show how the Bi-LSTM model trained, line 1 is to define early stopping so the overfitting problems could be prevented, line 2 is to define the modal check points. Modelcheckpoints is used so when the training is done the best weight will be saved. Then finals line 3 It's where to train the model using fit() function. The first param is to define the data, second param is for the data output, line 6 is to define how many epochs will be used, line 7 is to define callbacks where the value are variables from line 1 and 2.

	5.1.4. Prediction and inverse transformation

	Figure 5.2 is showing how was the line 6-18 code works. As seen in that figure the prediction created with the data predicted before and added with the categorical data fdrom test set. This loop will loop until the end of the test set data. But need to be mentioned, the prediction output from the trained model is still in scaled form, so in order to transform the data back to its original form, inverse method should be done.
	5.2. Result
	5.2.1. LSTM-Autoencoders-Bi-LSTM hybrid model
	A) Training losses and metrics
	B) Prediction of test set

	5.2.2. Bi-LSTM model
	A) Training losses and metrics
	B) Prediction of test set

	5.2.3. Comparisons
	To compare both models here we have table that shows the lowest loss from both models:


	CHAPTER 6 CONCLUSION

