
CHAPTER 4

ANALYSIS AND DESIGN

4.1. Data Preprocessing

Preprocessing the raw data is the first step in building deep learning models. This step

is crucial when creating deep learning models because if this step goes wrong, then the other

part will also go wrong as well. Data preprocecessing step is part where the raw data

proccessed before inputed into deep learning models. Pre processing part wiil be splited into 3

parts:

6 Data Selection and Variable Analysis

7 Feature Extraction

8 Split Data

9 Data Analysis and feature scaling

4.1.1. Data Selection and Variable Analysis

The first step is to selecting the data variable and drop variable that will not used. As

shown in figure 4.1 in this problem Name and Class wariable will be dropped since rus route

deman will rise when something triggering the people to use busses not what the bus company

give facility so Class variable doesent effect on bus route demand, and Name variable is also

18

Figure 4.1: Data Selection

droped and start, destination vaariable will combined into 1 variable. The start and destination

data are initially the names of the departure and destination points for passengers and one city

may have more than 1 point so that the values for start and destination are changed to the

name of the city of the departure and destination points.

As shown in figure 4.2, the start and destination variable are transformed to its city

name then combined, this method will reduce the amount of start-destinations count without

loosing information like in figure 4.2 first data, the “gembong” is inside the city of Kebumen

and lebak bulus is inside city of Jakarta. Then after this step the data will be pivoted so each

unique startDest will become a new variable and the value of each variable is the quantity of

passenger on a certain date to be clear lets see figure below:

19

Figure 4.2: start-destination transformation

From the figure 4.3 it shows that the data have new structure with the variable now is

the startDest and the value for each unique startDest is presenting its own passenger quantity

at certain date so the goal of this research that to predict each route on certain date can

achieved.

4.1.2. Feature Extraction

After Data Selection and Variable Analysis is performed the next part is to find

supporting variable that needed to get better model performance result later. Although the data

of route itself when fed into deep learning is possible, but we need to figure how to make deep

learning models can perform better job on this, so we should think what thing should affect

the bus route demand. As mentioned last chapter we know that many features can be extracted

20

Figure 4.3: Pivoting each unique startDest

from date variable so we should analyze more about what feature can be extracted from a date

time variable.

As shown in Figure 4.4 from date time data many variables can be extracted. The

variable extracted is “keterangan”, “namaLibur”, “covid”, “dayOfWeek”, “Akhir Pekan”,

“nextDateisHoliday”, “Next2DateisHoliday”, “Next3DateisHoliday” is obtained. Keterangan

is variable that represent about certain date is holiday, normal day, and weekend, if holiday

then keterangan value is either be “liburNasional” or “cutiBersama” depends on the

namaLibur variable. Namalibur variable is representing the name of holiday, like “Libur

Natal”, “Libur lebaran” etc. Then from date time we should know the certain date is in

COVID-19 pandemic or not because since COVID-19 pandemics the bus demand is hugely

drop. Then day of week is represented name of the day, for example Sunday, Monday,

Tuesday, etc. nextDateisHoliday is represents that in certain date plus one day is a holiday or

not, this should impact bus route demand because people tend to go to their hometown or

taking a vacation and probably use bus as their transportation when the next day is holiday,

and for the next2Dateisholiday is like the nextDateisHoliday but this variable represents that

in certain date plus two day is either holiday or not, and the last one next3DateisHolidat is a

same as nextDateisHoliday but his variable represents that in certain date plus three day is

either holiday or not.

21

Figure 4.4: date time feature extraction

4.1.3. Split Data

The data that was previously analyzed will be entered and split in this stage. The data

will be divided into two parts, the bus route variable and the categorical variable that

extracted from the date time variable. The bus route variable is containing the data of the bus

route passenger sum on certain date. The data then will be divided into two parts, 80%

training set and 20% test set.

4.1.4. Data Analysis and feature scaling

This part is to analyze the data that has gone through the previous two stages, this step

will use seaborn to visualize the corelation of each variable and data distribution will be

visualized with histogram then feature scaling method will performed. Before that the author

visualize the data first in order to get track of missing values. Figure below is the visualization

of some of the route data.

From figure abov we can see that the data there was a very significant decrease in the

number of passengers in Marc and that time is the first time COVID-19 outbrakes in

Indonesia. Besides that there are no evidence of missing values in this data.

22

Figure 4.5: data visualizarion

The value represent how each variable correlate with each other, 0 value means no

correlation at all, 1 means the variable have strong positive correlation. This means when the

value is going up the other value is going up as well with other variable, and negative value

means the value has negative correlation with other value this means whenever variable value

goes up, the value of other variables is going down since the correlation is negative.

