

PROJECT REPORT

BUS ROUTE DEMAND PREDICTION WITH DEEP LEARNING

Stevanus Alditian Lai 18.K1.0084

Faculty of Computer Science Soegijapranata Catholic University 2022

Judul Tugas Akhir: : BUS ROUTE DEMAND PREDICTION WITH DEEP LEARNING

Diajukan oleh : Stevanus Alditian Lai

NIM : 18.K1.0084

Tanggal disetujui : 14 Januari 2022

Telah setujui oleh

Pembimbing : Yonathan Purbo Santosa S.Kom., M.Sc

Penguji 1 : Yonathan Purbo Santosa S.Kom., M.Sc

Penguji 2 : Hironimus Leong S.Kom., M.Kom.

Penguji 3 : Rosita Herawati S.T., M.I.T.

Penguji 4 : Y.b. Dwi Setianto S.T., M.Cs.

Penguji 5 : R. Setiawan Aji Nugroho S.T., MCompIT., Ph.D

Penguji 6 : Yulianto Tejo Putranto S.T., M.T.

Ketua Program Studi : Rosita Herawati S.T., M.I.T.

Dekan : Dr. Bernardinus Harnadi S.T., M.T.

Halaman ini merupakan halaman yang sah dan dapat diverifikasi melalui alamat di bawah ini.

sintak.unika.ac.id/skripsi/verifikasi/?id=18.K1.0084

DECLARATION OF AUTHORSHIP

I, the undersigned:

Name : Stevanus Alditian Lai

ID : 18.K1.0084

declare that this work, titled "Bus Route Demanfd Prediction with Deep Learning", and the work presented in it is my own. I confirm that:

- 1 This work was done wholly or mainly while in candidature for a research degree at Soegijapranata Catholic University
- 2 Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
 - 3 Where I have consulted the published work of others, this is always clearly attributed.
 - 4 Where I have quoted from the work of others, the source is always given.
 - 5 Except for such quotations, this work is entirely my own work.
 - 6 I have acknowledged all main sources of help.

7 Where the work is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Semarang, January, 17, 2022

Stevanus Alditian Lai

18.K1.0084

APPROVAL PAGE FOR PUBLICATION OF SCIENTIFIC PAPERS FOR ACADEMIC INTREST

The undersigned below:

Name : Stevanus Alditian Lai

Undergraduate Program : INFORMATICS ENGINEERING

Faculty : COMPUTER SCIENCE

Type of work : THESIS

Approved to give Non-Exclusive Royalty Free Right to Soegijapranata Catholics University Semarang for scientific work entitled "BUS ROUTE DEMAND PREDICTION WITH DEEP LEARNING". Along with the existing tools (if needed). With this Non-Exclusive Royalty Free Right to Soegijapranata Catholics University has the right to store, transfer data/format, manage in form of database, maintain and publish this final project as long as I keep my name as a writer/creator and as a Copyright ownler.

This statement I made in truth.

Semarang, Januari, 17, 2000

Stevanus Alditian Lai

CHAPTER 118.K1.0084

ACKNOWLEDGMENT

Praise and gratitude the author prays to the presence of God Almighty for all the grace

given so that the preparation of this thesis can be completed with great results. The title of the

thesis that the author proposes is "BUS ROUTE DEMAND PREDICTION WITH DEEP

LEARNING".

The thesis was submitted to fulfill graduation requirements at the Faculty of Computer

Science, Informatics Engineering Study Program at Soegijapranata Catholic University. Many

things that the author went through while writing this thesis, ranging from hard work to

patience in understanding the aspects needed to complete the thesis so that it was of higher

quality. The author understands that many persons have contributed to the completion of the

study and the final project. Therefore, with great gratitude, on this moment the author would

like to thank:

Parents and family who have give full support during lectures.

2 Mr. Yo<mark>nathan as a</mark> my supervi<mark>so</mark>r that realy helps me for this thesis to be done.

3 All Unika IT Lecturers.

4 Close friends who help self-development.

5 Unika has become a place for me to be ready in the world of work.

The author realizes that this thesis is far from perfect, even though the author tries to

give the best of what the author can do. Finally, the writer expects criticism and suggestions

for the achievement of good things from this thesis. The writer hopes that this thesis can be

useful for readers, especially for other writers that.

Semarang, Januari, 17, 2000

Stevanus Alditian Lai

18.K1.0084

v

ABSTRACT

bus companies currently have several obstacles in providing their fleets from one city

to another because of the highly dynamic demand from passengers, bus companies must be

able to analyze which routes will have a lot of demand so that bus companies can provide

more fleets on the routes that will have high demand. Unfortunately the bus company is

currently still unable to predict which routes will be in high demand, at this time the bus

company can only guess. Currently, to overcome this, the bus company has collected data

which will later be analyzed.

