
CHAPTER 3

RESEARCH METHODOLOGY

This chapter contains the steps that will be taken in working on this project. Starting

from entering the dataset into the python notebook folder to the final stage of the research.

The steps are as follows:

3.1. Put the dataset into the python notebook project folder

The datasets used in this research are haarcascade_frontalface_default.xml and

haarcascade_eye.xml files. Here is the process of getting the haarcascade dataset into the

python notebook project folder:

1. The first step is to retrieve the dataset. The dataset used in this project is taken from

Github1, and to run this project the dataset must be entered into the python notebook

project folder so that the dataset can function to detect a person's face or eyes.

2. The first dataset is the Haarcascade_frontalface_default.xml file which contains code

to detect faces such as using a subwindow with 24x24 dimensions, has a maximum

number of 211, has 25 stage numbers, has a process threshold for face detection, has

an internal node value, and has a leaf value. The haarcascade_frontalface_default.xml

file also contains classification steps that go through the num and tree stages, in the

tree there is one node that contains the haar (rects) feature. The first and second

column numbers in the box indicate the position of the pixel being classified, while the

third and fourth column numbers indicate the width and height of the feature, and for

the last column number, the constant is multiplied to each side of the feature.

3. Meanwhile, the contents of the haarcascade_eye.xml file also contain codes to detect

eyes such as using a 20x20 subwindow, having 93 weak counts at most, having 24

stage numbers, having a threshold value for eye detection, and having an internal node

value. The haarcascade_eye.xml file also contains a classification step that goes

through the numand tree; in the tree there is one node that contains the haar (rects)

feature. Each number in rects serves the same purpose as the

haarcascade_frontalface_default.xml file. The purpose of the rects for the first and

1 https://github.com/opencv/opencv/tree/master/data/haarcascades

14

second column numbers is to indicate the position of the pixel being classified, while

the third and fourth column numbers indicate the width and height of the feature, and

for the last column number, which serves to multiply the constants on each side of the

feature.

Below is an image of the contents of the haarcascade_frontalface_default.xml dataset

and the haarcascade_eye.xml dataset used in this project:

15

Gambar 3.1: Dataset Haarcascade_frontalface_default.xml

Gambar 3.2: Dataset Haarcascade_frontalface_default.xml rects

Gambar 3.3: Dataset Haarcascade_eye.xml

3.2. Importing CV2

Before importing CV2, it is necessary to install the OpenCV library on the python

notebook used in this project. OpenCV is used to process data in the form of images and

videos to read all the information. OpenCV presents the haarcascade algorithm data source

that is in the OpenCV data. In this project, face detection uses CV2, and a cascade classifier

that reads the xml dataset file according to its use. The haarcascade_frontalface_default.xml

and haarcascade_eye.xml datasets are implemented using OpenCV.

Figure 3.5 contains the basic structure of OpenCV. The structure of OpenCV is

broadly divided into five main components, as shown above:

1. The CV component contains basic image processing and advanced computer vision

algorithms.

2. MLL is a machine learning library, which includes statistical classifier and clustering

tools.

16

Gambar 3.4: Dataset Haarcascade_eye.xml rects

Gambar 3.5: OpenCV Basic Structure

3. High GUI contains routines and I/O functions for storing and reading videos and

images.

4. CXCORE contains the basic data structure and content.

5. CV Aux contains about unused areas and experimental algorithms.

Figure 3.6 contains the implementation of the haarcascade classifier dataset which will

be processed using CV2. The haarcascade classifier dataset used consists of two files,

including the following:

1. Haarcascade_frontalface_default.xml which is processed using CV2 as face detection

and cascade classification to read the xml dataset file according to its use. In the

haarcascade dataset, it is stored in the faceCascade variable.

2. Haarcascade_eye.xml which is processed using CV2 as eye detection and cascade

classification to read the xml dataset file according to its use. In the haarcascade

dataset, it is stored in the eyeCascade variable.

