

PROJECT REPORT

DIRECT DETECTION OF PEOPLE WEARING GLASSES USING THE HAARCASCADE CLASSIFIER

BILLY CORNELIO ALFONS
18.K1.0079

Faculty of Computer Science Soegijapranata Catholic University 2022

APPROVAL AND RATIFICATION PAGE

HALAMAN PENGESAHAN

Judul Tugas Akhir: : Direct Detection Of People Wearing Glasses Using The Haarcascade

Classifier

Diajukan oleh : Billy Cornelio Alfons

NIM : 18.K1.0079

Tanggal disetujui : 14 Januari 2022

Telah setujui oleh

Pembimbing : R. Setiawan Aji Nugroho S.T., MCompIT., Ph.D

Penguji 1 : R. Setiawan Aji Nugroho S.T., MCompIT., Ph.D

Penguji 2 : Hironimus Leong S.Kom., M.Kom.

Penguji 3 : Yonathan Purbo Santosa S.Kom., M.Sc

Penguji 4 : Rosita Herawati S.T., M.I.T.

Penguji 5 : Yulianto Tejo Putranto S.T., M.T.

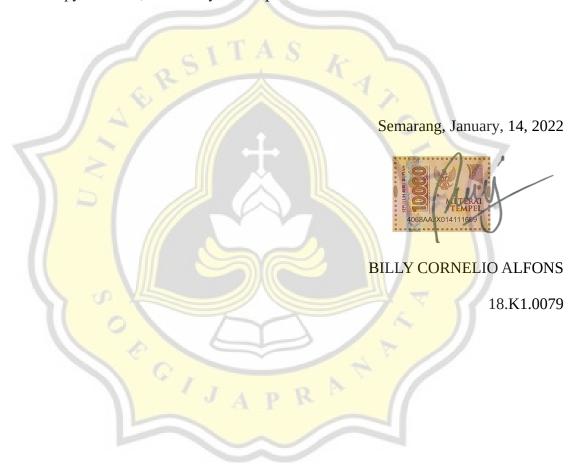
Penguji 6 : Y.b. Dwi Setianto S.T., M.Cs.

Ketua Program Studi : Rosita Herawati S.T., M.I.T.

Dekan : Dr. Bernardinus Harnadi S.T., M.T.

Halaman ini merupakan halaman yang sah dan dapat diverifikasi melalui alamat di bawah ini.

sintak.unika.ac.id/skripsi/verifikasi/?id=18.K1.0079


STATEMENT OF ORIGINALITY

I, the undersigned:

Name : BILLY CORNELIO ALFONS

ID : 18.K1.0079

Certify that this project was made by myself and not copy or plagiarize from other people, except that in writing expressed to the other article. If it is proven that this project was plagiarizes or copy the other, I am ready to accept a sanction.

APPROVAL PAGE FOR PUBLICATION OF SCIENTIFIC PAPERS FOR ACADEMIC INTEREST

The undersigned:

Name : BILLY CORNELIO ALFONS

Undergraduate Program : INFORMATICS ENGINEERING

Faculty : COMPUTER SCIENCE

Type of work : Thesis

Approved to give Non-Exclusive Royalty Free Right to Soegijapranata Catholic University Semarang for scientific work entitled "Direct Detection Of People Wearing Glasses Using The Haarcascade Classifier" along with the existing tools (if needed). With this Non-Exclusive Royalty Free Right Soegijapranata Catholic University has the right to store, transfer data / format, manage in the form database, maintain and publish this final project as long as I keep my name as a writer / creator and as a Copyright owner.

This statement I made in truth.

Semarang, January, 14, 2022

BILLY CORNELIO ALFONS

18.K1.0079

ACKNOWLEDGMENT

First of all, I would like to express my praise and gratitude to the presence of God Almighty for His blessings and gifts, so that I can complete my final project successfully. This Final Project is intended as one of the requirements to take the Bachelor of Computer Science examination at the Informatics Engineering Study Program Soegijapranata Catholic University Semarang.

In the preparation of this final project, the author received assistance from various parties. Therefore, on this occasion the author would like to express his deepest gratitude to:

- 1. Father, Mother, Brother and family who always provide prayers and support to the author during the work of this Final Project.
- 2. R. Setiawan Aji Nugroho S.T. McomperT. Ph.D as a supervisor who has provided guidance and input to the author, so that this final project can be completed properly.
- 3. And other parties that the author cannot mention one by one who have provided support and assistance to the author during the preparation of this final project.