Since the deep learing method is relatively new for bus company to predict the bus

route demand, this study explores new method to make the bus company more profitable by

trying to create and implement LSTM Autoencoder-Bi-LSTM Hybrid Models and Bi-LSTM to

forcast bus route demand to support the decision making process in orrder to optimize bus

fleet deployment each route.

The results shows that LSTM Autoencoder-Bi-LSTM Hybrid Models and Bi-LSTM

models doesn't differ very much, the loss and metrcs value differ a little, and both models

performs quiet well, but 1 things that differ these 2 models, that is the training time, the

autoencoders training time is very slow compared to models without autoencoders. This is

normal for autoencoder to train slower than without it due to more network depth of the

models with autoencoder.

Keyword: Autoencoders, deep learning, LSTM, Bi-LSTM

vi

TABLE OF CONTENTS

APPROVAL PAGE FOR PUBLICATION OF SCIENTIFIC PAPERS FOR ACADEMIC INTREST	
ACKNOWLEDGMENT	V
ABSTRACT	vi
CHAPTER 1 INTRODUCTION	1
1.1. Background	1
1.2. Problem Formulation	3
1.3. Scope	3
1.4. Objective	4
CHAPTER 2 LITERATURE STUDY	5
CHAPTER 3 RESEARCH METHODOLOGY	10
3.1. Literature Review	10
3.2. Data Anlaysis and Preprocessing	
3.2.1. Data Selection and Variable Analysis	10
3.2.2. Dat <mark>a Visualizatio</mark> n	11
3.2.3. Split Data	13
3.2.4. Feature Sca <mark>ling</mark>	13
3.4. Creating Models	14
3.4.1. LSTM Autoencoder-Bi-LSTM Hybrid Models	15
3.4.2. Bi-LSTM Model	16
3.5. Models Evaluation and Comparison	16
CHAPTER 4 ANALYSIS AND DESIGN	18
4.1. Data Preprocessing	18
4.1.1. Data Selection and Variable Analysis	18
112 Feature Extraction	20

4.1.3. Split Data	22
4.1.4. Data Analysis and feature scaling	22
4.2. Deeplearning Model	
4.2.1. LSTM Autoencoder-Bi-LSTM Hybrid	26
4.2.2. Bi-LSTM Model	29
CHAPTER 5 IMPLEMENTATION AND RESULTS	31
5.1. Implementation	31
5.1.1. Pre-Processing	31
5.1.2. LSTM-Autoencoders-Bi-LSTM hybrid model	33
5.1.3. Bi-LSTM model	37
5.1.4. Prediction and inverse transformation	
5.2. Result	41
5.2.1. LSTM-Autoencoders-Bi-LSTM hybrid model	
5.2.2. Bi-LSTM model.	45
5.2.3. Comparisons	48
CHAPTER 6 CONCLUSION.	
REFERENCES	53
ADDENDIY	// _

List of Figures

Figure 3.1: Date Time variable analysis	11
Figure 3.2: Heatmap	12
Figure 3.3: Gaussian distribution	13
Figure 3.4: Normalization	14
Figure 3.5: standarization formula	
Figure 3.6: Autoencoder architecture	15
Figure 3.7: RMSE and MSE formula	16
Figure 4.1: Data Selection	
Figure 4.2: start-destination transformation	19
Figure 4.3: Pivoting each unique startDest	
Figure 4.4: date time feature extraction	21
Figure 4.5: data visualizarion	22
Figure 4.6: Heatmap	23
Figure 4.7: Data distribution.	
Figure 4.8: yeo-johnson formula	25
Figure 4.9: After using powertransformer	25
Figure 4.10: One Hot Encoder	
Figure 4.11: LSTM encoder Layers	
Figure 4.12: decoder-output Layer	
Figure 4.13: LSTM-Autoencoders-Bi-LSTM hybrid model architecture	
Figure 4.14: Bi-LSTM Model Layer	29
Figure 4.15: Bi-LSTM model Architecture	30
Figure 5.1: First prediction batch	39
Figure 5.2: prediction per sequence	39
Figure 5.3: prediction output	
Figure 5.4: predicted output after inversed.	
Figure 5.5: training Loss and metric (a) first route, (b) second route, (c) third route, (d) fou	
route, (f) fifth route, for LSTM-Autoencoders-Bi-LSTM hybrid model	
Figure 5.6: prediction result compared with real value	
Figure 5.7: training Loss and metric (a) first route, (b) second route, (c) third route, (d) fou	
route, (f) fifth route, for Bi-LSTM model	
Figure 5.8: prediction result compared with real value	
Figure 5.9: Model 1(LSTM-Autoencoders-Bi-LSTM hybrid), Model 2(Bi-LSTM)	
Figure 5.10: loss and metrics visualization for both models	
Figure 5.11: Average Loss and Metrics	
Figure 5.12: prediction result with autoencoder (a), without autoencoder (b)	49

Index of Tables

Table 5.1: Lowest Loss and metrics	per route ²	43
Table 5.2: Lowest Loss and metrics	per route ²	1 (

