
CHAPTER 4

ANALYSIS AND DESIGN

4.1. Data Preprocessing

Preprocessing the raw data is the first step in building deep learning models. This step

is crucial when creating deep learning models because if this step goes wrong, then the other

part  will  also  go  wrong  as  well.  Data  preprocecessing  step  is  part  where  the  raw  data

proccessed before inputed into deep learning models. Pre processing part wiil be splited into 3

parts:

6 Data Selection and Variable Analysis

7 Feature Extraction

8 Split Data

9 Data Analysis and feature scaling

4.1.1. Data Selection and Variable Analysis

 

The first step is to selecting the data variable and drop variable that will not used. As

shown in figure 4.1 in this problem Name and Class wariable will be dropped since rus route

deman will rise when something triggering the people to use busses not what the bus company

give facility so Class variable doesent effect on bus route demand, and Name variable is also
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Figure 4.1: Data Selection



droped and start, destination vaariable will combined into 1 variable. The start and destination

data are initially the names of the departure and destination points for passengers and one city

may have more than 1 point so that the values for start and destination are changed to the

name of the city of the departure and destination points.

As shown in figure 4.2, the start and destination variable are transformed to its city

name then combined, this method will reduce the amount of start-destinations count without

loosing information like in figure 4.2 first data, the “gembong” is inside the city of Kebumen

and lebak bulus is inside city of Jakarta. Then after this step the data will be pivoted so each

unique startDest will become a new variable and the value of each variable is the quantity of

passenger on a certain date to be clear lets see figure below: 
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Figure 4.2: start-destination transformation



From the figure 4.3 it shows that the data have new structure with the variable now is

the startDest and the value for each unique startDest is presenting its own passenger quantity

at  certain date  so the goal  of  this  research that  to  predict  each route on certain date  can

achieved.

4.1.2. Feature Extraction

After  Data  Selection  and  Variable  Analysis  is  performed  the  next  part  is  to  find

supporting variable that needed to get better model performance result later. Although the data

of route itself when fed into deep learning is possible, but we need to figure how to make deep

learning models can perform better job on this, so we should think what thing should affect

the bus route demand. As mentioned last chapter we know that many features can be extracted
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Figure 4.3: Pivoting each unique startDest



from date variable so we should analyze more about what feature can be extracted from a date

time variable. 

As shown in Figure 4.4 from date time data many variables can be extracted. The

variable  extracted  is  “keterangan”,  “namaLibur”,  “covid”,  “dayOfWeek”,  “Akhir  Pekan”,

“nextDateisHoliday”, “Next2DateisHoliday”, “Next3DateisHoliday” is obtained. Keterangan

is variable that represent about certain date is holiday, normal day, and weekend, if holiday

then  keterangan  value  is  either  be  “liburNasional”  or  “cutiBersama”  depends  on  the

namaLibur  variable.  Namalibur  variable  is  representing  the  name of  holiday,  like  “Libur

Natal”,  “Libur  lebaran”  etc.  Then from date  time we should  know the  certain  date  is  in

COVID-19 pandemic or not because since COVID-19 pandemics the bus demand is hugely

drop.  Then  day  of  week  is  represented  name  of  the  day,  for  example  Sunday,  Monday,

Tuesday, etc. nextDateisHoliday is represents that in certain date plus one day is a holiday or

not, this should impact bus route demand because people tend to go to their hometown or

taking a vacation and probably use bus as their transportation when the next day is holiday,

and for the next2Dateisholiday is like the nextDateisHoliday but this variable represents  that

in certain date plus two day is either holiday or not, and the last one next3DateisHolidat is a

same as  nextDateisHoliday but his variable represents  that in certain date plus three day is

either holiday or not.
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Figure 4.4: date time feature extraction



4.1.3. Split Data

The data that was previously analyzed will be entered and split in this stage. The data

will  be  divided  into  two  parts,  the  bus  route  variable  and  the  categorical  variable  that

extracted from the date time variable. The bus route variable is containing the data of the bus

route  passenger  sum on certain  date.  The data  then  will  be  divided into  two parts,  80%

training set and 20% test set.

4.1.4. Data Analysis and feature scaling

This part is to analyze the data that has gone through the previous two stages, this step

will  use seaborn to visualize the corelation of each variable and data distribution will  be

visualized with histogram then feature scaling method will performed. Before that the author

visualize the data first in order to get track of missing values. Figure below is the visualization

of some of the route data.

From figure abov we can see that the data there was a very significant decrease in the

number  of  passengers  in  Marc  and  that  time  is  the  first  time  COVID-19  outbrakes  in

Indonesia. Besides that there are no evidence of missing values in this data.
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Figure 4.5: data visualizarion



The value represent how each variable correlate with each other, 0 value means no

correlation at all, 1 means the variable have strong positive correlation. This means when the

value is going up the other value is going up as well with other variable, and negative value

means the value has negative correlation with other value this means whenever variable value

goes up, the value of other variables is going down since the correlation is negative. 

Figure 4.5 above shows that almost all variable have correlation with each other but

not all variable correlate with each other with the same direction and this is normal, since each

route will have negative correlation with its return route for example yogyakarta-bekasi will

have high negative correlation with bekasi-yogyakarata but yogyakarta bekasi probably only

have weak correlation with semarang-kebumen either negative or positive.
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Figure 4.6: Heatmap



From the data histogram from each route in figure 4.6 it shows that for all routes the

data distribution is skew, this could make the deep learning model perform bad. From this,

something must be done to make the data distribution have more Gaussian like shape (bell

shape) like as mentioned in last chapter to achieve better deep learning models performance.