3.3. Turn on the webcam

To detect faces and eyes by processing a dataset of xml files using a cascade classifier,

I used the laptop's built-in webcam as well as live video connected to the program. Webcams

also make it easy to process messages processed by the cascade classifier against xml file

datasets quickly.

17

Gambar 3.6: Dataset Implementation On OpenCV

3.4. Change each frame to gray

Live video on the webcam camera is converted every frame into grayscale, so that the

face and eye variables that are processed using the cascade classifier will be converted to

grayscale.

3.5. Implementation of algorithms for face and eye detection

In detecting faces in video, each frame will be processed directly on CV2, and the

cascade classifier functions to read the haarcascade_frontalface_default.xml dataset quickly

and accurately so that it can detect images of objects on faces. And by providing the code

cv2.rectangle to provide a box image around the face area, and cv2.putText code to provide a

description of the face above the box image. As for eye detection, each frame will be

processed on CV2, and the cascade classifier functions to read the haarcascade_eye.xml

dataset file so that it can detect images of objects in the eye. And by providing the code

cv2.rectangle to provide a box image around the eye area, and cv2.putText code to provide an

eye description above the box image.

18

Gambar 3.7: The Process Of Turning On The Webcam

3.6. Implementation of the results of detecting someone using glasses

By detecting a person's face and eyes in a live video on the webcam, it can be tested

whether someone is wearing glasses or not. This way, if face and eyes are detected, it ensures

that a person is not wearing glasses, as well as the code cv2.rectangle to provide a square

image around the red face area and the code cv2.putText to provide information that the

person is not wearing glasses. Meanwhile, if only the face is detected while the eyes are not

detected, then it is certain that the person is wearing glasses, as well as the cv2.rectangle code

to provide an image of the box around the green and cv2 face area. putText code to provide

information about a person wearing glasses. The project also counts the number of faces and

eyes of a person in a live video.

19

	APPROVAL AND RATIFICATION PAGE
	STATEMENT OF ORIGINALITY
	ACKNOWLEDGMENT
	ABSTRACT
	In this day and age, many people wear glasses to help their eyesight or to add style to make them look more attractive. In some places it is mandatory for someone not to wear glasses for certain reasons such as someone who goes to an ATM machine not to wear dark colored glasses so that his face can be seen clearly and is better known for security reasons. In this situation it is very important for some places to be able to detect a person wearing glasses using the camera directly for some reason in order to quickly recognize the person's face more clearly.
	The haarcascade classification algorithm is an algorithm that can detect faces and eyes directly and quickly using a camera connected to a computer. The haarcascade that I use is the frontalface haarcascade to detect faces and the eye haarcascade to detect the eyes, and the results of the detection if the face and eyes are detected, it is certain that someone is not wearing glasses and vice versa if only a face is detected, it is certain that someone is wearing glasses. OpenCV to insert live video and processed by the library that we use.
	The final result that we get in this project is an image that has been captured and has been run through a dataset, namely direct video input that has been processed using haarcascade frontalface and haarcascade eye and opencv. At the top of a person's face there will be a text that explains whether the person is wearing glasses or not, and can count the number of faces and eyes of a person recorded on the camera.
	Keyword: Haarcascade Classifier, OpenCV, Live Video, Glasses
	LIST OF FIGURE
	LIST OF TABLE
	CHAPTER 1 INTRODUCTION
	1.1. Background
	1.2. Problem Formulation
	1.3. Scope
	1.4. Objective

	CHAPTER 2 LITERATURE STUDY
	CHAPTER 3 RESEARCH METHODOLOGY
	3.1. Put the dataset into the python notebook project folder
	3.2. Importing CV2
	3.3. Turn on the webcam
	3.4. Change each frame to gray
	3.5. Implementation of algorithms for face and eye detection
	3.6. Implementation of the results of detecting someone using glasses

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Desain

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.2. Results

	CHAPTER 6 CONCLUSION