Semarang, January, 14, 2022

BILLY CORNELIO ALFONS

18.K1.0079

ABSTRACT

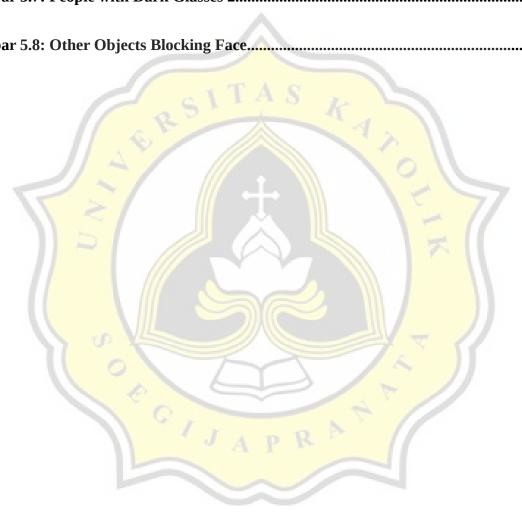
In this day and age, many people wear glasses to help their eyesight or to add style to make them look more attractive. In some places it is mandatory for someone not to wear glasses for certain reasons such as someone who goes to an ATM machine not to wear dark colored glasses so that his face can be seen clearly and is better known for security reasons. In this situation it is very important for some places to be able to detect a person wearing glasses using the camera directly for some reason in order to quickly recognize the person's face more clearly.

The haarcascade classification algorithm is an algorithm that can detect faces and eyes directly and quickly using a camera connected to a computer. The haarcascade that I use is the frontalface haarcascade to detect faces and the eye haarcascade to detect the eyes, and the results of the detection if the face and eyes are detected, it is certain that someone is not wearing glasses and vice versa if only a face is detected, it is certain that someone is wearing glasses. OpenCV to insert live video and processed by the library that we use.

The final result that we get in this project is an image that has been captured and has been run through a dataset, namely direct video input that has been processed using haarcascade frontalface and haarcascade eye and opency. At the top of a person's face there will be a text that explains whether the person is wearing glasses or not, and can count the number of faces and eyes of a person recorded on the camera.

Keyword: Haarcascade Classifier, OpenCV, Live Video, Glasses

TABLE OF CONTENTS


APPROVAL AND RATIFICATION PAGE	ii
STATEMENT OF ORIGINALITY	iii
APPROVAL PAGE FOR PUBLICATION OF SCIENTIFIC PAPER ACADEMIC INTEREST	
ACKNOWLEDGMENT	v
ABSTRACT	vi
LIST OF FIGURE.	ix
LIST OF TABLE	
LIST OF TABLE	XI
CHAPTER 1 INTRODUCTION	1
1.1. Backgr <mark>ound</mark>	1
1.2. Problem Formulation.	2
1.3. Scope	2
1.4. Objective	2
CHAPTER 2 LITERATURE STUDY	3
CHAPTER 3 RESEARCH METHODOLOGY	14
3.1. Put the dataset into the python notebook project folder	
3.2. Importing CV2	
3.3. Turn on the webcam	
3.4. Change each frame to gray	
3.5. Implementation of algorithms for face and eye detection	
3.6. Implementation of the results of detecting someone using glas	
CHAPTER 4 ANALYSIS AND DESIGN	20

4.1. Analysis	20
4.2. Desain	25
CHAPTER 5 IMPLEMENTATION AND RESULTS	28
5.1. Implementation	28
5.2. Results	30
CHAPTER 6 CONCLUSION	37
REFERENCES	39
APPENDIX	
APPENDIX	a

LIST OF FIGURE

Gambar 3.1: Dataset Haarcascade_frontalface_default.xml	15
Gambar 3.2: Dataset Haarcascade_frontalface_default.xml rects	15
Gambar 3.3: Dataset Haarcascade_eye.xml	15
Gambar 3.4: Dataset Haarcascade_eye.xml rects	16
Gambar 3.5: OpenCV Basic Structure	16
Gambar 3.6: Dataset Implementation On OpenCV	17
Gambar 3.7: The Process Of Turning On The Webcam	18
Gambar 4.1: Haar-Like Feature	20
Gambar 4.2: Haarcascade Sub Window Formation	21
Gambar 4.3: Haar Features At Stage 0.	21
Gambar 4.4: Adaptive Boosting Classifier	22
Gambar 4.5: Cascade Classifier	22
Gambar 4.6: Face Detect	23
Gambar 4.7: Detect Face And Eyes	24
Gambar 4.8: Flowchart Project	26
Gambar 5.1: People Without Glasses 1	30
Gambar 5.2: Person with Clear Glasses 1	31

Gambar 5.3: Side View of People with Glasses	32
Gambar 5.4: Back View of People with Glasses	33
Gambar 5.5: Person with Clear Glasses 2	34
Gambar 5.6: Person with Dark Glasses 1	34
Gambar 5.7: People with Dark Glasses 2	35
Gambar 5.8: Other Objects Blocking Face	36

LIST OF TABLE