Figure 4.5 above shows that almost all variable have correlation with each other but

not all variable correlate with each other with the same direction and this is normal, since each

route will have negative correlation with its return route for example yogyakarta-bekasi will

have high negative correlation with bekasi-yogyakarata but yogyakarta bekasi probably only

have weak correlation with semarang-kebumen either negative or positive.

23

Figure 4.6: Heatmap

From the data histogram from each route in figure 4.6 it shows that for all routes the

data distribution is skew, this could make the deep learning model perform bad. From this,

something must be done to make the data distribution have more Gaussian like shape (bell

shape) like as mentioned in last chapter to achieve better deep learning models performance.

To overcome this issue the author using powertransformer from Sikit Learn library and

pipeline from Sickit Learn, so with help of pipeline, the transformed data could be inverted

back to its original form. In the powertransformer method there are 2 transformer method

which is box-cox method and Yeo-johnson method and the method used is the Yeo-johnson

method since the box-cox method is strictly positive. That means box-cox method only

allowing positive value. Although the data can used both method, but in this study only yeo-

johnson method will be used.

24

Figure 4.7: Data distribution

In this figure it can be seen that yeo-johnson formula have 4 conditional shape, and

with this the yeo-johnson have the ability to transform data that are not positive. For the result

after using powertransformer with yeo-johnson formula, the data distribution is having more

Gaussian like shape which is good news. The result can be seen in the figure below:

25

Figure 4.9: After using powertransformer

Figure 4.8: yeo-johnson formula

This method is for all the route variable but for the other variable ordinal scales and

one hot encoder is used, ordinal encoder is mainly used to encode categorical data to

numerical value, this is used for data that can be ordered, then each order could contribute for

the training process such as dayofweek. When ordinal scales is use for dayofweek variable, it

transforms the dayofweek value to numerical value (sunday to 0, monday to 1, etc). Then the

last variable “namalibur” will be transformed with one hot encoder. One hot encoder here will

transform the data variable to binary values to get clear picture see figure below:

The machine cannot understand words, so something must be done for the data, so the

machine can understand it. One hot encoder and ordinal scaler is used to transform categorical

data into numeric values, one hot encoder will transform data into biniary models that can be

seen in figure 4.9, then the ordinal scaler will transform data into ordered integer.

4.2. Deeplearning Model

In this research 2 Deep learning will be created then the performance will be

compared from each other. The first Models are LSTM Autoencoder-Bi-LSTM Hybrid

Models then the second one is Bi-LSTM models. In this study Keras model that will be used

is the functional models, because this problem needs more than 1 output that cannot be

handled by sequential API from Keras.

This model then will be trained one by one first to save time then the trained models

layer weight will be transferred for each combined model layer. This method is called transfer

learning. The combined models will have multiple outputs.

4.2.1. LSTM Autoencoder-Bi-LSTM Hybrid

LSTM Autoencoers-Bi-LSTM model hybrid will have 2 part the first part is to create

the LSTM autoencoders model and the second part will be creating Bi-LSTM for the output.

Auto coders have 2 stages called the encoder stage then the decoder stages. Each stage will be

26

Figure 4.10: One Hot Encoder

stored into one function and act as layer. Encoder stages is a stage to compressing the data

until it become into its latent space then from the latent space the decoder stages will be

performed.

Figure 4.10 is showing how the encoder models built, from those figure, its shows

there will have 2 input, the first input is for the route data variable, and for the second one

then both of them are concatenated together and will have data with 77 neurons. Those 77

neurons then go into encoding stages and leaving it into latent space with only 20 neurons,

each neuron are representing the data dimensions. This is the end of the encoding stages, the

output is data with its latent form with 20 variable. Then those 20 variable will then be

inputted to decoding stages. The decoding stages will be combined with bi-LSTM in the end

for the prediction output.

27

Figure 4.11: LSTM encoder Layers

Figure above shows the decoding-output models, start with the input which take from

the encoder stages, then gradually rising the amount of variables then the output of decoder is

directly inputted to bi-LSTM model with 20 neurons then the output will be inputted again

into another bi-LSTM then for the last the output from second bi-LSTM layer then will be

inputted to dense layer which represent the prediction of single route variable.