To  overcome  this  issue  the  author  using  powertransformer  from Sikit  Learn  library  and

pipeline from Sickit Learn, so with help of pipeline, the transformed data could be inverted

back to its original form. In the powertransformer method there are 2 transformer method

which is box-cox method and Yeo-johnson method and the method used is the Yeo-johnson

method  since  the  box-cox  method  is  strictly  positive.  That  means  box-cox  method  only

allowing positive value. Although the data can used both method, but in this study only yeo-

johnson method will be used.
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Figure 4.7: Data distribution



In this figure it can be seen that yeo-johnson formula have 4 conditional shape, and

with this the yeo-johnson have the ability to transform data that are not positive. For the result

after using powertransformer with yeo-johnson formula, the data distribution is having more

Gaussian like shape which is good news. The result can be seen in the figure below:
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Figure 4.9: After using powertransformer

Figure 4.8: yeo-johnson formula



This method is for all the route variable but for the other variable ordinal scales and

one  hot  encoder  is  used,  ordinal  encoder  is  mainly  used  to  encode  categorical  data  to

numerical value, this is used for data that can be ordered, then each order could contribute for

the training process such as dayofweek. When ordinal scales is use for dayofweek variable, it

transforms the dayofweek value to numerical value (sunday to 0, monday to 1, etc). Then the

last variable “namalibur” will be transformed with one hot encoder. One hot encoder here will

transform the data variable to binary values to get clear picture see figure below:

The machine cannot understand words, so something must be done for the data, so the

machine can understand it. One hot encoder and ordinal scaler is used to transform categorical

data into numeric values, one hot encoder will transform data into biniary models that can be

seen in figure 4.9, then the ordinal scaler will transform data into ordered integer.

4.2. Deeplearning Model

In  this  research  2  Deep  learning  will  be  created  then  the  performance  will  be

compared  from  each  other.  The  first  Models  are  LSTM  Autoencoder-Bi-LSTM  Hybrid

Models then the second one is Bi-LSTM models. In this study Keras model that will be used

is  the  functional  models,  because  this  problem needs  more  than  1  output  that  cannot  be

handled by sequential API from Keras. 

This model then will be trained one by one first to save time then the trained models

layer weight will be transferred for each combined model layer. This method is called transfer

learning. The combined models will have multiple outputs.

4.2.1. LSTM Autoencoder-Bi-LSTM Hybrid

LSTM Autoencoers-Bi-LSTM model hybrid will have 2 part the first part is to create

the LSTM autoencoders model and the second part will be creating Bi-LSTM for the output.

Auto coders have 2 stages called the encoder stage then the decoder stages. Each stage will be
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Figure 4.10: One Hot Encoder



stored into one function and act as layer. Encoder stages is a stage to compressing the data

until  it  become into its  latent space then from the latent space the decoder stages will be

performed.

Figure 4.10 is showing how the encoder models built, from those figure, its shows

there will have 2 input, the first input is for the route data variable, and for the second one

then both of them are concatenated together and will have data with 77 neurons. Those 77

neurons then go into encoding stages and leaving it into latent space with only 20 neurons,

each neuron are representing the data dimensions. This is the end of the encoding stages, the

output  is  data  with its  latent  form with 20 variable.  Then those 20 variable  will  then be

inputted to decoding stages. The decoding stages will be combined with bi-LSTM in the end

for the prediction output.
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Figure 4.11: LSTM encoder Layers



Figure above shows the decoding-output models, start with the input which take from

the encoder stages, then gradually rising the amount of variables then the output of decoder is

directly inputted to bi-LSTM model with 20 neurons then the output will be inputted again

into another bi-LSTM then for the last the output from second bi-LSTM layer then will be

inputted to dense layer which represent the prediction of single route variable.
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Figure 4.12: decoder-output Layer

Figure 4.13: LSTM-Autoencoders-Bi-LSTM hybrid model architecture



The figure above is the architecture combined with 2 layers from 2 phases before

which with functional model provided by Keras API, the models now have total of 5 output,

each  output  represents  single  route  predictions  and  each  output  have  its  own losses  and

metrics to get track of the model performance.

4.2.2. Bi-LSTM Model

This  model  is  more  simple  than  the  LSTM-Autoencoders-Bi-LSTM hybrid  model

architecture. This model will directly input 2 data and output the prediction without any other

architecture. This models will use bi-LSTM layers to create prediction.

Like the LSTM-Autoencoders-Bi-LSTM hybrid, there will be 2 input node, each input

represents the route variable and categorical data. Then those 2 input are concatenated into 1,

then directly inputted to bi-LSTM layers with 77 neurons. Since the bidirectional learns data

bidirectionally, so the number of neuron is also multiplicand by 2, That is why the output of 1
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Figure 4.14: Bi-LSTM Model Layer



bidirectional layer is 154. The output from first bi-LSTM layer then inputted into second bi-

LSTM layer which then the output is going into dense layer with 1 neuron that represents 1

single route.

Figure above is a figure that show the final Bi-LSTM model architecture. This model

will have 5 output as well that each output represents one route variable since in this research

will  only predict  5 route.  Each output will  have its  own loss and metrics as well,  so the

performance can be tracked per output.
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Figure 4.15: Bi-LSTM model Architecture
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