28

Figure 4.12: decoder-output Layer

Figure 4.13: LSTM-Autoencoders-Bi-LSTM hybrid model architecture

The figure above is the architecture combined with 2 layers from 2 phases before

which with functional model provided by Keras API, the models now have total of 5 output,

each output represents single route predictions and each output have its own losses and

metrics to get track of the model performance.

4.2.2. Bi-LSTM Model

This model is more simple than the LSTM-Autoencoders-Bi-LSTM hybrid model

architecture. This model will directly input 2 data and output the prediction without any other

architecture. This models will use bi-LSTM layers to create prediction.

Like the LSTM-Autoencoders-Bi-LSTM hybrid, there will be 2 input node, each input

represents the route variable and categorical data. Then those 2 input are concatenated into 1,

then directly inputted to bi-LSTM layers with 77 neurons. Since the bidirectional learns data

bidirectionally, so the number of neuron is also multiplicand by 2, That is why the output of 1

29

Figure 4.14: Bi-LSTM Model Layer

bidirectional layer is 154. The output from first bi-LSTM layer then inputted into second bi-

LSTM layer which then the output is going into dense layer with 1 neuron that represents 1

single route.

Figure above is a figure that show the final Bi-LSTM model architecture. This model

will have 5 output as well that each output represents one route variable since in this research

will only predict 5 route. Each output will have its own loss and metrics as well, so the

performance can be tracked per output.

30

Figure 4.15: Bi-LSTM model Architecture

	APPROVAL PAGE FOR PUBLICATION OF SCIENTIFIC PAPERS FOR ACADEMIC INTREST
	CHAPTER 1 18.K1.0084
	ACKNOWLEDGMENT
	ABSTRACT
	Keyword: Autoencoders, deep learning, LSTM, Bi-LSTM
	CHAPTER 1 INTRODUCTION
	1.1. Background
	1.2. Problem Formulation
	1.3. Scope
	1.4. Objective

	CHAPTER 2 LITERATURE STUDY
	CHAPTER 3 RESEARCH METHODOLOGY
	3.1. Literature Review
	3.2. Data Anlaysis and Preprocessing
	3.2.1. Data Selection and Variable Analysis
	3.2.2. Data Visualization
	3.2.3. Split Data
	3.2.4. Feature Scaling

	3.3. it must be noted that feature scaling is must be done after the data is splited because if feature scaling is done before then the splited data could not be inverted back into its normal form.
	3.4. Creating Models
	3.4.1. LSTM Autoencoder-Bi-LSTM Hybrid Models
	3.4.2. Bi-LSTM Model

	3.5. Models Evaluation and Comparison

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Data Preprocessing
	4.1.1. Data Selection and Variable Analysis
	4.1.2. Feature Extraction
	4.1.3. Split Data
	4.1.4. Data Analysis and feature scaling

	4.2. Deeplearning Model
	4.2.1. LSTM Autoencoder-Bi-LSTM Hybrid
	4.2.2. Bi-LSTM Model

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.1.1. Pre-Processing
	5.1.2. LSTM-Autoencoders-Bi-LSTM hybrid model
	5.1.3. Bi-LSTM model
	This code is a function to create a new Bi-LSTM models. Line 2 and 3 is to create the input layer. Line 4 is where the input layer is concatenated into 1. Line 6 is where bi-LSTM layer created with total neuron of 77. Then finally, line 7 is the output layer where dense layer is used with 1 neuron which represent 1 single route prediction.
	This code show how the Bi-LSTM model trained, line 1 is to define early stopping so the overfitting problems could be prevented, line 2 is to define the modal check points. Modelcheckpoints is used so when the training is done the best weight will be saved. Then finals line 3 It's where to train the model using fit() function. The first param is to define the data, second param is for the data output, line 6 is to define how many epochs will be used, line 7 is to define callbacks where the value are variables from line 1 and 2.

	5.1.4. Prediction and inverse transformation

	Figure 5.2 is showing how was the line 6-18 code works. As seen in that figure the prediction created with the data predicted before and added with the categorical data fdrom test set. This loop will loop until the end of the test set data. But need to be mentioned, the prediction output from the trained model is still in scaled form, so in order to transform the data back to its original form, inverse method should be done.
	5.2. Result
	5.2.1. LSTM-Autoencoders-Bi-LSTM hybrid model
	A) Training losses and metrics
	B) Prediction of test set

	5.2.2. Bi-LSTM model
	A) Training losses and metrics
	B) Prediction of test set

	5.2.3. Comparisons
	To compare both models here we have table that shows the lowest loss from both models:

	CHAPTER 6 CONCLUSION

